
A Dynamic Knowledge Graph of Interaction Between Pollution and
Cardiovascular Diseases

Sudeshna Jana1, Anunak Roy 2, Manjira Sinha 1, Tirthankar Dasgupta 1,
1TCS Research, 2 IIT Kharagpur,

Correspondence: { sudeshna.jana, sinha.manjira, dasgupta.tirthankar} @tcs.com, anunakroy@kgpian.iitkgp.ac.in

Abstract
In recent decades, environmental pollution
has become a pressing global health concern.
According to the World Health Organization
(WHO), a significant portion of the popula-
tion is exposed to air pollutant levels exceed-
ing safety guidelines. Cardiovascular diseases
(CVDs) — including coronary artery disease,
heart attacks, and strokes — are particularly
significant health effects of this exposure. In
this paper, we investigate the effects of air pol-
lution on cardiovascular health by constructing
a dynamic knowledge graph based on exten-
sive biomedical literature. This paper provides
a comprehensive exploration of entity identifi-
cation and relation extraction, leveraging ad-
vanced language models. Additionally, we
demonstrate how in-context learning with large
language models can enhance the accuracy and
efficiency of the extraction process. The con-
structed knowledge graph enables us to analyze
the relationships between pollutants and car-
diovascular diseases over the years, providing
deeper insights into the long-term impact of
cumulative exposure, underlying causal mecha-
nisms, vulnerable populations, and the role of
emerging contaminants in worsening various
cardiac outcomes.

1 Introduction

Over the past few decades, the increasing lev-
els of environmental pollution have emerged as a
formidable global health crisis. The World Health
Organization (WHO) has reported that nearly 99%
of the world’s population breathes air that contains
pollutant levels exceeding established safety guide-
lines (Organization et al., 2016). This exposure
is particularly severe in low- and middle-income
countries, where industrial activities, urbanization,
and insufficient regulatory measures exacerbate air
quality issues. Among the various health effects
attributed to pollution, its impact on cardiovascular
diseases (CVDs) is particularly concerning (Ra-
jagopalan et al., 2018). CVDs encompass a wide

range of conditions, including coronary artery dis-
ease, heart attacks, strokes, and heart failure. These
diseases are not only prevalent but also represent
a leading cause of morbidity and mortality world-
wide. The mechanisms by which air pollutants
influence cardiovascular health are multifaceted,
involving both direct effects on the cardiovascular
system and indirect effects through exacerbating
existing risk factors such as hypertension and dia-
betes.

Recent studies have demonstrated that pollutants
such as fine particulate matter (PM ), heavy metals,
and toxic gases have a significant impact on car-
diac health (Basith et al., 2022; Zhang et al., 2022,
2016). Research conducted by the United States
Environmental Protection Agency (EPA) indicates
that exposure to elevated concentrations of PM2.5,
even over a short duration of a few hours to weeks,
can trigger heart attacks and fatalities associated
with cardiovascular diseases. Prolonged exposure
to these pollutants is linked to an increased risk of
cardiovascular mortality and a reduction in life ex-
pectancy (Beelen et al., 2014). Furthermore, a sub-
stantial body of epidemiological evidence reveals a
strong correlation between air pollutants and rising
rates of cardiovascular diseases, including heart
failure (Jia et al., 2023). Animal studies also cor-
roborate these findings, illustrating that exposure
to pollutants can elevate the likelihood of condi-
tions such as thrombosis and atherosclerosis (Sun
et al., 2005). These insights underscore the urgent
need for comprehensive public health interventions
aimed at reducing air pollution and mitigating its
adverse effects on cardiovascular health.

