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Abstract

Large Language Models (LLMs) have demon-
strated impressive capabilities in machine
translation, leveraging extensive pre-training
on vast amounts of data. However, this gener-
alist training often overlooks domain-specific
nuances, leading to potential difficulties when
translating specialized texts. In this study,
we present a multi-domain test suite, collated
from previously published datasets, designed
to challenge and evaluate the translation abil-
ities of LLMs. The test suite encompasses di-
verse domains such as judicial, education, lit-
erature (specifically religious texts), and noisy
user-generated content from online product re-
views and forums like Reddit. Each domain
consists of approximately 250-300 sentences,
carefully curated and randomized in the final
compilation. This English-to-Hindi dataset
aims to evaluate and expose the limitations
of LLM-based translation systems, offering
valuable insights into areas requiring further
research and development. We have submit-
ted the dataset to WMT24 Break the LLM
challenge. In this paper, we present our find-
ings. We have made the code and the dataset
publicly available at https://github.com/
sohamb37/wmt24-test-suite.

1 Introduction

Machine translation (MT) (Bahdanau et al., 2016)
has witnessed significant advancements with the
advent of Large Language Models (LLMs) (et al.,
2024a,b), which leverage extensive pretraining
on massive datasets to achieve high performance
across various language pairs (Alves et al., 2024;
Zhu et al., 2024; Zhang et al., 2023). Despite their
remarkable generalization capabilities, LLMs of-
ten struggle with domain-specific texts due to a
lack of targeted training on such specialized con-
tent (Robinson et al., 2023; Jiao et al., 2023; Hendy
et al., 2023). Some LLMs (Workshop et al., 2023)
generate good translation involving low-resource

language when target language is English but not
the other way around (Bawden and Yvon, 2023).
These challenges are amplified when the domains
involved are different from those of training data.
This limitation poses a challenge for deploying MT
systems in real-world applications where domain-
specific accuracy is crucial.

To address this gap, we have collated this dataset
that exposes the difficulties faced by LLM-based
MT systems when dealing with domain-specific
content. We have combined sentences from judi-
cial, educational, religious, literature, and noisy
user-generated content domains.

Each domain-specific subset comprises approxi-
mately 250-300 sentences, which are then random-
ized to form the final dataset. This dataset, focus-
ing on the English-to-Hindi translation direction,
aims to rigorously test the robustness and adapt-
ability of LLM-based MT systems. By identifying
the translation challenges specific to each domain,
our study provides valuable insights for improving
domain adaptation techniques in machine transla-
tion, ultimately contributing to more reliable and
accurate MT solutions for specialized applications.
Our contributions to the paper are as follows:

• We submit a diverse dataset consisting of six
domains.

• We calculate the standard BLEU score as well
as the state-of-the-art metric xCOMET-XXL
to evaluate the translation quality.

• We perform a tiny scale manual evaluation of
the translation outputs.

2 Related Works

Neural Machine Translation (NMT) has made sig-
nificant progress, especially for high-resource lan-
guages, but translating low-resource languages re-
mains a challenge. For example, the translation
of Indic languages like Hindi is difficult due to
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the scarcity of high-quality parallel corpora. Mul-
tilingual models like IndicTrans (Ramesh et al.,
2022) and IndicTrans2 (Gala et al., 2023) show
performance improvements, yet domain-specific
performance data is lacking.

For domain-specific augmentation, Moslem et al.
(2022) used pre-trained language models to gener-
ate synthetic in-domain data through back transla-
tion for Arabic-English translation. In the low-
resource context, Gain et al. (2022) explored
English-Hindi translation in chat-based conversa-
tions, while Ramakrishna et al. (2023) introduced
the EduMT dataset to enhance English-Hindi trans-
lations for educational content. Domain adaptation
techniques have also been applied for specialized
translations, such as Chemistry related and general
English-Hindi texts (Joshi et al., 2020).

In the legal domain, recent studies like Briva-
Iglesias et al. (2024) show that LLMs outperform
Google Translate for legal texts, and Poudel et al.
(2024) developed a custom dataset for English-
Nepali legal translation. For the literary domain,
NMT has been applied to German-English (Ma-
tusov, 2019), English-Slovene (Kuzman et al.,
2019), and English-Turkish (Yirmibeşoğlu et al.,
2023) translations, with mixed results on automatic
versus human evaluation (Thai et al., 2022).

