This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Retrieval augmentation is a powerful but expensive method to make language models more knowledgeable about the world. Memory-based methods like LUMEN (de Jong et al., 2023a) pre-compute token representations for retrieved passages to drastically speed up inference. However, memory also leads to much greater storage requirements from storing pre-computed representations. We propose MEMORY-VQ, a new method to reduce storage requirements of memory-augmented models without sacrificing performance. Our method uses a vector quantization variational autoencoder (VQ-VAE) to compress token representations. We apply MEMORY-VQ to the LUMEN model to obtain LUMEN-VQ, a memory model that achieves a 16x compression rate with comparable performance on the KILT benchmark. LUMEN-VQ enables practical retrieval augmentation even for extremely large retrieval corpora.
Complex textual information extraction tasks are often posed as sequence labeling or shallow parsing, where fields are extracted using local labels made consistent through probabilistic inference in a graphical model with constrained transitions. Recently, it has become common to locally parametrize these models using rich features extracted by recurrent neural networks (such as LSTM), while enforcing consistent outputs through a simple linear-chain model, representing Markovian dependencies between successive labels. However, the simple graphical model structure belies the often complex non-local constraints between output labels. For example, many fields, such as a first name, can only occur a fixed number of times, or in the presence of other fields. While RNNs have provided increasingly powerful context-aware local features for sequence tagging, they have yet to be integrated with a global graphical model of similar expressivity in the output distribution. Our model goes beyond the linear chain CRF to incorporate multiple hidden states per output label, but parametrizes them parsimoniously with low-rank log-potential scoring matrices, effectively learning an embedding space for hidden states. This augmented latent space of inference variables complements the rich feature representation of the RNN, and allows exact global inference obeying complex, learned non-local output constraints. We experiment with several datasets and show that the model outperforms baseline CRF+RNN models when global output constraints are necessary at inference-time, and explore the interpretable latent structure.
Modeling hypernymy, such as poodle is-a dog, is an important generalization aid to many NLP tasks, such as entailment, relation extraction, and question answering. Supervised learning from labeled hypernym sources, such as WordNet, limits the coverage of these models, which can be addressed by learning hypernyms from unlabeled text. Existing unsupervised methods either do not scale to large vocabularies or yield unacceptably poor accuracy. This paper introduces distributional inclusion vector embedding (DIVE), a simple-to-implement unsupervised method of hypernym discovery via per-word non-negative vector embeddings which preserve the inclusion property of word contexts. In experimental evaluations more comprehensive than any previous literature of which we are aware—evaluating on 11 datasets using multiple existing as well as newly proposed scoring functions—we find that our method provides up to double the precision of previous unsupervised methods, and the highest average performance, using a much more compact word representation, and yielding many new state-of-the-art results.
Extraction from raw text to a knowledge base of entities and fine-grained types is often cast as prediction into a flat set of entity and type labels, neglecting the rich hierarchies over types and entities contained in curated ontologies. Previous attempts to incorporate hierarchical structure have yielded little benefit and are restricted to shallow ontologies. This paper presents new methods using real and complex bilinear mappings for integrating hierarchical information, yielding substantial improvement over flat predictions in entity linking and fine-grained entity typing, and achieving new state-of-the-art results for end-to-end models on the benchmark FIGER dataset. We also present two new human-annotated datasets containing wide and deep hierarchies which we will release to the community to encourage further research in this direction: MedMentions, a collection of PubMed abstracts in which 246k mentions have been mapped to the massive UMLS ontology; and TypeNet, which aligns Freebase types with the WordNet hierarchy to obtain nearly 2k entity types. In experiments on all three datasets we show substantial gains from hierarchy-aware training.
Embedding methods which enforce a partial order or lattice structure over the concept space, such as Order Embeddings (OE), are a natural way to model transitive relational data (e.g. entailment graphs). However, OE learns a deterministic knowledge base, limiting expressiveness of queries and the ability to use uncertainty for both prediction and learning (e.g. learning from expectations). Probabilistic extensions of OE have provided the ability to somewhat calibrate these denotational probabilities while retaining the consistency and inductive bias of ordered models, but lack the ability to model the negative correlations found in real-world knowledge. In this work we show that a broad class of models that assign probability measures to OE can never capture negative correlation, which motivates our construction of a novel box lattice and accompanying probability measure to capture anti-correlation and even disjoint concepts, while still providing the benefits of probabilistic modeling, such as the ability to perform rich joint and conditional queries over arbitrary sets of concepts, and both learning from and predicting calibrated uncertainty. We show improvements over previous approaches in modeling the Flickr and WordNet entailment graphs, and investigate the power of the model.