This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Large Language Models (LLMs) have significantly advanced natural language processing, demonstrating exceptional reasoning, tool usage, and memory capabilities. As their applications expand into multi-agent environments, there arises a need for a comprehensive evaluation framework that captures LLMs’ reasoning, planning, collaboration, and other social abilities. This work introduces a novel competition-based benchmark framework specifically designed to assess LLMs within multi-agent settings, providing quantitative metrics to evaluate their judgment, reasoning, deception, self-awareness, cooperation, coordination, and rationality.We utilize two social deduction games alongside three game-theory scenarios to create diverse environments.Our frame is fortified with the probabilistic graphic modeling (PGM) method, enhancing the LLMs’ capabilities in navigating complex social and cognitive dimensions. We evaluate seven LLMs, quantitatively highlighting a significant capability gap of over threefold between the strongest, GPT o1, and the weakest, Llama-2-70B. It also confirms that our PGM enhancement boosts the abilities of all selected models by an average of 37%. Our data and code can be found here https://github.com/cathyxl/MAgIC.
Processing long contexts remains a challenge for large language models (LLMs) due to the quadratic computational and memory overhead of the self-attention mechanism and the substantial KV cache sizes during generation. We propose LLoCO, a novel approach to address this problem by learning contexts offline through context compression and in-domain parameter-efficient finetuning with LoRA. Our method enables an LLM to create a concise representation of the original context and efficiently retrieve relevant information to answer questions accurately. Our approach extends the effective context window of a 4k token LLaMA2-7B model to handle up to 128k tokens. We evaluate our approach on several long-context question-answering datasets, demonstrating that LLoCO significantly outperforms in-context learning while using 30 × fewer tokens during inference. LLoCO achieves up to 7.62 × speed-up during inference and 11.52 × higher throughput during finetuning, substantially reduces the cost of long document question answering. This makes it a promising solution for efficient long context processing.
Recent large language models (LLMs) have enabled the development of advanced agentic systems that can integrate various tools and APIs to fulfill user queries through function calling. However, the deployment of these LLMs on the edge has not been explored since they typically require cloud-based infrastructure due to their substantial model size and computational demands. To this end, we present TinyAgent, an end-to-end framework for training and deploying task-specific small language model agents capable of function calling for driving agentic systems at the edge. We first show how to enable accurate function calling for open-source models via the LLMCompiler framework. We then systematically curate a high-quality dataset for function calling, which we use to fine-tune two small language models, TinyAgent-1.1B and 7B. For efficient inference, we introduce a novel tool retrieval method to reduce the input prompt length and utilize quantization to further accelerate the inference speed. As a driving application, we demonstrate a local Siri-like system for Apple’s MacBook that can execute user commands through text or voice input. Our results show that our models can achieve, and even surpass, the function-calling capabilities of larger models like GPT-4-Turbo, while being fully deployed at the edge. We open-source our [dataset, models, and installable package](https://github.com/SqueezeAILab/TinyAgent) and provide a [demo video](https://www.youtube.com/watch?v=0GvaGL9IDpQ) for our MacBook assistant agent.
Pretrained large language models (LLMs) are currently state-of-the-art for solving the vast majority of natural language processing tasks. While many real-world applications still require fine-tuning to reach satisfactory levels of performance, many of them are in the low-data regime, making fine-tuning challenging. To address this, we propose LLM2LLM, a targeted and iterative data augmentation strategy that uses a teacher LLM to enhance a small seed dataset by augmenting additional data that can be used for fine-tuning on a specific task. LLM2LLM (1) fine-tunes a baseline student LLM on the initial seed data, (2) evaluates and extracts data points that the model gets wrong, and (3) uses a teacher LLM to generate synthetic data based on these incorrect data points, which are then added back into the training data. This approach amplifies the signal from incorrectly predicted data points by the LLM during training and reintegrates them into the dataset to focus on more challenging examples for the LLM. Our results show that LLM2LLM significantly enhances the performance of LLMs in the low-data regime, outperforming both traditional fine-tuning and other data augmentation baselines. LLM2LLM reduces the dependence on labor-intensive data curation and paves the way for more scalable and performant LLM solutions, allowing us to tackle data-constrained domains and tasks. We achieve improvements up to 24.2% on the GSM8K dataset, 32.6% on CaseHOLD, 32.0% on SNIPS, 52.6% on TREC and 39.8% on SST-2 over regular fine-tuning in the low-data regime using a Llama-2-7B student model. Our code is available at https://github.com/SqueezeAILab/LLM2LLM.
