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Abstract

Reinforcement learning (RL) is a powerful
approach to enhance task-oriented dialogue
(TOD) systems. However, existing RL meth-
ods tend to mainly focus on generation tasks,
such as dialogue policy learning (DPL) or re-
sponse generation (RG), while neglecting dia-
logue state tracking (DST) for understanding.
This narrow focus limits the systems to achieve
globally optimal performance by overlooking
the interdependence between understanding
and generation. Additionally, RL methods face
challenges with sparse and delayed rewards,
which complicates training and optimization.
To address these issues, we extend RL into
both understanding and generation tasks by
introducing step-by-step rewards throughout
the token generation. The understanding re-
ward increases as more slots are correctly filled
in DST, while the generation reward grows
with the accurate inclusion of user requests.
Our approach provides a balanced optimization
aligned with task completion. Experimental re-
sults demonstrate that our approach effectively
enhances the performance of TOD systems and
achieves new state-of-the-art results on three
widely used datasets, including MultiWOZ2.0,
MultiWOZ2.1, and In-Car. Our approach also
shows superior few-shot ability in low-resource
settings compared to current models.

1 Introduction

The rapid advancements in pre-trained language
models (PLMs) have significantly influenced a va-
riety of real-world applications (Devlin et al., 2018;
Raffel et al., 2020; Chung et al., 2024). Among
these, the development of task-oriented dialogue
(TOD) systems stands out as particularly impactful
(Wen et al., 2017; Hosseini-Asl et al., 2020). Typi-
cally, a TOD system comprises several components
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Figure 1: A task-oriented dialogue system needs to
successfully perform both understanding and generation
to achieve its dialogue goals.

(He et al., 2022b; Feng et al., 2023) as shown in
Figure 1, including dialogue state tracking (DST)
for understanding user’s belief state (Chen et al.,
2020; Guo et al., 2023), dialogue policy learning
(DPL) for generating dialogue acts (Zhao et al.,
2024; Zhang et al., 2019), and response generation
(RG) for generating system responses (Pei et al.,
2020; Chen et al., 2019). More recently, there has
been growing interest in constructing end-to-end
(E2E) TOD systems based on PLMs to equip mod-
els with all these essential capabilities (He et al.,
2022b; Hosseini-Asl et al., 2020; Feng et al., 2023;
Yu et al., 2023).

Building on the advancements in TOD systems
discussed earlier, recent research explores the use
of offline reinforcement learning (RL) to optimize
TOD systems further learning goal-oriented con-
versational strategies (Lu et al., 2019; Jang et al.,
2022; Feng et al., 2023). However, current RL
approaches typically focus on enhancing the gen-
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eration component, such as generating dialog acts
(DPL task) (Li et al., 2023) or system response (RG
task) (Yu et al., 2023). This biased focus prevents
the systems from reaching optimal performance
by ignoring the crucial interdependence between
understanding and generation. Furthermore, RL
for TOD systems often faces issues with sparse
and delayed rewards (Lu et al., 2019; Abdulhai
et al., 2023), which are only provided upon reach-
ing the goal at the dialogue or turn level (Kwan
et al., 2023; Lu et al., 2019; Abdulhai et al., 2023).
This leads to insufficient exploration and unstable
training for RL. While many efforts have tried to
mitigate these reward issues to offer dense rewards,
the design of the reward function in these methods
tends to be complex, which may limit the method’s
generalization (Li et al., 2020; Feng et al., 2023).

In this work, we propose to design a simple but
effective reward function to jointly optimize both
understanding and generation components in an
end-to-end manner to achieve the globally opti-
mal performance. We propose the combination
of understanding reward and generation reward
throughout per token generation to reinforce the
learning step by step. The understanding reward
is the growing proportion of correctly filled slots
in the DST process, while the generation reward
is measured by the correct inclusion of the user
requests in the DPL and RG process. We conduct
extensive experiments using two model backbones,
the Flan-T5 base and Flan-T5 large models (Chung
et al., 2024), on three widely used benchmarks:
MultiWOZ2.0, MultiWOZ2.1, and In-Car. The re-
sults show that our approach significantly improves
model performance against strong baselines, estab-
lishing new state-of-the-art results. We also show
that our approach outperforms current models in
low-resource conditions, highlighting its adaptabil-
ity in real-world scenarios where data is limited.

