Botian Jiang
2024
InferAligner: Inference-Time Alignment for Harmlessness through Cross-Model Guidance
Pengyu Wang
|
Dong Zhang
|
Linyang Li
|
Chenkun Tan
|
Xinghao Wang
|
Mozhi Zhang
|
Ke Ren
|
Botian Jiang
|
Xipeng Qiu
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
As large language models (LLMs) rapidly evolve, they are increasingly being customized through fine-tuning to suit the specific needs of various applications. A critical aspect of this advancement is the alignment process, which ensures that these models perform tasks in ways that align with human values and expectations. Current alignment methods, such as direct preference optimization (DPO) and reinforcement learning from human feedback (RLHF), focus primarily on alignment during training phase. However, these methods often involve complex and resource-intensive training processes, posing significant challenge for their implementation. Therefore, we propose InferAligner, a simple yet effective method for harmlessness alignment during inference phase. InferAligner decouples harmlessness from helpfulness. During the training phase, it focuses solely on enhancing the target model’s capabilities on downstream tasks. In the inference phase, it utilizes safety steering vectors extracted from the aligned model to guide the target model towards harmlessness alignment. Experimental results show that our method can be very effectively applied to domain-specific models in finance, medicine, and mathematics, as well as to multimodal large language models (MLLMs) such as LLaVA. It significantly diminishes the attack success rate (ASR) of both harmful instructions and jailbreak instructions, while maintaining almost unchanged performance in downstream tasks.
2023
SeqXGPT: Sentence-Level AI-Generated Text Detection
Pengyu Wang
|
Linyang Li
|
Ke Ren
|
Botian Jiang
|
Dong Zhang
|
Xipeng Qiu
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Widely applied large language models (LLMs) can generate human-like content, raising concerns about the abuse of LLMs. Therefore, it is important to build strong AI-generated text (AIGT) detectors. Current works only consider document-level AIGT detection, therefore, in this paper, we first introduce a sentence-level detection challenge by synthesizing a dataset that contains documents that are polished with LLMs, that is, the documents contain sentences written by humans and sentences modified by LLMs. Then we propose Sequence X (Check) GPT, a novel method that utilizes log probability lists from white-box LLMs as features for sentence-level AIGT detection. These features are composed like waves in speech processing and cannot be studied by LLMs. Therefore, we build SeqXGPT based on convolution and self-attention networks. We test it in both sentence and document-level detection challenges. Experimental results show that previous methods struggle in solving sentence-level AIGT detection, while our method not only significantly surpasses baseline methods in both sentence and document-level detection challenges but also exhibits strong generalization capabilities.
Watermarking LLMs with Weight Quantization
Linyang Li
|
Botian Jiang
|
Pengyu Wang
|
Ke Ren
|
Hang Yan
|
Xipeng Qiu
Findings of the Association for Computational Linguistics: EMNLP 2023
Abuse of large language models reveals high risks as large language models are being deployed at an astonishing speed. It is important to protect the model weights to avoid malicious usage that violates licenses of open-source large language models. This paper proposes a novel watermarking strategy that plants watermarks in the quantization process of large language models without pre-defined triggers during inference. The watermark works when the model is used in the fp32 mode and remains hidden when the model is quantized to int8, in this way, the users can only inference the model without further supervised fine-tuning of the model. We successfully plant the watermark into open-source large language model weights including GPT-Neo and LLaMA. We hope our proposed method can provide a potential direction for protecting model weights in the era of large language model applications.
Search
Co-authors
- Chenkun Tan (谭臣坤) 1
- Dong Zhang 2
- Hang Yan (航 颜) 1
- Ke Ren 3
- Linyang Li 3
- show all...