Martin Fajcik


2023

pdf
Claim-Dissector: An Interpretable Fact-Checking System with Joint Re-ranking and Veracity Prediction
Martin Fajcik | Petr Motlicek | Pavel Smrz
Findings of the Association for Computational Linguistics: ACL 2023

We present Claim-Dissector: a novel latent variable model for fact-checking and analysis, which given a claim and a set of retrieved evidence jointly learns to identify: (i) the relevant evidences to the given claim (ii) the veracity of the claim. We propose to disentangle the per-evidence relevance probability and its contribution to the final veracity probability in an interpretable way — the final veracity probability is proportional to a linear ensemble of per-evidence relevance probabilities. In this way, the individual contributions of evidences towards the final predicted probability can be identified. In per-evidence relevance probability, our model can further distinguish whether each relevant evidence is supporting (S) or refuting (R) the claim. This allows to quantify how much the S/R probability contributes to final verdict or to detect disagreeing evidence. Despite its interpretable nature, our system achieves results competetive with state-of-the-art on the FEVER dataset, as compared to typical two-stage system pipelines, while using significantly fewer parameters. Furthermore, our analysis shows that our model can learn fine-grained relevance cues while using coarse-grained supervision and we demonstrate it in 2 ways. (i) We show that our model can achieve competitive sentence recall while using only paragraph-level relevance supervision. (ii) Traversing towards the finest granularity of relevance, we show that our model is capable of identifying relevance at the token level. To do this, we present a new benchmark TLR-FEVER focusing on token-level interpretability — humans annotate tokens in relevant evidences they considered essential when making their judgment. Then we measure how similar are these annotations to the tokens our model is focusing on.

2022

pdf
IDIAPers @ Causal News Corpus 2022: Efficient Causal Relation Identification Through a Prompt-based Few-shot Approach
Sergio Burdisso | Juan Pablo Zuluaga-gomez | Esau Villatoro-tello | Martin Fajcik | Muskaan Singh | Pavel Smrz | Petr Motlicek
Proceedings of the 5th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE)

In this paper, we describe our participation in the subtask 1 of CASE-2022, Event Causality Identification with Casual News Corpus. We address the Causal Relation Identification (CRI) task by exploiting a set of simple yet complementary techniques for fine-tuning language models (LMs) on a few annotated examples (i.e., a few-shot configuration).We follow a prompt-based prediction approach for fine-tuning LMs in which the CRI task is treated as a masked language modeling problem (MLM). This approach allows LMs natively pre-trained on MLM tasks to directly generate textual responses to CRI-specific prompts. We compare the performance of this method against ensemble techniques trained on the entire dataset. Our best-performing submission was fine-tuned with only 256 instances per class, 15.7% of the all available data, and yet obtained the second-best precision (0.82), third-best accuracy (0.82), and an F1-score (0.85) very close to what was reported by the winner team (0.86).

pdf
IDIAPers @ Causal News Corpus 2022: Extracting Cause-Effect-Signal Triplets via Pre-trained Autoregressive Language Model
Martin Fajcik | Muskaan Singh | Juan Pablo Zuluaga-gomez | Esau Villatoro-tello | Sergio Burdisso | Petr Motlicek | Pavel Smrz
Proceedings of the 5th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE)

In this paper, we describe our shared task submissions for Subtask 2 in CASE-2022, Event Causality Identification with Casual News Corpus. The challenge focused on the automatic detection of all cause-effect-signal spans present in the sentence from news-media. We detect cause-effect-signal spans in a sentence using T5 — a pre-trained autoregressive language model. We iteratively identify all cause-effect-signal span triplets, always conditioning the prediction of the next triplet on the previously predicted ones. To predict the triplet itself, we consider different causal relationships such as cause→effect→signal. Each triplet component is generated via a language model conditioned on the sentence, the previous parts of the current triplet, and previously predicted triplets. Despite training on an extremely small dataset of 160 samples, our approach achieved competitive performance, being placed second in the competition. Furthermore, we show that assuming either cause→effect or effect→cause order achieves similar results.