Noise robustness in NMT is critical, as noisy
inputs can degrade translation quality. Studies like
Khayrallah and Koehn (2018) explored noise ef-
fects, while Michel and Neubig (2018) introduced
the MTNT dataset. Recent efforts used LLMs to fil-
ter noise and enhance NMT performance (Bolding
et al., 2023).

Finally, NMT has also been applied to e-
Commerce, particularly to translate product re-
views. Gupta et al. (2022) focused on sentiment-
preserving translations for English-Hindi, with
other works such as Gupta et al. (2021) contribut-
ing to the field.

Ranathunga et al. (2023) provides a compre-
hensive survey of advancements in low-resource
NMT, highlighting techniques and offering guide-
lines for further research. Building on this,
Goyle et al. (2023) leveraged transfer learning and
back-translation with the mBART model for low-
resource languages, while Chowdhury et al. (2022)
utilized transfer learning from English-Kannada,
English-Gujarati, and English-Marathi models for
Lambani, a low-resource tribal language. Addition-
ally, they examined the impact of freezing specific

encoder and decoder layers during training.

3 Dataset

Large Language Models (LLMs) excel in general
machine translation but struggle with specialized
domains. Our dataset includes English-Hindi bi-
text pairs from six critical domains, aiming to im-
prove LLMs’ translation accuracy in these areas,
which is vital for advancing their capabilities.

3.1 Education domain
The education domain is crucial for knowledge
dissemination, social development, and personal
growth. Accurate translation in this field ensures
broader access to educational materials, supporting
multilingual learning and empowering non-native
language communities. This helps reduce educa-
tional disparities and promotes inclusivity. Our
dataset, sourced from EduMT (Appicharla et al.,
2021), includes 330 English-Hindi sentence pairs,
enhancing translation performance in education.

3.2 General domain
The general domain in our dataset is sourced from
the IIT Bombay English-Hindi Parallel Corpus
(Kunchukuttan et al., 2018), which includes di-
verse content like news, TED Talks, government
websites, and Wikipedia. In essence, the general
domain is itself composed of diverse mini domains,
making translation a challenging task for MT sys-
tems. We randomly selected 500 English-Hindi
pairs from this corpus.

3.3 Judicial domain
The judicial domain in our dataset is sourced from
the IIT Patna Hindi-English Machine Aided Trans-
lation (HEMAT) training corpora, which is specifi-
cally designed for legal and judicial content. For
this domain, we have included 325 sentences in our
proposed dataset. Enhancing machine translation
performance in the judicial domain is crucial, as
it ensures that legal documents, court rulings, and
other judicial materials are accurately translated.

3.4 Literature domain
The literature domain in our dataset includes 300
pairs, with 150 Quran verses from the Tanzil
Project 1 and 150 Bible verses from the Bible Eu-
din Project, both sourced from the OPUS collection
(Tiedemann, 2012). These texts present unique

1https://tanzil.net/docs/tanzil_project
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Model Education General Judicial