However, current findings do not demonstrate
how cumulative exposure impacts cardiovascular
health over decades, the precise causal pathways by
which these pollutants lead to cardiovascular dam-
age. Additionally, it is crucial to identify which
populations are most vulnerable to specific pol-
lutants and the reasons behind their susceptibil-
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Figure 1: Sample PubMed abstract with highlighted entities.

ity, which may include genetic predispositions,
environmental factors, pre-existing health condi-
tions, and lifestyle choices. Moreover, there is
a growing concern regarding new pollutants and
emerging contaminants—such as microplastics and
various industrial chemicals—that remain under-
researched in the context of cardiovascular health.
Motivated by these gaps, In this study, we seek to
address several of these issues by constructing a
comprehensive knowledge graph ‘PollCardioKG’
that visualizes the causal relationships between pol-
lutants and cardiovascular diseases, based on an
extensive review of scientific PubMed abstracts.
We also investigate how varying concentrations of
pollutants affect cardiovascular health differently
across diverse populations. This knowledge will
enhance our understanding of the mechanisms by
which pollutants contribute to cardiovascular dis-
eases and inform the development of more effective
public health strategies to mitigate their impact.

The remainder of this article is organized as
follows: In the next section, we provide a brief
overview of related works conducted by previous
researchers in this field. In Section 3, we detail our
methodology for dataset collection, data represen-
tation, and knowledge graph generation. Section 4
presents our results along with a thorough analysis
of the experimental findings. Finally, in Section 5,
we draw conclusions based on our analysis, and in
Section 6, we discuss the limitations of our study.

2 Related works

2.1 Empirical Experiments on the effect of
pollutants on cardiovascular diseases

Over the years, a wealth of empirical studies con-
ducted by various researchers has provided critical
insights into the relationship between pollutants

and cardiovascular diseases. For instance, Feng
and Yang (Feng and Yang, 2012) demonstrated a
clear association between exposure to fine partic-
ulate matter (PM2.5 and PM10) and an increased
risk of developing cardiovascular diseases. In a
subsequent study, Miller et al. (Miller and Newby,
2020) found that exposure to particulate matter, par-
ticularly ultrafine particles originating from diesel
emissions, is linked to heightened cardiovascular
risks, including coronary artery disease, hyperten-
sion, and arrhythmias. More recently, Lederer et
al. (Lederer et al., 2021) emphasized the signifi-
cant role of pollutants such as PM2.5 and nitrogen
dioxide (NO2) in elevating cardiovascular morbid-
ity and mortality rates. Their findings indicated
that PM2.5 is associated with oxidative stress and
thrombosis, while NO2 is linked to systemic in-
flammation and autonomic dysfunction.

2.2 Computational models on the effect of
pollutants on cardiovascular diseases

In this era of artificial intelligence, a growing num-
ber of researchers are employing various machine
learning and deep learning techniques to under-
stand and predict the impacts of pollutants on car-
diovascular health. For example, in 2017, Park
et al. (Park et al., 2017) developed an Environ-
mental Risk Score (ERS) to estimate the health
effects of pollutant mixtures. Their study high-
lighted the cumulative risks associated with expo-
sure to pollutants such as cadmium, arsenic com-
pounds, cobalt, and barium, particularly in relation
to gamma-glutamyl transferase levels and hyper-
tension. More recently, in 2022, Lee et al. (Lee
et al., 2022) utilized a range of machine learning
models to predict non-accidental mortality due to
cardiovascular and respiratory causes, leveraging
meteorological data alongside air pollution metrics.



Figure 2: Prompt template used for entity identification and relation extraction.

While most of these studies have concentrated
on the effects of air pollution on the cardiovascular
system using location-specific pollution data, our
study adopts a more comprehensive approach. By
examining the multifaceted impacts of pollutants
on cardiovascular diseases across diverse locations
and populations, we aim to provide a broader un-
derstanding of this critical issue. Our analysis of a
wide range of pollution-related scientific literature
not only deepens our insights into the established
effects of traditional pollutants but also highlights
the potential risks associated with new and emerg-
ing contaminants. This holistic perspective is essen-
tial for developing effective public health strategies
to mitigate the adverse impacts of pollution on car-
diovascular health.

