Fuhao Liu
Also published as: 福浩 刘
2022
融合双重注意力机制的缅甸语图像文本识别方法(Burmese image text recognition method with dual attention mechanism)
Fengxiao Wang (王奉孝)
|
Cunli Mao (毛存礼)
|
Zhengtao Yu (余正涛)
|
Shengxiang Gao (高盛祥)
|
Huang Yuxin (黄于欣)
|
Fuhao Liu (刘福浩)
Proceedings of the 21st Chinese National Conference on Computational Linguistics
“由于缅甸语字符具有独特的语言编码结构以及字符组合规则,现有图像文本识别方法在缅甸语图像识别任务中无法充分关注文字边缘的特征,会导致缅甸语字符上下标丢失的问题。因此,本文基于Transformer框架的图像文本识别方法做出改进,提出一种融合通道和空间注意力机制的视觉关注模块,旨在捕获像素级成对关系和通道依赖关系,降低缅甸语图像中噪声干扰从而获得语义更完整的特征图。此外,在解码过程中,将基于多头注意力的解码单元组合为解码器,用于将特征序列转化为缅甸语文字。实验结果表明,该方法在自构的缅甸语图像文本识别数据集上相比Transformer识别准确率提高0.5%,达到95.3%。”
2021
融合多层语义特征图的缅甸语图像文本识别方法(Burmese Image Text Recognition Method Fused with Multi-layer Semantic Feature Maps)
Fuhao Liu (刘福浩)
|
Cunli Mao (毛存礼)
|
Zhengtao Yu (余正涛)
|
Chengxiang Gao (高盛祥)
|
Linqin Wang (王琳钦)
|
Xuyang Xie (谢旭阳)
Proceedings of the 20th Chinese National Conference on Computational Linguistics
由于缅甸语存在特殊的字符组合结构,在图像文本识别研究方面存在较大的困难,直接利用现有的图像文本识别方法识别缅甸语图片存在字符缺失和复杂背景下识别效果不佳的问题。因此,本文提出一种融合多层语义特征图的缅甸语图像文本识别方法,利用深度卷积网络获得多层图像特征并对其融合获取多层语义信息,缓解缅甸语图像中由于字符嵌套导致特征丢失的问题。另外,在训练阶段采用MIX UP的策略进行网络参数优化,提高模型的泛化能力,降低模型在测试阶段对训练样本产生的依赖。实验结果表明,提出方法相比基线模型准确率提升了2.2%。