BLEU COMET HUMAN BLEU COMET HUMAN BLEU COMET HUMAN

Aya23 (Aryabumi et al., 2024) 36.40 0.71 2.00 14.13 0.70 3.33 17.07 0.70 4.00
Claude3.5 46.04 0.80 3.33 19.02 0.85 3.67 25.62 0.85 3.67
CommandR-plus 35.33 0.75 3.67 14.39 0.77 3.67 17.64 0.77 3.00
CycleL 0.38 0.72 1.33 1.21 0.15 0.79 1.33 0.14 1.00
GPT-4 (OpenAI, 2023) 40.90 0.68 2.67 14.68 0.75 2.67 18.45 0.75 2.67
IKUN-C (Liao et al., 2024) 28.99 0.75 2.67 11.60 0.67 3.00 8.21 0.50 2.33
IKUN 28.62 0.76 1.33 11.99 0.66 2.33 6.95 0.47 1.00
IOL-Research (Zhang, 2024) 40.47 0.67 2.00 15.41 0.77 4.0 19.12 0.78 3.33
Llama3-70B (Grattafiori et al., 2024) 45.73 0.75 3.00 15.58 0.77 3.0 21.27 0.77 3.00
NVIDIA-NeMo 45.12 0.82 3.00 18.12 0.66 3.67 21.21 0.69 1.33
Online-A 50.27 0.73 3.00 19.84 0.75 4.0 25.02 0.73 3.33
Online-B 46.19 0.82 4.00 21.36 0.85 4.0 25.20 0.86 3.67
Online-G 46.19 0.73 2.67 16.49 0.67 3.67 27.33 0.73 2.67
TransmissionMT 46.70 0.82 3.67 21.39 0.85 4.67 25.25 0.86 4.00
Unbabel-Tower-70B (Rei et al., 2024) 44.22 0.80 4.33 20.50 0.83 4.67 22.04 0.83 3.67
ZMT 50.27 0.72 3.67 19.83 0.75 4.0 25.01 0.73 3.33

Table 1: Performance of different models across education, general and judicial domains

challenges due to their religious significance and
the use of archaic language. We aim to enhance the
accurate translation of sacred and classical texts.

3.5 Noisy domain
The noisy user-generated data domain in our
dataset is sourced from the benchmark dataset
for Machine Translation of Noisy Text (MTNT)
(Michel and Neubig, 2018). This domain includes
350 English sentences from MTNT, consisting of
informal and often error-prone comments made by
users on Reddit. Our annotators translated these
sentences into Hindi. Capturing the informal and
irregular nature of online communication, this do-
main is critical for improving machine translation
models’ ability to handle the nuances and chal-
lenges of translating user-generated content, which
is often rife with slang, typos, and non-standard
language usage.

3.6 Online User Review domain
The final domain in our dataset is composed of user
product review texts from the e-commerce web-
site Flipkart. This dataset is sourced from the pa-
per "Product Review Translation: Parallel Corpus
Creation and Robustness towards User-generated
Noisy Text" (Gupta et al., 2021). We have included
300 English-Hindi text pairs from this corpus. The
challenges in this domain often stem from gram-
matical errors and code-mixing, where users blend
English and Hindi within the same sentence. Im-
proving machine translation performance in this
domain is essential for accurately conveying cus-
tomer opinions and experiences, which can lead
to better user understanding and engagement with

Figure 1: BLEU Score on the Full Dataset

e-commerce platforms, ultimately enhancing the
online shopping experience across different lan-
guages.

4 Evaluation

In this section, we outline the various evaluation
techniques employed to assess the performance of
the models based on their outputs. The evalua-
tion metrics considered in this study are the BLEU
(Papineni et al., 2002; Post, 2018) score, COMET
(Rei et al., 2020; Guerreiro et al., 2023) score, and
human evaluation score.

4.1 BLEU Scores

The BLEU score is a metric used to evaluate the
quality of machine translations by comparing the
generated output to one or more reference trans-
lations based on n-gram similarity. We calculate
the BLEU score with sacrebleu (Post, 2018) and
report corpus_score for the dataset.



Figure 2: COMET scores in the Education Domain Figure 3: COMET scores in the General Domain

Figure 4: COMET scores in the Judicial Domain Figure 5: COMET scores in the Literature Domain

Figure 6: COMET scores in the Noisy Domain Figure 7: COMET scores in the Product Review Domain