Our contributions to this work are summarized
as follows:

• We introduce a novel approach that integrates
RL into both understanding (DST) and gen-
eration (DPL and RG) components in an end-
to-end manner, which promotes a balanced
optimization for TOD systems.

• To tackle the challenges of sparse and de-
layed rewards in RL for TOD systems, we
propose a combined reward mechanism that
provides progressive feedback during token

generation. This step-by-step reward signifi-
cantly enhances efficiency.

• Experimental results show that our approach
establishes new state-of-the-art results on
multiple benchmarks (MultiWOZ2.0, Mul-
tiWOZ2.1, and In-Car). Furthermore, the
method shows superior performance in low-
resource conditions.

2 Related Work

In this section, we review works on TOD systems
utilizing both pipeline and E2E methods, the in-
tegration of reinforcement learning (RL), and the
design of reward functions for RL. Additionally, we
discuss the role of large language models (LLMs)
in TOD systems.

Pipeline and End-to-End Approaches. Pipeline
approaches are characterized by their modular
structure, where dialogue state tracking (DST)
(Chen et al., 2020; Guo et al., 2023), dialogue pol-
icy learning (DPL) (Zhao et al., 2024; Zhang et al.,
2019), and response generation (RG) (Pei et al.,
2020; Chen et al., 2019) are processed sequentially.
They offer interpretability and modularity but of-
ten struggle to capture the overall context of con-
versations (Kwan et al., 2023). In contrast, E2E
approaches directly map input utterances to system
responses without explicit intermediate representa-
tions (He et al., 2022b; Yang et al., 2021; He et al.,
2022a). Some models, such as SPACE-3 (He et al.,
2022a), UBAR (Yang et al., 2021), and PPTOD
(Su et al., 2022), restructure all sub-tasks into a sin-
gle sequence prediction through pre-training and
fine-tuning. However, supervised fine-tuning (SFT)
focuses more on learning at the token level than
on the particular requirements, which limits the
model’s ability to complete specific tasks.

RL-Based Policy Learning. RL can be lever-
aged to enhance model performance by tailoring it
to the specific requirements of TOD tasks. Some
studies utilize user simulators (Peng et al., 2018;
Jang et al., 2022; Liu et al., 2023) for multi-turn dia-
logue RL exploration to improve policies. Yet, user
simulators require careful design and can introduce
biases if not accurately mimicked. Hierarchical RL
(HRL) methods break tasks into sub-tasks, creating
a policy hierarchy (Peng et al., 2017; Liu et al.,
2020), while feudal RL (FRL) abstracts state and
action spaces for more general policies (Gao et al.,
2018; Casanueva et al., 2018). These HRL methods

8031



primarily focus on complex algorithmic designs
and often lack a robust understanding of user in-
tentions, resulting in suboptimal performance. We
aim to explore an offline RL approach and focus on
token-level RL exploration to mitigate the issues
above.

Reward Design for TOD. Recent studies have
found offline RL to be a promising method for sta-
bilizing training with static datasets (Snell et al.,
2023; Feng et al., 2023). Following the offline prin-
ciple, many methods design rewards at the dialog
and turn level when a goal is achieved (Kwan et al.,
2023; Lu et al., 2019; Tang et al., 2018), but re-
ward signals remain sparse. Inverse reinforcement
learning (IRL) and reward shaping techniques have
been introduced to learn denser rewards and en-
courage faster learning (Li et al., 2020; Takanobu
et al., 2019). However, IRL can be computationally
intensive, and reward shaping might result in unin-
tended behaviors if not carefully designed (Arora
and Doshi, 2021; Gupta et al., 2024). Alternatively,
some methods employ rewards for every token,
which may lack semantic significance towards the
dialogue goal (Yu et al., 2023; Gupta et al., 2024).
Our approach provides progressive rewards directly
towards the dialogue goal.

Large Language Models for TOD. LLMs have
demonstrated impressive capabilities in understand-
ing and generating text for various tasks (Ouyang
et al., 2022; OpenAI, 2023; Chowdhery et al.,
2023; Wu et al., 2024c). However, LLMs underper-
form compared to specialized task-specific models
(Hudeček and Dušek, 2023; Li et al., 2023; Wu
et al., 2024b). Fine-tuning LLMs for specific tasks
is also computationally inefficient. All these rea-
sons lead to a growing interest in prompt engineer-
ing approaches that leverage in-context learning
without requiring parameter updates (Wei et al.,
2022; Wang et al., 2022; Yao et al., 2024; Wu et al.,
2024a). Yet, LLMs still tend to perform less effec-
tively (Yang et al., 2024).

