Nicholas Beauchamp


2024

pdf
Narrative-of-Thought: Improving Temporal Reasoning of Large Language Models via Recounted Narratives
Xinliang Frederick Zhang | Nicholas Beauchamp | Lu Wang
Findings of the Association for Computational Linguistics: EMNLP 2024

Reasoning about time and temporal relations is an integral aspect of human cognition, essential for perceiving the world and navigating our experiences. Though large language models (LLMs) have demonstrated impressive performance in many reasoning tasks, temporal reasoning remains challenging due to its intrinsic complexity. In this work, we first study an essential task of temporal reasoning—temporal graph generation, to unveil LLMs’ inherent, global reasoning capabilities. We show that this task presents great challenges even for the most powerful LLMs, such as GPT-3.5/4. We also notice a significant performance gap by small models (< 10B) that lag behind LLMs by 50%. Next, we study how to close this gap with a budget constraint, e.g., not using model finetuning. We propose a new prompting technique tailored for temporal reasoning, Narrative-of-Thought (NoT), that first converts the events set to a Python class, then prompts a small model to generate a temporally grounded narrative, guiding the final generation of a temporal graph. Extensive experiments showcase the efficacy of NoT in improving various metrics. Notably, NoT attains the highest F1 on the Schema-11 evaluation set, while securing an overall F1 on par with GPT-3.5. NoT also achieves the best structural similarity across the board, even compared with GPT-3.5/4.

pdf
MOKA: Moral Knowledge Augmentation for Moral Event Extraction
Xinliang Frederick Zhang | Winston Wu | Nicholas Beauchamp | Lu Wang
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

News media often strive to minimize explicit moral language in news articles, yet most articles are dense with moral values as expressed through the reported events themselves. However, values that are reflected in the intricate dynamics among *participating entities* and *moral events* are far more challenging for most NLP systems to detect, including LLMs. To study this phenomenon, we annotate a new dataset, **MORAL EVENTS**, consisting of 5,494 structured event annotations on 474 news articles by diverse US media across the political spectrum. We further propose **MOKA**, a moral event extraction framework with **MO**ral **K**nowledge **A**ugmentation, which leverages knowledge derived from moral words and moral scenarios to produce structural representations of morality-bearing events. Experiments show that **MOKA** outperforms competitive baselines across three moral event understanding tasks. Further analysis shows even ostensibly nonpartisan media engage in the selective reporting of moral events.

2023

pdf
All Things Considered: Detecting Partisan Events from News Media with Cross-Article Comparison
Yujian Liu | Xinliang Zhang | Kaijian Zou | Ruihong Huang | Nicholas Beauchamp | Lu Wang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Public opinion is shaped by the information news media provide, and that information in turn may be shaped by the ideological preferences of media outlets. But while much attention has been devoted to media bias via overt ideological language or topic selection, a more unobtrusive way in which the media shape opinion is via the strategic inclusion or omission of partisan events that may support one side or the other. We develop a latent variable-based framework to predict the ideology of news articles by comparing multiple articles on the same story and identifying partisan events whose inclusion or omission reveals ideology. Our experiments first validate the existence of partisan event selection, and then show that article alignment and cross-document comparison detect partisan events and article ideology better than competitive baselines. Our results reveal the high-level form of media bias, which is present even among mainstream media with strong norms of objectivity and nonpartisanship. Our codebase and dataset are available at https://github.com/launchnlp/ATC.

pdf
Crossing the Aisle: Unveiling Partisan and Counter-Partisan Events in News Reporting
Kaijian Zou | Xinliang Zhang | Winston Wu | Nicholas Beauchamp | Lu Wang
Findings of the Association for Computational Linguistics: EMNLP 2023

News media is expected to uphold unbiased reporting. Yet they may still affect public opinion by selectively including or omitting events that support or contradict their ideological positions. Prior work in NLP has only studied media bias via linguistic style and word usage. In this paper, we study to which degree media balances news reporting and affects consumers through event inclusion or omission. We first introduce the task of detecting both partisan and counter-partisan events: events that support or oppose the author’s political ideology. To conduct our study, we annotate a high-quality dataset, PAC, containing 8,511 (counter-)partisan event annotations in 304 news articles from ideologically diverse media outlets. We benchmark PAC to highlight the challenges of this task. Our findings highlight both the ways in which the news subtly shapes opinion and the need for large language models that better understand events within a broader context. Our dataset can be found at https://github.com/launchnlp/Partisan-Event-Dataset.

2022

pdf
POLITICS: Pretraining with Same-story Article Comparison for Ideology Prediction and Stance Detection
Yujian Liu | Xinliang Frederick Zhang | David Wegsman | Nicholas Beauchamp | Lu Wang
Findings of the Association for Computational Linguistics: NAACL 2022

Ideology is at the core of political science research. Yet, there still does not exist general-purpose tools to characterize and predict ideology across different genres of text. To this end, we study Pretrained Language Models using novel ideology-driven pretraining objectives that rely on the comparison of articles on the same story written by media of different ideologies. We further collect a large-scale dataset, consisting of more than 3.6M political news articles, for pretraining. Our model POLITICS outperforms strong baselines and the previous state-of-the-art models on ideology prediction and stance detection tasks. Further analyses show that POLITICS is especially good at understanding long or formally written texts, and is also robust in few-shot learning scenarios.

2018

pdf
Microblog Conversation Recommendation via Joint Modeling of Topics and Discourse
Xingshan Zeng | Jing Li | Lu Wang | Nicholas Beauchamp | Sarah Shugars | Kam-Fai Wong
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

Millions of conversations are generated every day on social media platforms. With limited attention, it is challenging for users to select which discussions they would like to participate in. Here we propose a new method for microblog conversation recommendation. While much prior work has focused on post-level recommendation, we exploit both the conversational context, and user content and behavior preferences. We propose a statistical model that jointly captures: (1) topics for representing user interests and conversation content, and (2) discourse modes for describing user replying behavior and conversation dynamics. Experimental results on two Twitter datasets demonstrate that our system outperforms methods that only model content without considering discourse.