Enhancing Low-Resource LLMs Classification with PEFT and Synthetic Data
Parth Patwa, Simone Filice, Zhiyu Chen, Giuseppe Castellucci, Oleg Rokhlenko, Shervin Malmasi
Abstract
Large Language Models (LLMs) operating in 0-shot or few-shot settings achieve competitive results in Text Classification tasks. In-Context Learning (ICL) typically achieves better accuracy than the 0-shot setting, but it pays in terms of efficiency, due to the longer input prompt. In this paper, we propose a strategy to make LLMs as efficient as 0-shot text classifiers, while getting comparable or better accuracy than ICL. Our solution targets the low resource setting, i.e., when only 4 examples per class are available. Using a single LLM and few-shot real data we perform a sequence of generation, filtering and Parameter-Efficient Fine-Tuning steps to create a robust and efficient classifier. Experimental results show that our approach leads to competitive results on multiple text classification datasets.- Anthology ID:
- 2024.lrec-main.533
- Volume:
- Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
- Month:
- May
- Year:
- 2024
- Address:
- Torino, Italia
- Editors:
- Nicoletta Calzolari, Min-Yen Kan, Veronique Hoste, Alessandro Lenci, Sakriani Sakti, Nianwen Xue
- Venues:
- LREC | COLING
- SIG:
- Publisher:
- ELRA and ICCL
- Note:
- Pages:
- 6017–6023
- Language:
- URL:
- https://preview.aclanthology.org/icon-24-ingestion/2024.lrec-main.533/
- DOI:
- Cite (ACL):
- Parth Patwa, Simone Filice, Zhiyu Chen, Giuseppe Castellucci, Oleg Rokhlenko, and Shervin Malmasi. 2024. Enhancing Low-Resource LLMs Classification with PEFT and Synthetic Data. In Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024), pages 6017–6023, Torino, Italia. ELRA and ICCL.
- Cite (Informal):
- Enhancing Low-Resource LLMs Classification with PEFT and Synthetic Data (Patwa et al., LREC-COLING 2024)
- PDF:
- https://preview.aclanthology.org/icon-24-ingestion/2024.lrec-main.533.pdf