3 Preliminary

3.1 Supervised Fine-Tuning for TOD

The TOD task is typically modeled as an E2E prob-
lem and addressed by a seq2seq model (e.g. T5)
using supervised fine-tuning (SFT). The input of
the model can be represented as It = [prefix :
ut−1 : bst−1 : dat−1 : srt−1 : ut], where [· : ·]
denotes the concatenation operator, ut represents

the current user utterance, bst−1, dat−1, and srt−1

represent the belief state (BS), dialogue act (DA),
and system response (SR) at turn t− 1 respectively.
The prefix instruction is “translate dialogue to be-
lief state, dialogue action, and system response:
[input]”. The model is fine-tuned to maximize the
likelihood of successively generating correct BS,
DA, and SR given the input:

Lθ =
T∑

t=1

logP (bst, dat, srt | It; θ), (1)

where θ represents the parameters of the model.

3.2 Reinforcement Learning for TOD

Formally, the RL approaches for TOD tasks op-
erate within a Markov Decision Process (MDP)
(Kaelbling et al., 1998) characterized by the tu-
ple ⟨S,A, P,R, γ⟩. The state space S can be rep-
resented as a set of states si = {s1, s2, . . . , sk},
where each state includes the dialogue context and
history up to the current time step. Each turn in
the dialogue is considered an independent episode.
An action a∆t ∈ A is the ∆t-th action taken dur-
ing an episode, which corresponds to selecting the
next token in the dialogue. Transition probability
P (s′ | s, a) is the probability of transitioning to
state s′ given action a and state s. The discount
factor γ ∈ [0, 1] is used to weigh future rewards.
The SFT model is used to initialize a policy net-
work π, which is subsequently refined to maximize
the reward R, using algorithms such as proximal
policy optimization (PPO) (Schulman et al., 2017).

4 Main Method

We aim to enhance TOD systems using a combi-
nation of SFT and RL. While SFT can provide a
stable initial base for RL (Ramamurthy et al., 2023;
Yu et al., 2023; Li et al., 2023), it equally treats
every ground-truth token as an objective, without
prioritizing task-specific goals. We utilize RL to
refine the model to optimize for task completion.

In TOD tasks, accurately understanding user
needs (i.e., belief states) is crucial for generat-
ing appropriate dialogue acts, which are essential
for producing system responses that meet current
needs and effectively drive the conversation for-
ward. However, existing RL methods often focus
solely on optimizing dialogue policy learning (Li
et al., 2023; Takanobu et al., 2020) or response
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Figure 2: Overview of our approach. Left: We use the masked policy to optimize understanding and generation
end-to-end with our reward function for TOD systems. Context is the concatenation of belief state (BS), dialogue
act (DA), and system response (SR) at the previous turn. Special characters like <sos_b>, <sos_a>, and <sos_r>
denote the start of BS, DA, and SR, while <eos_b>, <eos_a>, and <eos_r> denote their endings. Right: The
designed reward function provides step-by-step rewards for understanding and generation tasks. Rewardu refers to
Equation 2, Rewardg refers to Equation 3, and Rewardtod refers to Equation 4.

generation (Yu et al., 2023), neglecting the impor-
tance of understanding and the interdependence
between understanding and generation. Moreover,
these methods typically use sparse rewards at the
dialogue or turn level (Kwan et al., 2023; Lu et al.,
2019; Tang et al., 2018; Abdulhai et al., 2023).

Task completion metrics evaluate whether the
model correctly generates informable and re-
questable slot values defined in the dialogue
schema, reflecting its performance in understand-
ing and generation tasks. The policy model’s se-
quence generation process involves continually sat-
isfying these lists. Inspired by these metrics, we hy-
pothesize that providing progressive task-oriented
rewards during token generation for understanding
and generation tasks can enhance TOD systems.
The model architecture and our reward function
are illustrated in Figure 2. In Section 4.1, we ex-
plain how these metrics are measured to support
our reward function design. In Section 4.2, we
show how our reward function provides continu-
ous, step-by-step feedback, guiding the E2E model
through understanding and generation tasks for a
more coherent and responsive dialogue system.