3 Proposed Methodology

3.1 Downloading PubMed Abstracts
In our work, we have collected a total of 4,716
PubMed abstracts 1 published between 2012 and
the present, using the Metapub library, focusing
on the keywords “cardiovascular disease” and “air
pollution”. Each abstract is assigned a unique iden-
tifier, referred to as ‘pmid’. Additionally, we ex-
tracted the publication year of each study, enabling
us to perform a temporal analysis to track how the
relationship between pollutants and cardiovascu-
lar health has evolved over time. These abstracts
provide a wealth of information, often containing
valuable details such as pollutant names, pollutant
concentrations, associated cardiovascular diseases,

1https://pubmed.ncbi.nlm.nih.gov/

geographical locations, and the specific target popu-
lations studied. Figure 1 presents a sample PubMed
abstract with various portions of text color-coded
to highlight these different entities, offering insight
into the richness of the data and the variety of fac-
tors considered in these studies.

3.2 Entity Identification

From each of the collected PubMed abstracts, we
extracted the following entities and relations:

• Pollutant Names (P): The pollutants men-
tioned in the abstract.

• Pollutant Levels (C): The concentration lev-
els of the pollutants.

• Disease Names (D): The diseases or health
conditions linked to the pollutants.

• Study Location (Loc): The location where
the study was conducted.

• Population Details (S): The demographic de-
tails of the affected population.

We experimented with various large language mod-
els (LLMs) such as —Llama2-7B (Touvron et al.,
2023), Llama-3-8B (Dubey et al., 2024), Asclepius-
7B (Wang et al., 2024), PMC-LLaMA-7B (Wu
et al., 2024), GPT-4 (Waisberg et al., 2023) —for
this entity extraction task. A variety of prompts
were tested, and the one displayed in Figure 2
yielded the best results, as measured by human
evaluation.



3.3 Entity Standardization

The pollutants and diseases extracted from the
LLM are not always in a standardized form. For
example, the pollutant “ultrafine particles” may be
referred as “ufp”, “pm < 0.01µm aerodynamic
diameter” in different articles. Similarly, disease
names like “Hypertension” may appear as “High
Blood Pressure”, “Arterial Hypertension”, or “Hy-
pertensive Disorder” in various research.

To address this variability, all extracted entities
were standardized using the Unified Medical Lan-
guage System (UMLS) Metathesaurus (Schuyler
et al., 1993), which provides a comprehensive list
of terms and assigns a Concept Unique Identifier
(CUI) to each. However, we found that some en-
tities did not match any UMLS concept exactly.
To resolve this, we applied an approximate string-
matching algorithm based on the Levenshtein dis-
tance measure (Yujian and Bo, 2007) to identify
the closest UMLS concept. For entities that could
not be mapped to any UMLS concept, we created
unique identifiers to ensure that no entities were
overlooked.

3.4 Relation Extraction

Subsequently, we analyze the relationships be-
tween all extracted pollutant-disease pairs, clas-
sifying them into categories such as ‘cause’, ‘may
cause’, and ‘does not cause’. In this study, we em-
ploy a Chain of Thought (CoT) framework with
In-Context Learning (ICL) to leverage the inherent
capabilities of LLMs for relation extraction within
a few-shot learning paradigm. This approach strate-
gically incorporates in-context learning by embed-
ding a set of 10 curated examples into the model’s
prompt. Each example consists of a text passage, a
detailed step-by-step explanation of the reasoning
process, and the resulting relation triples, which
guide the model in identifying and reasoning about
the relationships among entities in the given texts.
The prompt examples cover three primary rela-
tion types—‘cause’, ‘may cause’, and ‘does not
cause’—and involve entities identified as Pollutant
Names (P) and Disease Names (D).

For illustration, consider the following example
included in the model’s prompt:

Instruction: Identify the relationship among the
entities [Pollutant: NO2 and Disease: ischemic
stroke] in the given text, categorizing it as one
of cause’, may cause’, or ‘does not cause’, and
provide a reasonable explanation.

Text: "Polish smog is a specific type of air pollu-
tion present in Eastern Poland, which causes partic-
ularly adverse cardiovascular effects. Additionally,
PM and nitrogen dioxide (NO2) have an impact on
mortality due to acute coronary syndrome (ACS)
and ischemic stroke (IS)."

Explanation: PM and nitrogen dioxide (NO2)
impact mortality due to acute coronary syndrome
(ACS) and ischemic stroke (IS).

Relations: [[“NO2”, “causes”, “ischemic
stroke”]]

This integration of in-context learning and logi-
cal reasoning underscores the robust capabilities of
advanced language models in addressing intricate
challenges in natural language understanding.