Model Literature Noisy Review

BLEU COMET HUMAN BLEU COMET HUMAN BLEU COMET HUMAN

Aya23 8.34 0.75 2.67 31.76 0.51 3.00 30.82 0.78 3.00
Claude3.5 15.11 0.90 3.33 42.49 0.71 4.33 36.45 0.89 3.33
CommandR-plus 10.32 0.83 3.33 31.35 0.62 3.67 26.49 0.85 3.33
CycleL 0.21 0.14 1.00 0.82 0.14 1.00 0.33 0.14 1.00
GPT-4 7.95 0.80 2.67 35.43 0.60 3.67 33.66 0.84 2.33
IKUN-C 4.85 0.68 2.0 19.99 0.54 2.33 19.09 0.69 1.33
IKUN 4.80 0.70 1.33 18.89 0.54 2.00 16.48 0.60 1.33
IOL-Research 6.82 0.82 3.00 39.79 0.62 3.33 33.23 0.84 2.67
Llama3-70B 9.51 0.83 2.67 34.73 0.61 3.67 33.16 0.82 2.67
NVIDIA-NeMo 16.65 0.72 1.0 37.32 0.38 2.33 41.07 0.61 2.00
Online-A 20.34 0.81 2.0 52.55 0.49 3.00 46.78 0.74 3.00
Online-B 26.21 0.91 3.33 51.51 0.72 2.67 41.55 0.88 3.00
Online-G 8.56 0.69 1.67 44.13 0.44 3.33 55.29 0.72 4.00
TransmissionMT 26.27 0.91 3.33 51.71 0.72 3.67 41.58 0.88 3.33
Unbabel-Tower-70B 20.03 0.90 2.67 40.86 0.68 3.00 35.42 0.90 4.00
ZMT 20.34 0.81 1.67 52.55 0.49 2.67 46.78 0.74 3.00

Table 2: Performance of different models across literature, noisy, and review domains

Model BLEU COMET HUMAN

Aya23 23.53 0.69 3.00
Claude3.5 31.63 0.83 3.61
CommandR-plus 23.28 0.76 3.44
CycleL 0.78 0.14 1.11
GPT-4 25.98 0.74 2.78
IKUN-C 16.70 0.63 2.28
IKUN 16.44 0.61 1.56
IOL-Research 26.79 0.76 3.06
Llama3-70B 26.18 0.76 3.00
NVIDIA-NeMo 29.81 0.62 2.22
Online-A 36.21 0.84 3.06
Online-B 35.92 0.71 3.44
Online-G 32.79 0.66 3.00
TransmissionMT 35.94 0.84 3.78
Unbabel-Tower-70B 31.30 0.82 3.72
ZMT 36.20 0.71 3.06

Table 3: Performance of models on the full dataset

4.1.1 Domain wise Overview

The average BLEU scores for the general, judicial,
and literature domains are lower at 15.97, 19.14,
and 12.89, respectively. In the literature domain,
ornamental language leads to subjective transla-
tions, causing discrepancies with reference texts.
The general domain, with formal content like news
and Wikipedia articles, suffers from the model’s
difficulty in maintaining a formal tone. The judi-
cial domain poses challenges due to specialized
terminology and formality. Transliterations instead
of translations also contribute to poor performance
in these domains.

In contrast, the models perform better in the
education domain, where sentences are simpler,
and in user-generated domains like noisy texts and

product reviews, where BLEU scores are relatively
high.

4.1.2 Model wise Overview
The average performance across all domains shows
that Models Online-A and ZMT lead, followed by
Online-B and TransmissionMT, while CycleL has
the lowest BLEU scores. Since BLEU is based
on N-gram overlaps, relevant transliterations are
not accounted for, leading to lower scores in some
models despite acceptable translation quality.

4.2 COMET Scores

The COMET score is a metric that evaluates ma-
chine translation quality using pre-trained language
models. Unlike traditional metrics, it assesses both
adequacy (meaning preservation) and fluency (nat-
uralness). By comparing machine-generated trans-
lations to reference and human translations using
a regression model trained on human judgments,
COMET captures nuances in language and context.
This makes it more context-aware and reliable. We
calculate scores using xCOMET-XXL.

4.2.1 Domain wise Overview
The judicial, general, and education domains have
the highest COMET scores. Retaining adequacy
and fluency is easier in these domains due to their
formal tone, and COMET does not penalize models
heavily for paraphrasing, as it is a more robust
metric.

In contrast, the worst COMET scores are found
in user-generated data, such as noisy and product



Figure 8: COMET Score on the Full Dataset

Figure 9: Sentence Length Vs COMET Scores

review texts. These are more informal and often
contain spelling and grammatical errors, which
present challenges for translation.

• LLMs struggle to translate the noisy texts,
resulting in poor quality hypotheses and lower
COMET score

• COMET metric is calculated through embed-
dings. Here, the source side is noisy, which
can lead to unreliable embeddings and, there-
fore, an unreliable COMET score.