2021

pdf
R2-D2: A Modular Baseline for Open-Domain Question Answering
Martin Fajcik | Martin Docekal | Karel Ondrej | Pavel Smrz
Findings of the Association for Computational Linguistics: EMNLP 2021

This work presents a novel four-stage open-domain QA pipeline R2-D2 (Rank twice, reaD twice). The pipeline is composed of a retriever, passage reranker, extractive reader, generative reader and a mechanism that aggregates the final prediction from all system’s components. We demonstrate its strength across three open-domain QA datasets: NaturalQuestions, TriviaQA and EfficientQA, surpassing state-of-the-art on the first two. Our analysis demonstrates that: (i) combining extractive and generative reader yields absolute improvements up to 5 exact match and it is at least twice as effective as the posterior averaging ensemble of the same models with different parameters, (ii) the extractive reader with fewer parameters can match the performance of the generative reader on extractive QA datasets.

pdf bib
Rethinking the Objectives of Extractive Question Answering
Martin Fajcik | Josef Jon | Pavel Smrz
Proceedings of the 3rd Workshop on Machine Reading for Question Answering

This work demonstrates that using the objective with independence assumption for modelling the span probability P (a_s , a_e ) = P (a_s )P (a_e) of span starting at position a_s and ending at position a_e has adverse effects. Therefore we propose multiple approaches to modelling joint probability P (a_s , a_e) directly. Among those, we propose a compound objective, composed from the joint probability while still keeping the objective with independence assumption as an auxiliary objective. We find that the compound objective is consistently superior or equal to other assumptions in exact match. Additionally, we identified common errors caused by the assumption of independence and manually checked the counterpart predictions, demonstrating the impact of the compound objective on the real examples. Our findings are supported via experiments with three extractive QA models (BIDAF, BERT, ALBERT) over six datasets and our code, individual results and manual analysis are available online.

2020

pdf
BUT-FIT at SemEval-2020 Task 4: Multilingual Commonsense
Josef Jon | Martin Fajcik | Martin Docekal | Pavel Smrz
Proceedings of the Fourteenth Workshop on Semantic Evaluation

We participated in all three subtasks. In subtasks A and B, our submissions are based on pretrained language representation models (namely ALBERT) and data augmentation. We experimented with solving the task for another language, Czech, by means of multilingual models and machine translated dataset, or translated model inputs. We show that with a strong machine translation system, our system can be used in another language with a small accuracy loss. In subtask C, our submission, which is based on pretrained sequence-to-sequence model (BART), ranked 1st in BLEU score ranking, however, we show that the correlation between BLEU and human evaluation, in which our submission ended up 4th, is low. We analyse the metrics used in the evaluation and we propose an additional score based on model from subtask B, which correlates well with our manual ranking, as well as reranking method based on the same principle. We performed an error and dataset analysis for all subtasks and we present our findings.

pdf
BUT-FIT at SemEval-2020 Task 5: Automatic Detection of Counterfactual Statements with Deep Pre-trained Language Representation Models
Martin Fajcik | Josef Jon | Martin Docekal | Pavel Smrz
Proceedings of the Fourteenth Workshop on Semantic Evaluation

This paper describes BUT-FIT’s submission at SemEval-2020 Task 5: Modelling Causal Reasoning in Language: Detecting Counterfactuals. The challenge focused on detecting whether a given statement contains a counterfactual (Subtask 1) and extracting both antecedent and consequent parts of the counterfactual from the text (Subtask 2). We experimented with various state-of-the-art language representation models (LRMs). We found RoBERTa LRM to perform the best in both subtasks. We achieved the first place in both exact match and F1 for Subtask 2 and ranked second for Subtask 1.

pdf
JokeMeter at SemEval-2020 Task 7: Convolutional Humor
Martin Docekal | Martin Fajcik | Josef Jon | Pavel Smrz
Proceedings of the Fourteenth Workshop on Semantic Evaluation

This paper describes our system that was designed for Humor evaluation within the SemEval-2020 Task 7. The system is based on convolutional neural network architecture. We investigate the system on the official dataset, and we provide more insight to model itself to see how the learned inner features look.

2019

pdf
BUT-FIT at SemEval-2019 Task 7: Determining the Rumour Stance with Pre-Trained Deep Bidirectional Transformers
Martin Fajcik | Pavel Smrz | Lukas Burget
Proceedings of the 13th International Workshop on Semantic Evaluation

This paper describes our system submitted to SemEval 2019 Task 7: RumourEval 2019: Determining Rumour Veracity and Support for Rumours, Subtask A (Gorrell et al., 2019). The challenge focused on classifying whether posts from Twitter and Reddit support, deny, query, or comment a hidden rumour, truthfulness of which is the topic of an underlying discussion thread. We formulate the problem as a stance classification, determining the rumour stance of a post with respect to the previous thread post and the source thread post. The recent BERT architecture was employed to build an end-to-end system which has reached the F1 score of 61.67 % on the provided test data. Without any hand-crafted feature, the system finished at the 2nd place in the competition, only 0.2 % behind the winner.