3.5 Building Knowledge Graph

Once all pollutant and disease names were stan-
dardized, we constructed a knowledge graph to
provide a structured representation of the complex
relationships between these entities (Fensel et al.,
2020). In this graph, pollutants and diseases are rep-
resented as nodes, while the relationships between
them (e.g., causes or may cause) are depicted as
directed edges from pollutants to diseases. Where
available, additional attributes such as pollutant
concentration levels and demographic information
(e.g., location, age group, gender) were attached to
the corresponding nodes. This knowledge graph
facilitates a clearer understanding of how specific
pollutants are linked to diseases and enables ex-
ploration of broader patterns and connections. It
also highlights how certain diseases may be related
through common pollutants and identifies key pol-
lutants and diseases, thereby revealing the most
significant relationships within the data.

4 Results and Discussions

In this section, we evaluate the performance of
various large language models (LLMs) in extract-
ing entities and their relationships. Furthermore,
we conducted a temporal analysis to examine the
variation of each pollutant, disease, and their inter-
relationships over time.

After the pre-processing step outlined in Sec-
tion 3, which involved 4,716 PubMed abstracts,
we compiled a comprehensive list of 300 unique
pollutants and approximately 936 unique disease
names. We then evaluated the performance of var-
ious large language models (LLMs) for entity ex-
traction, comparing their outputs with expert anno-



Figure 3: Comparison of Mean Entity Extraction Accu-
racy across different LLMs.

tations. Our analysis revealed that both LLaMa-2-
7B and LLaMa-3-8B models often struggled with
accurately identifying disease names, frequently
mislabeling conditions. For example, the LLaMa
models generated ‘Stroke’ in place of ‘Decreased
HDL level’ and identified ‘cardiovascular risk’ in-
stead of ‘ischemic heart disease’.

To quantify the performance of these models,
we calculated the Mean Entity Extraction Accu-
racy (MEEA), defined by 1

N

∑N
i=1

n(Êi)
n(Ei)

, where N
represents the total number of abstracts, n(E) de-
notes the number of entities annotated by human
experts, and n(Ê) represents the number of entities
correctly identified by the LLMs. Among the eval-
uated models, GPT-4 emerged as the most effective
in accurately identifying both pollutant and disease
names, as illustrated in Figure 3.

Subsequently, we constructed the knowledge
graph, named ‘PollCardioKG’, which encapsulates
a total of 1,907 nodes, consisting of 1,029 pollutant
nodes and 878 disease nodes, connected by 5,618
edges. This graph provides a comprehensive view
of the complex relationships between pollutants
and cardiovascular diseases. To enhance its gran-
ularity, multiple nodes were created for the same
pollutant to represent varying concentration lev-
els, where such data was available. This structure
allows for the differentiation of effects based on
pollutant exposure levels, offering deeper insights
into potential dose-response relationships.

Figure 4 presents a snippet of the knowledge
graph, where pollutant nodes are highlighted in red,
and disease nodes are marked in blue. The directed
edges between these nodes represent relationships
such as causality or association.

Furthermore, we utilized the study year of each
abstract as the time variable for this analysis to ex-
amine how pollutant levels and disease rates have
changed over time. This approach allows us to
identify long-term trends and patterns, as well as
to detect any unusual or unexpected fluctuations
in both pollutant concentrations and disease inci-
dence.

4.1 Longitudinal Analysis of Pollutants
Figure 5(a) illustrates the trends in the occurrence
of the top five pollutants identified in the PubMed
abstracts from 2012 to 2024. The data indicate a
clear upward trajectory for PM2.5 exposure, which
peaked in 2022 before experiencing a slight de-
cline in subsequent years. This suggests that while
PM2.5 remains a significant concern, there may be
emerging factors influencing its concentration or
reporting. Nitrogen Dioxide NO2) has similarly
demonstrated a steady increase, particularly accel-
erating after 2020, highlighting potential shifts in
air quality and pollution sources during this period.
In contrast, pollutants such as ozone (O3), carbon
monoxide (CO), and sulfur dioxide (SO2) have
exhibited relatively stable trends, characterized by
minor fluctuations.

