Boliang Zhang


2021

pdf
MeetDot: Videoconferencing with Live Translation Captions
Arkady Arkhangorodsky | Christopher Chu | Scot Fang | Yiqi Huang | Denglin Jiang | Ajay Nagesh | Boliang Zhang | Kevin Knight
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

We present MeetDot, a videoconferencing system with live translation captions overlaid on screen. The system aims to facilitate conversation between people who speak different languages, thereby reducing communication barriers between multilingual participants. Currently, our system supports speech and captions in 4 languages and combines automatic speech recognition (ASR) and machine translation (MT) in a cascade. We use the re-translation strategy to translate the streamed speech, resulting in caption flicker. Additionally, our system has very strict latency requirements to have acceptable call quality. We implement several features to enhance user experience and reduce their cognitive load, such as smooth scrolling captions and reducing caption flicker. The modular architecture allows us to integrate different ASR and MT services in our backend. Our system provides an integrated evaluation suite to optimize key intrinsic evaluation metrics such as accuracy, latency and erasure. Finally, we present an innovative cross-lingual word-guessing game as an extrinsic evaluation metric to measure end-to-end system performance. We plan to make our system open-source for research purposes.

2020

pdf
Parallel Corpus Filtering via Pre-trained Language Models
Boliang Zhang | Ajay Nagesh | Kevin Knight
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Web-crawled data provides a good source of parallel corpora for training machine translation models. It is automatically obtained, but extremely noisy, and recent work shows that neural machine translation systems are more sensitive to noise than traditional statistical machine translation methods. In this paper, we propose a novel approach to filter out noisy sentence pairs from web-crawled corpora via pre-trained language models. We measure sentence parallelism by leveraging the multilingual capability of BERT and use the Generative Pre-training (GPT) language model as a domain filter to balance data domains. We evaluate the proposed method on the WMT 2018 Parallel Corpus Filtering shared task, and on our own web-crawled Japanese-Chinese parallel corpus. Our method significantly outperforms baselines and achieves a new state-of-the-art. In an unsupervised setting, our method achieves comparable performance to the top-1 supervised method. We also evaluate on a web-crawled Japanese-Chinese parallel corpus that we make publicly available.

2018

pdf
Multi-lingual Common Semantic Space Construction via Cluster-consistent Word Embedding
Lifu Huang | Kyunghyun Cho | Boliang Zhang | Heng Ji | Kevin Knight
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

We construct a multilingual common semantic space based on distributional semantics, where words from multiple languages are projected into a shared space via which all available resources and knowledge can be shared across multiple languages. Beyond word alignment, we introduce multiple cluster-level alignments and enforce the word clusters to be consistently distributed across multiple languages. We exploit three signals for clustering: (1) neighbor words in the monolingual word embedding space; (2) character-level information; and (3) linguistic properties (e.g., apposition, locative suffix) derived from linguistic structure knowledge bases available for thousands of languages. We introduce a new cluster-consistent correlational neural network to construct the common semantic space by aligning words as well as clusters. Intrinsic evaluation on monolingual and multilingual QVEC tasks shows our approach achieves significantly higher correlation with linguistic features which are extracted from manually crafted lexical resources than state-of-the-art multi-lingual embedding learning methods do. Using low-resource language name tagging as a case study for extrinsic evaluation, our approach achieves up to 14.6% absolute F-score gain over the state of the art on cross-lingual direct transfer. Our approach is also shown to be robust even when the size of bilingual dictionary is small.

pdf
Genre Separation Network with Adversarial Training for Cross-genre Relation Extraction
Ge Shi | Chong Feng | Lifu Huang | Boliang Zhang | Heng Ji | Lejian Liao | Heyan Huang
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Relation Extraction suffers from dramatical performance decrease when training a model on one genre and directly applying it to a new genre, due to the distinct feature distributions. Previous studies address this problem by discovering a shared space across genres using manually crafted features, which requires great human effort. To effectively automate this process, we design a genre-separation network, which applies two encoders, one genre-independent and one genre-shared, to explicitly extract genre-specific and genre-agnostic features. Then we train a relation classifier using the genre-agnostic features on the source genre and directly apply to the target genre. Experiment results on three distinct genres of the ACE dataset show that our approach achieves up to 6.1% absolute F1-score gain compared to previous methods. By incorporating a set of external linguistic features, our approach outperforms the state-of-the-art by 1.7% absolute F1 gain. We make all programs of our model publicly available for research purpose

pdf
Global Attention for Name Tagging
Boliang Zhang | Spencer Whitehead | Lifu Huang | Heng Ji
Proceedings of the 22nd Conference on Computational Natural Language Learning