Large Multimodal Models (LMM) are built across modalities and the misalignment between two modalities can result in “hallucination”, generating textual outputs that are not grounded by the multimodal information in context. To address the multimodal misalignment issue, we adapt the Reinforcement Learning from Human Feedback (RLHF) from the text domain to the vision-language alignment, where human annotators are asked to compare two responses and pinpoint the more hallucinated one, and the vision-language model is trained to maximize the simulated human rewards. We propose a new alignment algorithm called Factually Augmented RLHF that augments the reward model with additional factual information such as image captions and ground-truth multi-choice options, which alleviates the reward hacking phenomenon in RLHF and further improves the performance. We also enhance the GPT-4-generated training data (for vision instruction tuning) with previously available human-written image-text pairs to improve the general capabilities of our model. To evaluate the proposed approach in real-world scenarios, we develop a new evaluation benchmark MMHAL-BENCH with a special focus on penalizing hallucinations. As the first LMM trained with RLHF, our approach achieves remarkable improvement on the LLaVA-Bench dataset with the 96% performance level of the text-only GPT-4 (while previous best methods can only achieve the 87% level), and an improvement of 60% on MMHAL-BENCH over other baselines.
Morphologically rich languages are notoriously challenging to process for downstream NLP applications. This paper presents a new pretrained language model, ByT5-Sanskrit, designed for NLP applications involving the morphologically rich language Sanskrit. We evaluate ByT5-Sanskrit on established Sanskrit word segmentation tasks, where it outperforms previous data-driven approaches by a considerable margin and matches the performance of the current best lexicon-based model. It is easier to deploy and more robust to data not covered by external linguistic resources. It also achieves new state-of-the-art results in Vedic Sanskrit dependency parsing and OCR post-correction tasks. Additionally, based on the Digital Corpus of Sanskrit, we introduce a novel multitask dataset for the joint training of Sanskrit word segmentation, lemmatization, and morphosyntactic tagging tasks. We fine-tune ByT5-Sanskrit on this dataset, creating a versatile multitask model for various downstream Sanskrit applications. We have used this model in Sanskrit linguistic annotation projects, in information retrieval setups, and as a preprocessing step in a Sanskrit machine translation pipeline. We also show that our approach yields new best scores for lemmatization and dependency parsing of other morphologically rich languages. We thus demonstrate that byte-level pretrained language models can achieve excellent performance for morphologically rich languages, outperforming tokenizer-based models and presenting an important vector of exploration when constructing NLP pipelines for such languages.
Foundation language models learn from their finetuning input context in different ways. In this paper, we reformulate inputs during finetuning for challenging translation tasks, leveraging model strengths from pretraining in novel ways to improve downstream performance. These reformulations are simple data level modifications, require no additional collection of training data or modification of data at inference time. They can be applied either on single language pair translation tasks or massively multilingual translation tasks. Experiments with these techniques demonstrate significant performance improvements up to 3.5 chrF++ on the Flores200 translation benchmark. We hope our research accessibly improves finetuning data efficiency, enabling more effective training to scalably improve state-of-the-art performance. Our code is released here.