Furthermore, Figure 5(b) depicts the trends of
previously less significant pollutants that have
gained increased attention in recent years. Notably,
PM1 has experienced a dramatic rise in mentions
starting from 2019, culminating in a peak in 2023
and maintaining elevated levels into 2024. This
surge in interest may reflect growing awareness of
the health impacts associated with ultrafine parti-
cles. Additionally, ammonium and cadmium have
shown significant increases in their occurrences
within the discussions during this timeframe. Am-
monium levels began to escalate after 2016, sug-
gesting a potential link to agricultural practices or
changes in atmospheric chemistry. Cadmium, in
particular, has seen a remarkable rise in mentions
from 2020 to 2024, signaling a need for further
investigation into its sources and health implica-
tions. Overall, these trends underscore the dynamic
nature of pollutant occurrences and highlight the
importance of ongoing research and monitoring
efforts to address emerging environmental health
concerns.

4.2 Longitudinal Analysis of Diseases
Figure 6(a) highlights trends of the top five dis-
eases in PubMed abstracts from 2012 to 2024,



Figure 4: Snippet of ‘PollCardioKG’: pollutants are shown in red, diseases in blue, with edges representing causal
relationships.

showing a clear upward trajectory over time. Hy-
pertensive disease shows a significant rise, peak-
ing around 2018, with consistently high mention
rates thereafter. Ischemic Stroke and Atrial Fibril-
lation display gradual increases with slight fluctu-
ations, while Cardiometabolic Syndrome and Di-
abetes maintain a steady but less pronounced rise,
indicating continued relevance in medical research
and public health.

Moreover, Figure 6(b) illustrates the trends of
three specific diseases—Dyslipidemias, Metabolic
Diseases, and ST-segment elevation myocardial in-
farction (STEMI)—in PubMed abstracts from 2012
to 2024. STEMI shows significant peaks in 2017
and 2020, particularly the highest occurrence in
2017, likely due to heightened research activity
and updated clinical guidelines. Metabolic Dis-
eases demonstrate notable increases in 2017 and
2020, followed by a consistent rise from 2021 to
2024, indicating growing recognition of their health
impacts. In contrast, Dyslipidemias exhibit an ir-
regular pattern with spikes in 2013, 2017, 2019,
and a smaller rise in 2020, reflecting changes in
research focus. These trends underscore the evolv-
ing landscape of disease research and the need for
ongoing investigation into these conditions.

4.3 Trends of Pollutant Disease Correlation

Figure 7 highlights the increasing correlation be-
tween PM , the most frequently mentioned pollu-
tants—and various diseases from 2012 to 2024 in
PubMed abstracts. Both pollutants demonstrate a
significant rise in association with health conditions
such as hypertensive disease, cerebrovascular ac-
cidents, myocardial ischemia, and atherosclerosis,
particularly after 2018 for PM2.5. This trend em-
phasizes the growing awareness of the health risks
linked to fine particulate matter, underscoring the
necessity for continued research and public health
initiatives to address the adverse effects of these
pollutants on cardiovascular and cerebrovascular
health.

Figure 8 presents a comprehensive visualization
of the percentage of prevalent pollutant-disease cor-
relations. In this heatmap, darker colors indicate
stronger correlations, while lighter colors reflect
weaker ones. Environmental Tobacco Smoke and
Solid Fuel are notably associated with multiple dis-
eases, including Myocardial Infarction and various
Cardiovascular Events. Airborne Particulate Mat-
ter and Nitrogen Dioxide are significantly linked to
conditions such as Cerebrovascular Accidents and
Coronary Heart Disease. Additionally, pollutants
like Cadmium and Lead show selective associa-



(a) (b)

Figure 5: (a) Trends of the top five pollutants from 2012 to 2024. (b) Emerging pollutants in recent years.

(a) (b)

Figure 6: (a) Trends of the top five diseases from 2012 to 2024. (b) Emerging diseases in recent years.