4.2.2 Model wise Overview
The best-performing models in terms of COMET
scores are Online-B and TransmissionMT, closely
followed by Claude-3.5 and Unbabel-Tower-70B.
However, the worst-performing model is still Cy-
cleL.

From Table 4 and Figure 9, the COMET scores
for all LLM translations exhibit a noticeable de-
cline with an increase in source-side sentence
length, highlighting that LLMs struggle with trans-
lating longer sentences. Among the models,
TransmissionMT, Online-B, Claude3.5, and Un-
babelTower70B consistently achieve the highest
COMET scores across varying sentence lengths.

Source Length <10 10-20 21-30 30+

Aya23 0.88 0.79 0.69 0.56
Claude3.5 0.93 0.90 0.84 0.74
CommandRplus 0.90 0.84 0.77 0.65
CycleL 0.15 0.14 0.14 0.14
GPT4 0.89 0.84 0.75 0.63
IKUN_C 0.83 0.71 0.64 0.53
IKUN 0.85 0.70 0.61 0.51
IOLResearch 0.88 0.85 0.77 0.65
Llama70B 0.88 0.85 0.77 0.65
NVIDIA_NeMo 0.88 0.74 0.62 0.47
OnlineA 0.89 0.81 0.72 0.60
OnlineB 0.92 0.90 0.85 0.75
OnlineG 0.89 0.77 0.66 0.52
TransmissionMT 0.92 0.90 0.85 0.75
UnbabelTower70B 0.93 0.90 0.84 0.71
ZMT 0.89 0.81 0.71 0.60

Table 4: Change in COMET score on varying source
length

Interestingly, while TransmissionMT and Online-
B do not achieve the highest COMET scores (0.92)
for shorter sentences compared to models like Un-
babelTower70B (0.93) and Claude3.5 (0.93), their
performance surpasses these models for longer sen-
tences (>30 words), achieving a COMET score of
0.75.

4.3 Human Evaluation

The next evaluation method is human evaluation.
We enlisted a linguist to randomly select three sen-
tences from each of the six domains, collecting
machine translations from 16 submitted model out-
puts, resulting in 288 sentences. These were rated
on a scale of 1 to 5, with 1 indicating the poorest
translation and 5 representing the best compared
to the reference texts. Due to the limited sample
size, the results are unreliable; however, resource
constraints prevented a larger-scale evaluation. We
hope these ratings, when considered alongside au-
tomated metric scores, will offer insights into the
models’ competence.

4.3.1 Domain wise Overview
According to the human evaluation, the general
domain showed the highest faithfulness to the ref-
erence translations. This outcome is expected, as
general domain texts are typically easier to trans-
late due to their formal and unambiguous nature,
with fewer grammatical, lexical, and spelling er-



Figure 10: Domain wise Average Human Score

Figure 11: Model wise Average Human Score

rors. Conversely, the noisy domain demonstrated
the lowest faithfulness to the reference translations.
This is largely attributed to the informal nature of
these texts, which often include profanities and in-
ternet acronyms like "lol" and "idk" as well as a
higher prevalence of errors.

4.3.2 Model wise Overview
Almost consistent with the COMET metrics,
we can see that the TransmissionMT, Unbabel-
Tower-70B, and Claude-3.5 have the best human-
evaluated scores, whereas CycleL again scored the
least favorably.

5 Conclusion

This paper presents a comparison of various model
submissions for the WMT Shared Task 2024. We
proposed a dataset with domain-wise segregation
and conducted a domain-specific analysis of the
submitted models. Our comprehensive evalua-
tion using BLEU, COMET, and human assess-
ments of the machine-translated hypotheses identi-
fied Claude 3.5, TransmissionMT, Unbabel Tower
70B, Online-A, and Online-B as some of the top-
performing models for machine translation using
LLMs. The analysis revealed that the formal do-

mains of general and education are the easiest for
models to handle, whereas the noisy and review
domains proved to be the most challenging. This
study highlights that while LLMs show proficiency
in machine translation, there is still significant
room for improvement.
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