Inference with modern Large Language Models (LLMs) is expensive and time-consuming, and speculative sampling has proven to be an effective solution. Most speculative sampling methods such as EAGLE use a static draft tree, implicitly assuming that the acceptance rate of draft tokens depends only on their position. Interestingly, we found that the acceptance rate of draft tokens is also context-dependent. In this paper, building upon EAGLE, we propose EAGLE-2, which introduces a new technique of context-aware dynamic draft tree into drafting modeling. This improvement leverages the fact that the draft model of EAGLE is well-calibrated: the confidence scores from the draft model approximate acceptance rates with small errors. We conducted extensive evaluations on three series of LLMs and six tasks, with EAGLE-2 achieving speedup ratios of up to **5x**, which is 1.3x that of EAGLE. EAGLE-2 also ensures that the distribution of the generated text remains unchanged, making it a **lossless** acceleration algorithm.
Research on continuous sign language recognition (CSLR) is essential to bridge the communication gap between deaf and hearing individuals. Numerous previous studies have trained their models using the connectionist temporal classification (CTC) loss. During inference, these CTC-based models generally require the entire sign video as input to make predictions, a process known as offline recognition, which suffers from high latency and substantial memory usage. In this work, we take the first step towards online CSLR. Our approach consists of three phases: 1) developing a sign dictionary; 2) training an isolated sign language recognition model on the dictionary; and 3) employing a sliding window approach on the input sign sequence, feeding each sign clip to the optimized model for online recognition. Additionally, our online recognition model can be extended to support online translation by integrating a gloss-to-text network and can enhance the performance of any offline model. With these extensions, our online approach achieves new state-of-the-art performance on three popular benchmarks across various task settings. Code and models are available at https://github.com/FangyunWei/SLRT.
Efficient fine-tuning plays a fundamental role in modern large models, with low-rank adaptation emerging as a particularly promising approach. However, the existing variants of LoRA are hampered by limited expressiveness, a tendency to overfit, and sensitivity to hyperparameter settings. This paper presents LoRA Slow Cascade Learning (LoRASC), an innovative technique designed to enhance LoRA’s expressiveness and generalization capabilities while preserving its training efficiency. Our approach augments expressiveness through a cascaded learning strategy that enables a mixture-of-low-rank adaptation, thereby increasing the model’s ability to capture complex patterns. Additionally, we introduce a slow-fast update mechanism and cascading noisy tuning to bolster generalization. The extensive experiments on various language and vision datasets, as well as robustness benchmarks, demonstrate that the proposed method not only significantly outperforms existing baselines, but also mitigates overfitting, enhances model stability, and improves OOD robustness.
This paper introduces TVB-HKSL-News, a new Hong Kong sign language (HKSL) dataset collected from a TV news program over a period of 7 months. The dataset is collected to enrich resources for HKSL and support research in large-vocabulary continuous sign language recognition (SLR) and translation (SLT). It consists of 16.07 hours of sign videos of two signers with a vocabulary of 6,515 glosses (for SLR) and 2,850 Chinese characters or 18K Chinese words (for SLT). One signer has 11.66 hours of sign videos and the other has 4.41 hours. One objective in building the dataset is to support the investigation of how well large-vocabulary continuous sign language recognition/translation can be done for a single signer given a (relatively) large amount of his/her training data, which could potentially lead to the development of new modeling methods. Besides, most parts of the data collection pipeline are automated with little human intervention; we believe that our collection method can be scaled up to collect more sign language data easily for SLT in the future for any sign languages if such sign-interpreted videos are available. We also run a SOTA SLR/SLT model on the dataset and get a baseline SLR word error rate of 34.08% and a baseline SLT BLEU-4 score of 23.58 for benchmarking future research on the dataset.