Figure 7: Most common diseases associated with PM
exposure.

tions with Endothelial Dysfunction and Myocardial
Ischemia. These targeted correlations highlight the
substantial health impacts of even less common
pollutants, emphasizing the need for further inves-
tigation into their effects.

Furthermore, we explored the impact of varying
concentration levels of the same pollutant on dif-
ferent cardiovascular diseases. Figure 9 illustrates
the top five most commonly associated cardiovas-
cular diseases (CVDs) linked to different levels
of PM2.5 exposure. Overall, this comprehensive
analysis not only highlights critical pollutants that
significantly affect various health conditions but
also emphasizes the importance of addressing these
environmental factors to enhance public health out-
comes. By understanding these correlations, poli-

Figure 8: Heatmap illustrating the correlation between
major pollutants and associated diseases.

Figure 9: Top five most common CVDs associated with
varying exposures to PM2.5 concentrations..



cymakers and health professionals can better strate-
gize interventions aimed at reducing exposure and
mitigating associated health risks.

5 Conclusions

This study explores the causal relationships be-
tween environmental pollutants and cardiovascular
diseases by constructing a comprehensive knowl-
edge graph. Analyzing around 4,700 PubMed ab-
stracts, we identified key pollutants and their asso-
ciated health risks, including hypertensive disease
and ischemic stroke. The knowledge graph reveals
both direct and complex interrelations, offering a
valuable tool for understanding the cardiovascular
impacts of air pollution. Future work will integrate
multimodal data to further enhance the analysis of
indirect effects and expand the graph’s scope for
public health insights.

6 Limitations

This analysis relies solely on PubMed abstracts,
which may lack detailed information on method-
ologies, pollutant concentrations, and demographic
factors, potentially limiting the depth of insights.
The use of specific keywords, such as “cardiovascu-
lar disease” and “air pollution”, might omit relevant
studies with alternative terminology. Furthermore,
while correlations between pollutants and diseases
are identified, determining true causality is diffi-
cult due to the potential influence of confounding
factors like socioeconomic conditions and lifestyle
behaviors.

References
Shaherin Basith, Balachandran Manavalan, Tae Hwan

Shin, Chan Bae Park, Wang-Soo Lee, Jaetaek Kim,
and Gwang Lee. 2022. The impact of fine particulate
matter 2.5 on the cardiovascular system: a review of
the invisible killer. Nanomaterials, 12(15):2656.

Rob Beelen, Massimo Stafoggia, Ole Raaschou-
Nielsen, Zorana Jovanovic Andersen, Wei W Xun,
Klea Katsouyanni, Konstantina Dimakopoulou, Bert
Brunekreef, Gudrun Weinmayr, Barbara Hoffmann,
et al. 2014. Long-term exposure to air pollution and
cardiovascular mortality: an analysis of 22 european
cohorts. Epidemiology, 25(3):368–378.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Jing Feng and Wei Yang. 2012. Effects of particulate
air pollution on cardiovascular health: a population
health risk assessment. PloS one, 7(3):e33385.

Dieter Fensel, Umutcan Şimşek, Kevin Angele, Elwin
Huaman, Elias Kärle, Oleksandra Panasiuk, Ioan
Toma, Jürgen Umbrich, Alexander Wahler, Dieter
Fensel, et al. 2020. Introduction: what is a knowl-
edge graph? Knowledge graphs: Methodology, tools
and selected use cases, pages 1–10.

Yanhui Jia, Zhennan Lin, Zhi He, Chenyang Li, You-
jing Zhang, Jingyu Wang, Fangchao Liu, Jianxin
Li, Keyong Huang, Jie Cao, et al. 2023. Effect of
air pollution on heart failure: systematic review and
meta-analysis. Environmental Health Perspectives,
131(7):076001.

Agnes Maria Lederer, Per Morten Fredriksen, Bene-
dicta Ngwenchi Nkeh-Chungag, Frans Everson, Hans
Strijdom, Patrick De Boever, and Nandu Goswami.
2021. Cardiovascular effects of air pollution: current
evidence from animal and human studies. American
Journal of Physiology-Heart and Circulatory Physi-
ology.

