Benjamin Towle


2024

pdf
Enhancing AI Assisted Writing with One-Shot Implicit Negative Feedback
Benjamin Towle | Ke Zhou
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

AI-mediated communication enables users to communicate more quickly and efficiently. Various systems have been proposed such as smart reply and AI-assisted writing. Yet, the heterogeneity of the forms of inputs and architectures often renders it challenging to combine insights from user behaviour in one system to improve performance in another. In this work, we consider the case where the user does not select any of the suggested replies from a smart reply system, and how this can be used as one-shot implicit negative feedback to enhance the accuracy of an AI writing model. We introduce Nifty, an approach that uses classifier guidance to controllably integrate implicit user feedback into the text generation process. Empirically, we find up to 34% improvement in Rouge-L, 89% improvement in generating the correct intent, and an 86% win-rate according to human evaluators compared to a vanilla AI writing system on the MultiWOZ and Schema-Guided Dialog datasets. The code is available at https://github.com/BenjaminTowle/NIFTY.

2023

pdf
Model-Based Simulation for Optimising Smart Reply
Benjamin Towle | Ke Zhou
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Smart Reply (SR) systems present a user with a set of replies, of which one can be selected in place of having to type out a response. To perform well at this task, a system should be able to effectively present the user with a diverse set of options, to maximise the chance that at least one of them conveys the user’s desired response. This is a significant challenge, due to the lack of datasets containing sets of responses to learn from. Resultantly, previous work has focused largely on post-hoc diversification, rather than explicitly learning to predict sets of responses. Motivated by this problem, we present a novel method SimSR, that employs model-based simulation to discover high-value response sets, through simulating possible user responses with a learned world model. Unlike previous approaches, this allows our method to directly optimise the end-goal of SR–maximising the relevance of at least one of the predicted replies. Empirically on two public datasets, when compared to SoTA baselines, our method achieves up to 21% and 18% improvement in ROUGE score and Self-ROUGE score respectively.

pdf
End-to-End Autoregressive Retrieval via Bootstrapping for Smart Reply Systems
Benjamin Towle | Ke Zhou
Findings of the Association for Computational Linguistics: EMNLP 2023

Reply suggestion systems represent a staple component of many instant messaging and email systems. However, the requirement to produce sets of replies, rather than individual replies, makes the task poorly suited for out-of-the-box retrieval architectures, which only consider individual message-reply similarity. As a result, these system often rely on additional post-processing modules to diversify the outputs. However, these approaches are ultimately bottlenecked by the performance of the initial retriever, which in practice struggles to present a sufficiently diverse range of options to the downstream diversification module, leading to the suggestions being less relevant to the user. In this paper, we consider a novel approach that radically simplifies this pipeline through an autoregressive text-to-text retrieval model, that learns the smart reply task end-to-end from a dataset of (message, reply set) pairs obtained via bootstrapping. Empirical results show this method consistently outperforms a range of state-of-the-art baselines across three datasets, corresponding to a 5.1%-17.9% improvement in relevance, and a 0.5%-63.1% improvement in diversity compared to the best baseline approach. We make our code publicly available.

2022

pdf
Learn What Is Possible, Then Choose What Is Best: Disentangling One-To-Many Relations in Language Through Text-based Games
Benjamin Towle | Ke Zhou
Findings of the Association for Computational Linguistics: EMNLP 2022

Language models pre-trained on large self-supervised corpora, followed by task-specific fine-tuning has become the dominant paradigm in NLP. These pre-training datasets often have a one-to-many structure—e.g. in dialogue there are many valid responses for a given context. However, only some of these responses will be desirable in our downstream task. This raises the question of how we should train the model such that it can emulate the desirable behaviours, but not the undesirable ones. Current approaches train in a one-to-one setup—only a single target response is given for a single dialogue context—leading to models only learning to predict the average response, while ignoring the full range of possible responses. Using text-based games as a testbed, our approach, PASA, uses discrete latent variables to capture the range of different behaviours represented in our larger pre-training dataset. We then use knowledge distillation to distil the posterior probability distribution into a student model. This probability distribution is far richer than learning from only the hard targets of the dataset, and thus allows the student model to benefit from the richer range of actions the teacher model has learned. Results show up to 49% empirical improvement over the previous state-of-the-art model on the Jericho Walkthroughs dataset.
Search
Co-authors