This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Elucidating the reasoning process with structured explanations from question to answer is crucial, as it significantly enhances the interpretability, traceability, and trustworthiness of question-answering (QA) systems. However, structured explanations demand models to perform intricately structured reasoning, which poses great challenges. Most existing methods focus on single-step reasoning through supervised learning, ignoring logical dependencies between steps. Moreover, existing reinforcement learning (RL) based methods overlook the structured relationships, underutilizing the potential of RL in structured reasoning. In this paper, we propose SEER, a novel method that maximizes a structure-based return to facilitate structured reasoning and explanation. Our proposed structure-based return precisely describes the hierarchical and branching structure inherent in structured reasoning, effectively capturing the intricate relationships between different reasoning steps. In addition, we introduce a fine-grained reward function to meticulously delineate diverse reasoning steps. Extensive experiments show that SEER significantly outperforms state-of-the-art methods, achieving an absolute improvement of 6.9% over RL-based methods on EntailmentBank, a 4.4% average improvement on STREET benchmark, and exhibiting outstanding efficiency and cross-dataset generalization performance.
Large language models (LLMs) undergo safety alignment to ensure safe conversations with humans. However, this paper introduces a training-free attack method capable of reversing safety alignment, converting the outcomes of stronger alignment into greater potential for harm by accessing only LLM output token distributions. Specifically, our method achieves this reversal by contrasting the output token distribution of a safety-aligned language model (e.g., Llama-2-chat) against its pre-trained version (e.g., Llama-2), so that the token predictions are shifted towards the opposite direction of safety alignment.We name this method emulated disalignment (ED) because sampling from this contrastive distribution provably emulates the result of fine-tuning to minimize a safety reward.Our experiments with ED across three evaluation datasets and four model families (Llama-1, Llama-2, Mistral, and Alpaca) show that ED doubles the harmfulness of pre-trained models and outperforms strong baselines, achieving the highest harmful rates in 43 out of 48 evaluation subsets by a large margin.Eventually, given ED’s reliance on language model output token distributions, which particularly compromises open-source models, our findings highlight the need to reassess the open accessibility of language models, even if they have been safety-aligned.Code is available at https://github.com/ZHZisZZ/emulated-disalignment.
A single language model, even when aligned with labelers through reinforcement learning from human feedback (RLHF), may not suit all human preferences. Recent approaches therefore prefer customization, gathering multi-dimensional feedback, and creating distinct reward models for each dimension.Different language models are then optimized for various preferences using multi-objective RLHF (MORLHF) with varying reward weights.However, RL fine-tuning is unstable and resource-heavy, especially with diverse and usually conflicting objectives.In this paper, we present Multi-Objective Direct Preference Optimization (MODPO), an RL-free extension of Direct Preference Optimization (DPO) for multiple alignment objectives.Essentially, MODPO folds language modeling directly into reward modeling, training language models as implicit collective reward models that combine all objectives with specific weights. MODPO theoretically yields the same optimal solutions as MORLHF but is practically more stable and efficient.Empirical results in safety alignment and long-form question answering show that MODPO matches or outperforms existing methods, producing a Pareto front of language models catering to diverse preferences with three times less computational resources compared to MORLHF.Code is available at https://github.com/ZHZisZZ/modpo.
Large language models are typically fine-tuned to align with human preferences, but tuning large models is computationally intensive and complex. In this work, we introduce **Integrated Value Guidance (IVG)**, a method that uses implicit and explicit value functions to guide language model decoding at token and chunk-level respectively, efficiently aligning large language models purely at inference time.This approach circumvents the complexities of direct fine-tuning and outperforms traditional methods.Empirically, we demonstrate the versatility of IVG across various tasks. In controlled sentiment generation and summarization tasks, our method significantly improves the alignment of large models using inference-time guidance from **gpt2**-based value functions. Moreover, in a more challenging instruction-following benchmark AlpacaEval 2.0, we show that both specifically tuned and off-the-shelf value functions greatly improve the length-controlled win rates of large models against gpt-4-turbo (e.g., 19.51 % → 26.51% for **Mistral-7B-Instruct-v0.2** and 25.58 % → 33.75 % for **Mixtral-8x7B-Instruct-v0.1** with Tulu guidance).
Large Language Models (LLMs) are now commonplace in conversation applications. However, their risks of misuse for generating harmful responses have raised serious societal concerns and spurred recent research on LLM conversation safety. Therefore, in this survey, we provide a comprehensive overview of recent studies, covering three critical aspects of LLM conversation safety: attacks, defenses, and evaluations. Our goal is to provide a structured summary that enhances understanding of LLM conversation safety and encourages further investigation into this important subject. For easy reference, we have categorized all the studies mentioned in this survey according to our taxonomy, available at: https://github.com/niconi19/LLM-conversation-safety.
Aspect-based sentiment analysis (ABSA) aims to determine the sentiment polarity of each specific aspect in a given sentence. Existing researches have realized the importance of the aspect for the ABSA task and have derived many interactive learning methods that model context based on specific aspect. However, current interaction mechanisms are ill-equipped to learn complex sentences with multiple aspects, and these methods underestimate the representation learning of the aspect. In order to solve the two problems, we propose a mutual enhanced transformation network (METNet) for the ABSA task. First, the aspect enhancement module in METNet improves the representation learning of the aspect with contextual semantic features, which gives the aspect more abundant information. Second, METNet designs and implements a hierarchical structure, which enhances the representations of aspect and context iteratively. Experimental results on SemEval 2014 Datasets demonstrate the effectiveness of METNet, and we further prove that METNet is outstanding in multi-aspect scenarios.
Endowing a chatbot with a personality is essential to deliver more realistic conversations. Various persona-based dialogue models have been proposed to generate personalized and diverse responses by utilizing predefined persona information. However, generating personalized responses is still a challenging task since the leverage of predefined persona information is often insufficient. To alleviate this problem, we propose a novel Persona Enhanced Dual Alternating Learning Network (PEDNet) aiming at producing more personalized responses in various open-domain conversation scenarios. PEDNet consists of a Context-Dominate Network (CDNet) and a Persona-Dominate Network (PDNet), which are built upon a common encoder-decoder backbone. CDNet learns to select a proper persona as well as ensure the contextual relevance of the predicted response, while PDNet learns to enhance the utilization of persona information when generating the response by weakening the disturbance of specific content in the conversation context. CDNet and PDNet are trained alternately using a multi-task training approach to equip PEDNet with the both capabilities they have learned. Both automatic and human evaluations on a newly released dialogue dataset Persona-chat demonstrate that our method could deliver more personalized responses than baseline methods.