Woojoo Lee, Youn-Hee Lim, Eunhee Ha, Yoenjin Kim,
and Won Kyung Lee. 2022. Forecasting of non-
accidental, cardiovascular, and respiratory mortal-
ity with environmental exposures adopting machine
learning approaches. Environmental Science and Pol-
lution Research, 29(58):88318–88329.

Mark R Miller and David E Newby. 2020. Air pollution
and cardiovascular disease: car sick. Cardiovascular
research, 116(2):279–294.

World Health Organization et al. 2016. Ambient air pol-
lution: A global assessment of exposure and burden
of disease.

Sung Kyun Park, Zhangchen Zhao, and Bhramar
Mukherjee. 2017. Construction of environmental risk
score beyond standard linear models using machine
learning methods: application to metal mixtures, ox-
idative stress and cardiovascular disease in nhanes.
Environmental Health, 16:1–17.

Sanjay Rajagopalan, Sadeer G Al-Kindi, and Robert D
Brook. 2018. Air pollution and cardiovascular dis-
ease: Jacc state-of-the-art review. Journal of the
American College of Cardiology, 72(17):2054–2070.

Peri L Schuyler, William T Hole, Mark S Tuttle,
and David D Sherertz. 1993. The umls metathe-
saurus: representing different views of biomedical
concepts. Bulletin of the Medical Library Associa-
tion, 81(2):217.

Qinghua Sun, Aixia Wang, Ximei Jin, Alex Natanzon,
Damon Duquaine, Robert D Brook, Juan-Gilberto S
Aguinaldo, Zahi A Fayad, Valentin Fuster, Mor-
ton Lippmann, et al. 2005. Long-term air pollu-
tion exposure and acceleration of atherosclerosis and
vascular inflammation in an animal model. Jama,
294(23):3003–3010.



Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Ethan Waisberg, Joshua Ong, Mouayad Masalkhi,
Sharif Amit Kamran, Nasif Zaman, Prithul Sarker,
Andrew G Lee, and Alireza Tavakkoli. 2023. Gpt-4:
a new era of artificial intelligence in medicine. Irish
Journal of Medical Science (1971-), 192(6):3197–
3200.

Wenxuan Wang, Yihang Su, Jingyuan Huan, Jie Liu,
Wenting Chen, Yudi Zhang, Cheng-Yi Li, Kao-Jung
Chang, Xiaohan Xin, Linlin Shen, et al. 2024. Ascle-
pius: A spectrum evaluation benchmark for medical
multi-modal large language models. arXiv preprint
arXiv:2402.11217.

Chaoyi Wu, Weixiong Lin, Xiaoman Zhang, Ya Zhang,
Weidi Xie, and Yanfeng Wang. 2024. Pmc-llama:
toward building open-source language models for
medicine. Journal of the American Medical Infor-
matics Association, page ocae045.

Li Yujian and Liu Bo. 2007. A normalized levenshtein
distance metric. IEEE transactions on pattern analy-
sis and machine intelligence, 29(6):1091–1095.

Dong Zhang, Hanhan Li, Xiao-San Luo, Weijie Huang,
Yuting Pang, Jinshan Yang, Mingwei Tang, Tariq
Mehmood, and Zhen Zhao. 2022. Toxicity assess-
ment and heavy metal components of inhalable par-
ticulate matters (pm2. 5 & pm10) during a dust storm
invading the city. Process Safety and Environmental
Protection, 162:859–866.

Yingying Zhang, Xiaotong Ji, Tingting Ku, Guangke
Li, and Nan Sang. 2016. Heavy metals bound to fine
particulate matter from northern china induce season-
dependent health risks: a study based on myocardial
toxicity. Environmental Pollution, 216:380–390.


	Introduction
	Related works
	Empirical Experiments on the effect of pollutants on cardiovascular diseases
	Computational models on the effect of pollutants on cardiovascular diseases

	Proposed Methodology
	Downloading PubMed Abstracts
	Entity Identification
	Entity Standardization
	Relation Extraction
	Building Knowledge Graph

	Results and Discussions
	Longitudinal Analysis of Pollutants
	Longitudinal Analysis of Diseases
	Trends of Pollutant Disease Correlation

	Conclusions
	Limitations

