Alexander Johansen


2017

pdf
Learning when to skim and when to read
Alexander Johansen | Richard Socher
Proceedings of the 2nd Workshop on Representation Learning for NLP

Many recent advances in deep learning for natural language processing have come at increasing computational cost, but the power of these state-of-the-art models is not needed for every example in a dataset. We demonstrate two approaches to reducing unnecessary computation in cases where a fast but weak baseline classier and a stronger, slower model are both available. Applying an AUC-based metric to the task of sentiment classification, we find significant efficiency gains with both a probability-threshold method for reducing computational cost and one that uses a secondary decision network.
Search
Co-authors
Venues