This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Multimodal Large Language Models (MLLMs) have demonstrated proficiency in handling a variety of visual-language tasks. However, current MLLM benchmarks are predominantly designed to evaluate reasoning based on static information about a single image, and the ability of modern MLLMs to extrapolate from image sequences, which is essential for understanding our ever-changing world, has been less investigated. To address this challenge, this paper introduces Mementos, a new benchmark designed to assess MLLMs’ sequential image reasoning abilities. Mementos features 4,761 diverse image sequences with varying lengths. We also employ a GPT-4 assisted method to evaluate MLLM reasoning performance. Through a careful evaluation of nine recent MLLMs on Mementos, including GPT-4V and Gemini, we find that they struggle to accurately describe dynamic information about given image sequences, often leading to hallucinations/misrepresentations of objects and their corresponding behaviors. Our quantitative analysis and case studies identify three key factors impacting MLLMs’ sequential image reasoning: the correlation between object and behavioral hallucinations, the influence of co-occurring behaviors, and the compounding impact of behavioral hallucinations.
The recent emergence of Medical Large Vision Language Models (Med-LVLMs) has enhanced medical diagnosis. However, current Med-LVLMs frequently encounter factual issues, often generating responses that do not align with established medical facts. Retrieval-Augmented Generation (RAG), which utilizes external knowledge, can improve the factual accuracy of these models but introduces two major challenges. First, limited retrieved contexts might not cover all necessary information, while excessive retrieval can introduce irrelevant and inaccurate references, interfering with the model’s generation. Second, in cases where the model originally responds correctly, applying RAG can lead to an over-reliance on retrieved contexts, resulting in incorrect answers. To address these issues, we propose RULE, which consists of two components. First, we introduce a provably effective strategy for controlling factuality risk through the calibrated selection of the number of retrieved contexts. Second, based on samples where over-reliance on retrieved contexts led to errors, we curate a preference dataset to fine-tune the model, balancing its dependence on inherent knowledge and retrieved contexts for generation. We demonstrate the effectiveness of RAFE on three medical VQA datasets, achieving an average improvement of 20.8% in factual accuracy.
Recent advancements in large language models (LLMs) have shown promise in multi-step reasoning tasks, yet their reliance on extensive manual labeling to provide procedural feedback remains a significant impediment. To address this challenge, in this paper, we propose a novel self-supervised framework **AutoPRM** that efficiently enhances the fine-tuning of LLMs for intricate reasoning challenges. Specifically, **AutoPRM** first decomposes complex problems into more manageable subquestions with a controllable granularity switch, then sequentially apply reinforcement learning to iteratively improve the subquestion solver. Additionally, we propose context-guided decoding to avoid reward tampering and guide the subquestion solver towards the solution of the holistic problem. Extensive experiments show that **AutoPRM** significantly improves performance on mathematical and commonsense reasoning tasks over SOTA. More encouragingly, **AutoPRM** can be easily integrated with other orthogonal reasoning pipelines.
Recently, there has been a growing focus on conducting attacks on large language models (LLMs) to assess LLMs’ safety. Yet, existing attack methods face challenges, including the need to access model weights or merely ensuring LLMs output harmful information without controlling the specific content of their output. Exactly control of the LLM output can produce more inconspicuous attacks which could reveal a new page for LLM security. To achieve this, we propose RLTA: the Reinforcement Learning Targeted Attack, a framework that is designed for attacking language models (LLMs) and is adaptable to both white box (weight accessible) and black box (weight inaccessible) scenarios. It is capable of automatically generating malicious prompts that trigger target LLMs to produce specific outputs. We demonstrate RLTA in two different scenarios: LLM trojan detection and jailbreaking. The comprehensive experimental results show the potential of RLTA in enhancing the security measures surrounding contemporary LLMs.
A trustworthy real-world prediction system should produce well-calibrated confidence scores; that is, its confidence in an answer should be indicative of the likelihood that the answer is correct, enabling deferral to an expert in cases of low-confidence predictions. Recent studies have shown that unsupervised pre-training produces large language models (LMs) whose conditional probabilities are remarkably well-calibrated. However, the most widely-used LMs are fine-tuned with reinforcement learning from human feedback (RLHF-LMs), and some studies have suggested that RLHF-LMs produce conditional probabilities that are very poorly calibrated. In light of this perceived weakness, we conduct a broad evaluation of methods for extracting confidence scores from RLHF-LMs. For RLHF-LMs such as ChatGPT, GPT-4, and Claude, we find that verbalized confidences emitted as output tokens are typically better-calibrated than the model’s conditional probabilities on the TriviaQA, SciQ, and TruthfulQA benchmarks, often reducing the expected calibration error by a relative 50%.
Cross-lingual natural language understanding(NLU) is one of the fundamental tasks of NLP. The goal is to learn a model which can generalize well on both high-resource and low-resource language data. Recent pre-trained multilingual language models, e.g., multilingual BERT, XLM, have shown impressive performance on cross-lingual NLU tasks. However, such promising results request the use of sufficient training data, which is a difficult condition to satisfy for low-resource language. When the data is limited in those low resource languages, the accuracy of existing models will drop. In light of this challenge, we investigate the important task of how to train the cross-lingual model with abundant high-source language data and limited low-resource language data. Existing methods typically learn language-agnostic representation via adversarial training and mutual information estimation. Existing approaches may suffer When data is very limited (e.g., low-resource language) because it is challenging to estimate data distribution accurately. To tackle this issue, we propose a conceptually innovative approach to remove language-associated information via minimizing representation coding rate reduction(Macedon). Specifically, Macedon avoids using extra codes to encode language-related information, which is measured by the rate-distortion function. To validate the effectiveness of Macedon, we conduct extensive experiments on three tasks, including paraphrase identification, natural language inference, and query advertisement matching. The experiment results show that the proposed Macedon outperforms state-of-the-art cross-lingual NLU approaches.
Building models of natural language processing (NLP) is challenging in low-resource scenarios where limited data are available. Optimization-based meta-learning algorithms achieve promising results in low-resource scenarios by adapting a well-generalized model initialization to handle new tasks. Nonetheless, these approaches suffer from the memorization overfitting issue, where the model tends to memorize the meta-training tasks while ignoring support sets when adapting to new tasks. To address this issue, we propose a memory imitation meta-learning (MemIML) method that enhances the model’s reliance on support sets for task adaptation. Specifically, we introduce a task-specific memory module to store support set information and construct an imitation module to force query sets to imitate the behaviors of support sets stored in the memory. A theoretical analysis is provided to prove the effectiveness of our method, and empirical results also demonstrate that our method outperforms competitive baselines on both text classification and generation tasks.
Meta-learning has achieved great success in leveraging the historical learned knowledge to facilitate the learning process of the new task. However, merely learning the knowledge from the historical tasks, adopted by current meta-learning algorithms, may not generalize well to testing tasks when they are not well-supported by training tasks. This paper studies a low-resource text classification problem and bridges the gap between meta-training and meta-testing tasks by leveraging the external knowledge bases. Specifically, we propose KGML to introduce additional representation for each sentence learned from the extracted sentence-specific knowledge graph. The extensive experiments on three datasets demonstrate the effectiveness of KGML under both supervised adaptation and unsupervised adaptation settings.