Cameron Carpenter
2024
Grounding Partially-Defined Events in Multimodal Data
Kate Sanders
|
Reno Kriz
|
David Etter
|
Hannah Recknor
|
Alexander Martin
|
Cameron Carpenter
|
Jingyang Lin
|
Benjamin Van Durme
Findings of the Association for Computational Linguistics: EMNLP 2024
How are we able to learn about complex current events just from short snippets of video? While natural language enables straightforward ways to represent under-specified, partially observable events, visual data does not facilitate analogous methods and, consequently, introduces unique challenges in event understanding. With the growing prevalence of vision-capable AI agents, these systems must be able to model events from collections of unstructured video data. To tackle robust event modeling in multimodal settings, we introduce a multimodal formulation for partially-defined events and cast the extraction of these events as a three-stage span retrieval task. We propose a corresponding benchmark for this task, MultiVENT-G, that consists of 14.5 hours of densely annotated current event videos and 1,168 text documents, containing 22.8K labeled event-centric entities. We propose a collection of LLM-driven approaches to the task of multimodal event analysis, and evaluate them on MultiVENT-G. Results illustrate the challenges that abstract event understanding poses and demonstrates promise in event-centric video-language systems.
Search
Co-authors
- Alexander Martin 1
- Benjamin Van Durme 1
- David Etter 1
- Hannah Recknor 1
- Jingyang Lin 1
- show all...