This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
The published materials science literature contains abundant description information about synthesis procedures that can help discover new material areas, deepen the study of materials synthesis, and accelerate its automated planning. Nevertheless, this information is expressed in unstructured text, and manually processing and assimilating useful information is expensive and time-consuming for researchers. To address this challenge, we develop a Machine Learning-based procedural information extraction and knowledge management system (PIEKM) that extracts procedural information recipe steps, figures, and tables from materials science articles, and provides information retrieval capability and the statistics visualization functionality. Our system aims to help researchers to gain insights and quickly understand the connections among massive data. Moreover, we demonstrate that the machine learning-based system performs well in low-resource scenarios (i.e., limited annotated data) for domain adaption.
The language of Twitter differs significantly from that of other domains commonly included in large language model training. While tweets are typically multilingual and contain informal language, including emoji and hashtags, most pre-trained language models for Twitter are either monolingual, adapted from other domains rather than trained exclusively on Twitter, or are trained on a limited amount of in-domain Twitter data.We introduce Bernice, the first multilingual RoBERTa language model trained from scratch on 2.5 billion tweets with a custom tweet-focused tokenizer. We evaluate on a variety of monolingual and multilingual Twitter benchmarks, finding that our model consistently exceeds or matches the performance of a variety of models adapted to social media data as well as strong multilingual baselines, despite being trained on less data overall.We posit that it is more efficient compute- and data-wise to train completely on in-domain data with a specialized domain-specific tokenizer.
Data-driven methods for mental health treatment and surveillance have become a major focus in computational science research in the last decade. However, progress in the domain remains bounded by the availability of adequate data. Prior systematic reviews have not necessarily made it possible to measure the degree to which data-related challenges have affected research progress. In this paper, we offer an analysis specifically on the state of social media data that exists for conducting mental health research. We do so by introducing an open-source directory of mental health datasets, annotated using a standardized schema to facilitate meta-analysis.
Models for identifying depression using social media text exhibit biases towards different gender and racial/ethnic groups. Factors like representation and balance of groups within the dataset are contributory factors, but difference in content and social media use may further explain these biases. We present an analysis of the content of social media posts from different demographic groups. Our analysis shows that there are content differences between depression and control subgroups across demographic groups, and that temporal topics and demographic-specific topics are correlated with downstream depression model error. We discuss the implications of our work on creating future datasets, as well as designing and training models for mental health.
Spurred by advances in machine learning and natural language processing, developing social media-based mental health surveillance models has received substantial recent attention. For these models to be maximally useful, it is necessary to understand how they perform on various subgroups, especially those defined in terms of protected characteristics. In this paper we study the relationship between user demographics – focusing on gender – and depression. Considering a population of Reddit users with known genders and depression statuses, we analyze the degree to which depression predictions are subject to biases along gender lines using domain-informed classifiers. We then study our models’ parameters to gain qualitative insight into the differences in posting behavior across genders.
Multiple studies have demonstrated that behaviors expressed on online social media platforms can indicate the mental health state of an individual. The widespread availability of such data has spurred interest in mental health research, using several datasets where individuals are labeled with mental health conditions. While previous research has raised concerns about possible biases in models produced from this data, no study has investigated how these biases manifest themselves with regards to demographic groups in data, such as gender and racial/ethnic groups. Here, we analyze the fairness of depression classifiers trained on Twitter data with respect to gender and racial demographic groups. We find that model performance differs for underrepresented groups, and we investigate sources of these biases beyond data representation. Our study results in recommendations on how to avoid these biases in future research.
Proxy-based methods for annotating mental health status in social media have grown popular in computational research due to their ability to gather large training samples. However, an emerging body of literature has raised new concerns regarding the validity of these types of methods for use in clinical applications. To further understand the robustness of distantly supervised mental health models, we explore the generalization ability of machine learning classifiers trained to detect depression in individuals across multiple social media platforms. Our experiments not only reveal that substantial loss occurs when transferring between platforms, but also that there exist several unreliable confounding factors that may enable researchers to overestimate classification performance. Based on these results, we enumerate recommendations for future mental health dataset construction.