Kanchana Sivanraju


2022

pdf
Transformers at SemEval-2022 Task 5: A Feature Extraction based Approach for Misogynous Meme Detection
Shankar Mahadevan | Sean Benhur | Roshan Nayak | Malliga Subramanian | Kogilavani Shanmugavadivel | Kanchana Sivanraju | Bharathi Raja Chakravarthi
Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)

Social media is an idea created to make theworld smaller and more connected. Recently,it has become a hub of fake news and sexistmemes that target women. Social Media shouldensure proper women’s safety and equality. Filteringsuch information from social media is ofparamount importance to achieving this goal. In this paper, we describe the system developedby our team for SemEval-2022 Task 5: MultimediaAutomatic Misogyny Identification. Wepropose a multimodal training methodologythat achieves good performance on both thesubtasks, ranking 4th for Subtask A (0.718macro F1-score) and 9th for Subtask B (0.695macro F1-score) while exceeding the baselineresults by good margins.

2021

pdf
Hypers at ComMA@ICON: Modelling Aggressive, Gender Bias and Communal Bias Identification
Sean Benhur | Roshan Nayak | Kanchana Sivanraju | Adeep Hande | Cn Subalalitha | Ruba Priyadharshini | Bharathi Raja Chakravarthi
Proceedings of the 18th International Conference on Natural Language Processing: Shared Task on Multilingual Gender Biased and Communal Language Identification

Due to the exponential increasing reach of social media, it is essential to focus on its negative aspects as it can potentially divide society and incite people into violence. In this paper, we present our system description of work on the shared task ComMA@ICON, where we have to classify how aggressive the sentence is and if the sentence is gender-biased or communal biased. These three could be the primary reasons to cause significant problems in society. Our approach utilizes different pretrained models with Attention and mean pooling methods. We were able to get Rank 1 with 0.253 Instance F1 score on Bengali, Rank 2 with 0.323 Instance F1 score on multilingual set, Rank 4 with 0.129 Instance F1 score on meitei and Rank 5 with 0.336 Instance F1 score on Hindi. The source code and the pretrained models of this work can be found here.