Many name tagging approaches use local contextual information with much success, but can fail when the local context is ambiguous or limited. We present a new framework to improve name tagging by utilizing local, document-level, and corpus-level contextual information. For each word, we retrieve document-level context from other sentences within the same document and corpus-level context from sentences in other documents. We propose a model that learns to incorporate document-level and corpus-level contextual information alongside local contextual information via document-level and corpus-level attentions, which dynamically weight their respective contextual information and determines the influence of this information through gating mechanisms. Experiments on benchmark datasets show the effectiveness of our approach, which achieves state-of-the-art results for Dutch, German, and Spanish on the CoNLL-2002 and CoNLL-2003 datasets. We will make our code and pre-trained models publicly available for research purposes.

pdf
Error Analysis of Uyghur Name Tagging: Language-specific Techniques and Remaining Challenges
Halidanmu Abudukelimu | Abudoukelimu Abulizi | Boliang Zhang | Xiaoman Pan | Di Lu | Heng Ji | Yang Liu
Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)

pdf
ELISA-EDL: A Cross-lingual Entity Extraction, Linking and Localization System
Boliang Zhang | Ying Lin | Xiaoman Pan | Di Lu | Jonathan May | Kevin Knight | Heng Ji
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Demonstrations

We demonstrate ELISA-EDL, a state-of-the-art re-trainable system to extract entity mentions from low-resource languages, link them to external English knowledge bases, and visualize locations related to disaster topics on a world heatmap. We make all of our data sets, resources and system training and testing APIs publicly available for research purpose.

pdf
Paper Abstract Writing through Editing Mechanism
Qingyun Wang | Zhihao Zhou | Lifu Huang | Spencer Whitehead | Boliang Zhang | Heng Ji | Kevin Knight
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

We present a paper abstract writing system based on an attentive neural sequence-to-sequence model that can take a title as input and automatically generate an abstract. We design a novel Writing-editing Network that can attend to both the title and the previously generated abstract drafts and then iteratively revise and polish the abstract. With two series of Turing tests, where the human judges are asked to distinguish the system-generated abstracts from human-written ones, our system passes Turing tests by junior domain experts at a rate up to 30% and by non-expert at a rate up to 80%.

pdf bib
Platforms for Non-speakers Annotating Names in Any Language
Ying Lin | Cash Costello | Boliang Zhang | Di Lu | Heng Ji | James Mayfield | Paul McNamee
Proceedings of ACL 2018, System Demonstrations

We demonstrate two annotation platforms that allow an English speaker to annotate names for any language without knowing the language. These platforms provided high-quality ’‘silver standard” annotations for low-resource language name taggers (Zhang et al., 2017) that achieved state-of-the-art performance on two surprise languages (Oromo and Tigrinya) at LoreHLT20171 and ten languages at TAC-KBP EDL2017 (Ji et al., 2017). We discuss strengths and limitations and compare other methods of creating silver- and gold-standard annotations using native speakers. We will make our tools publicly available for research use.

pdf
Chengyu Cloze Test
Zhiying Jiang | Boliang Zhang | Lifu Huang | Heng Ji
Proceedings of the Thirteenth Workshop on Innovative Use of NLP for Building Educational Applications

We present a neural recommendation model for Chengyu, which is a special type of Chinese idiom. Given a query, which is a sentence with an empty slot where the Chengyu is taken out, our model will recommend the best Chengyu candidate that best fits the slot context. The main challenge lies in that the literal meaning of a Chengyu is usually very different from it’s figurative meaning. We propose a new neural approach to leverage the definition of each Chengyu and incorporate it as background knowledge. Experiments on both Chengyu cloze test and coherence checking in college entrance exams show that our system achieves 89.5% accuracy on cloze test and outperforms human subjects who attended competitive universities in China. We will make all of our data sets and resources publicly available as a new benchmark for research purposes.

pdf bib
Describing a Knowledge Base
Qingyun Wang | Xiaoman Pan | Lifu Huang | Boliang Zhang | Zhiying Jiang | Heng Ji | Kevin Knight
Proceedings of the 11th International Conference on Natural Language Generation

We aim to automatically generate natural language descriptions about an input structured knowledge base (KB). We build our generation framework based on a pointer network which can copy facts from the input KB, and add two attention mechanisms: (i) slot-aware attention to capture the association between a slot type and its corresponding slot value; and (ii) a new table position self-attention to capture the inter-dependencies among related slots. For evaluation, besides standard metrics including BLEU, METEOR, and ROUGE, we propose a KB reconstruction based metric by extracting a KB from the generation output and comparing it with the input KB. We also create a new data set which includes 106,216 pairs of structured KBs and their corresponding natural language descriptions for two distinct entity types. Experiments show that our approach significantly outperforms state-of-the-art methods. The reconstructed KB achieves 68.8% - 72.6% F-score.