The field of natural language processing (NLP) has made significant strides in recent years, particularly in the development of large-scale vision-language models (VLMs). These models aim to bridge the gap between text and visual information, enabling a more comprehensive understanding of multimedia data. However, as these models become larger and more complex, they also become more challenging to train and deploy. One approach to addressing this challenge is the use of sparsely-gated mixture-of-experts (MoE) techniques, which divide the model into smaller, specialized sub-models that can jointly solve a task. In this paper, we explore the effectiveness of MoE in scaling vision-language models, demonstrating its potential to achieve state-of-the-art performance on a range of benchmarks over dense models of equivalent computational cost. Our research offers valuable insights into stabilizing the training of MoE models, understanding the impact of MoE on model interpretability, and balancing the trade-offs between compute performance when scaling VLMs. We hope our work will inspire further research into the use of MoE for scaling large-scale vision-language models and other multimodal machine learning applications.
Buddhist Classical Chinese is a challenging low-resource language that has not yet received much dedicated attention in NLP research. Standard commercial machine translation software performs poorly on this idiom. In order to address this gap, we present a novel dataset of 209,454 bitext pairs for the training and 2.300 manually curated and corrected bitext pairs for the evaluation of machine translation models. We finetune a number of encoder-decoder models on this dataset and compare their performance against commercial models. We show that our best fine-tuned model outperforms the currently available commercial solutions by a considerable margin while being much more cost-efficient and faster in deployment. This is especially important for digital humanities, where large amounts of data need to be processed efficiently for corpus-level operations such as topic modeling or semantic search. We also show that the commercial chat system GPT4 is surprisingly strong on this task, at times reaching comparable performance to our finetuned model and clearly outperforming standard machine translation providers. We provide a limited case study where we examine the performance of selected different machine translation models on a number of Buddhist Chinese passages in order to demonstrate what level of quality these models reach at the moment.
We demonstrate that transformers obtain impressive performance even when some of the layers are randomly initialized and never updated. Inspired by old and well-established ideas in machine learning, we explore a variety of non-linear “reservoir” layers interspersed with regular transformer layers, and show improvements in wall-clock compute time until convergence, as well as overall performance, on various machine translation and (masked) language modelling tasks.
We demonstrate that, hidden within one-layer randomly weighted neural networks, there exist subnetworks that can achieve impressive performance, without ever modifying the weight initializations, on machine translation tasks. To find subnetworks for one-layer randomly weighted neural networks, we apply different binary masks to the same weight matrix to generate different layers. Hidden within a one-layer randomly weighted Transformer, we find that subnetworks that can achieve 29.45/17.29 BLEU on IWSLT14/WMT14. Using a fixed pre-trained embedding layer, the previously found subnetworks are smaller than, but can match 98%/92% (34.14/25.24 BLEU) of the performance of, a trained Transformersmall/base on IWSLT14/WMT14. Furthermore, we demonstrate the effectiveness of larger and deeper transformers in this setting, as well as the impact of different initialization methods.
Humans read and write hundreds of billions of messages every day. Further, due to the availability of large datasets, large computing systems, and better neural network models, natural language processing (NLP) technology has made significant strides in understanding, proofreading, and organizing these messages. Thus, there is a significant opportunity to deploy NLP in myriad applications to help web users, social networks, and businesses. Toward this end, we consider smartphones and other mobile devices as crucial platforms for deploying NLP models at scale. However, today’s highly-accurate NLP neural network models such as BERT and RoBERTa are extremely computationally expensive, with BERT-base taking 1.7 seconds to classify a text snippet on a Pixel 3 smartphone. To begin to address this problem, we draw inspiration from the computer vision community, where work such as MobileNet has demonstrated that grouped convolutions (e.g. depthwise convolutions) can enable speedups without sacrificing accuracy. We demonstrate how to replace several operations in self-attention layers with grouped convolutions, and we use this technique in a novel network architecture called SqueezeBERT, which runs 4.3x faster than BERT-base on the Pixel 3 while achieving competitive accuracy on the GLUE test set. A PyTorch-based implementation of SqueezeBERT is available as part of the Hugging Face Transformers library: https://huggingface.co/squeezebert