2017

pdf
Embracing Non-Traditional Linguistic Resources for Low-resource Language Name Tagging
Boliang Zhang | Di Lu | Xiaoman Pan | Ying Lin | Halidanmu Abudukelimu | Heng Ji | Kevin Knight
Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Current supervised name tagging approaches are inadequate for most low-resource languages due to the lack of annotated data and actionable linguistic knowledge. All supervised learning methods (including deep neural networks (DNN)) are sensitive to noise and thus they are not quite portable without massive clean annotations. We found that the F-scores of DNN-based name taggers drop rapidly (20%-30%) when we replace clean manual annotations with noisy annotations in the training data. We propose a new solution to incorporate many non-traditional language universal resources that are readily available but rarely explored in the Natural Language Processing (NLP) community, such as the World Atlas of Linguistic Structure, CIA names, PanLex and survival guides. We acquire and encode various types of non-traditional linguistic resources into a DNN name tagger. Experiments on three low-resource languages show that feeding linguistic knowledge can make DNN significantly more robust to noise, achieving 8%-22% absolute F-score gains on name tagging without using any human annotation

pdf
Cross-lingual Name Tagging and Linking for 282 Languages
Xiaoman Pan | Boliang Zhang | Jonathan May | Joel Nothman | Kevin Knight | Heng Ji
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The ambitious goal of this work is to develop a cross-lingual name tagging and linking framework for 282 languages that exist in Wikipedia. Given a document in any of these languages, our framework is able to identify name mentions, assign a coarse-grained or fine-grained type to each mention, and link it to an English Knowledge Base (KB) if it is linkable. We achieve this goal by performing a series of new KB mining methods: generating “silver-standard” annotations by transferring annotations from English to other languages through cross-lingual links and KB properties, refining annotations through self-training and topic selection, deriving language-specific morphology features from anchor links, and mining word translation pairs from cross-lingual links. Both name tagging and linking results for 282 languages are promising on Wikipedia data and on-Wikipedia data.

2016

pdf
Bitext Name Tagging for Cross-lingual Entity Annotation Projection
Dongxu Zhang | Boliang Zhang | Xiaoman Pan | Xiaocheng Feng | Heng Ji | Weiran Xu
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers

Annotation projection is a practical method to deal with the low resource problem in incident languages (IL) processing. Previous methods on annotation projection mainly relied on word alignment results without any training process, which led to noise propagation caused by word alignment errors. In this paper, we focus on the named entity recognition (NER) task and propose a weakly-supervised framework to project entity annotations from English to IL through bitexts. Instead of directly relying on word alignment results, this framework combines advantages of rule-based methods and deep learning methods by implementing two steps: First, generates a high-confidence entity annotation set on IL side with strict searching methods; Second, uses this high-confidence set to weakly supervise the model training. The model is finally used to accomplish the projecting process. Experimental results on two low-resource ILs show that the proposed method can generate better annotations projected from English-IL parallel corpora. The performance of IL name tagger can also be improved significantly by training on the newly projected IL annotation set.

pdf
Name Tagging for Low-resource Incident Languages based on Expectation-driven Learning
Boliang Zhang | Xiaoman Pan | Tianlu Wang | Ashish Vaswani | Heng Ji | Kevin Knight | Daniel Marcu
Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

2015

pdf
Context-aware Entity Morph Decoding
Boliang Zhang | Hongzhao Huang | Xiaoman Pan | Sujian Li | Chin-Yew Lin | Heng Ji | Kevin Knight | Zhen Wen | Yizhou Sun | Jiawei Han | Bulent Yener
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

2014

pdf
Be Appropriate and Funny: Automatic Entity Morph Encoding
Boliang Zhang | Hongzhao Huang | Xiaoman Pan | Heng Ji | Kevin Knight | Zhen Wen | Yizhou Sun | Jiawei Han | Bulent Yener
Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)