4.1 Task Completion Metrics

An informable list and requestable list are com-
monly predefined for dialog goals in datasets, such
as In-Car and MultiWOZ. The informable list con-
tains slots and their values representing the user’s

requirements. For example, a user’s preference for
a restaurant is characterized by a “cheap” value for
the “price range” slot. The Inform metric evaluates
whether the system accurately learns user demands
as defined in the informable list and then provides
a suitable entity in response. The requestable list
includes user-requested values, such as “postcode”.
The Success metric measures whether the gener-
ated DAs or SRs contain all attributes in the re-
questable list. Therefore, we believe that a slot-
value-specific reward derived from the informable
list can enhance the system’s understanding of user
needs, while the value-specific reward based on the
requestable list can improve responsiveness to user
requests. Accordingly, we introduce the design of
a progressive reward function combining the under-
standing reward for DST, as well as the generation
reward for DPL and RG.

4.2 Step-by-Step Goal-Oriented Reward

Understanding Reward. We design the under-
standing reward for DST by measuring the growing
proportion of correctly identified slot-value pairs
in the informable list during token (action) gener-
ation. This reward function directly reflects how
well the system understands the user’s needs, which
is closely related to the goals of DST. Formally, we
denote SVgt as the set of ground-truth slot values
in the current turn and ŜV as the set of predicted
ones during the token generation:
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Ru =
|SVgt ∩ ŜV | · ρu

|SVgt|
, (2)

where ρu = exp
(
−α · |SVgt\ŜV |

|SVgt|

)
represents a

penalty based on the discrepancy between the num-
ber of predicted slot-value pairs and ground truth
slot-value pairs, with α being a tunable parameter
that controls the sensitivity of this penalty. The
function provides a dense reward that progressively
reflects the accuracy of DST.

Generation Reward. We observe that the accu-
racy of both DPL and RG depends on how many
values in their generations are correctly included
in the requestable list. Therefore, we set the same
reward function for these two generation tasks. The
reward for DPL and RG is the increasing inclusion
of values in the user requestable list during each
token generation, which measures the system’s abil-
ity to fulfill user requests continuously. Formally,
Sgt is all ground-truth user request values in the
current turn, and Ŝ denotes the predicted values
during token generation:

Rg =
|Sgt ∩ Ŝ| · ρg

|Sgt|
, (3)

where the penalty term ρg = exp
(
−β · |Sgt\Ŝ|

|Sgt|

)

peralizes the difference between the number of
generated values and values in the ground-truth
requestable list, and β is a tunable parameter that
controls the sensitivity of this penalty. The function
provides a dense reward that progressively reflects
how well the generation completes.

TOD Reward. To offer a comprehensive reward
that evaluates both the understanding and genera-
tion performance, we define the TOD reward as a
weighted combination of the understanding reward
Ru and the generation reward Rg:

Rtod =
|SVgt ∩ ŜV | · ρu + |Sgt ∩ Ŝ| · ρg

|SVgt|+ |Sgt|
. (4)

The combined reward function encourages bal-
anced optimization of both the understanding
(DST) and the generation (DPL, RG), which en-
hances the global robustness of TOD systems. The
use of dense rewards derived from the informable
and requestable lists ensures continuous feedback
during token-level generation. Unlike sparse re-
wards that only provide feedback at the end of dia-
logues, our approach offers step-by-step rewards,

accelerating the learning process. The progressive
nature of the rewards, based on the discrepancies
ρu and ρg, helps make incremental improvements.

Reward Shaping. To prevent the policy network
π from straying too far from the initial model πo,
we also add a KL constraint to balance the reward.
Formally, the final RL reward function is:

Rtotal = Rt − βDKL(π ∥ πo), (5)

where β is dynamically adapted during training.

Optimization. We use natural language policy
optimization (NLPO) (Ramamurthy et al., 2023),
which is an extension of PPO. NLPO incorporates
action elimination through a parameterized-masked
approach. It learns to mask out less relevant tokens
using top-p sampling, which restricts the token
set to those with a cumulative probability above
a specified threshold. NLPO maintains a separate
masked policy that updates periodically, providing
an additional constraint to ensure the selection of
more task-relevant actions.

5 Experiments

5.1 Dataset
We conduct experiments on two popular
task-oriented dialog benchmarks: MultiWOZ
(Budzianowski et al., 2018; Eric et al., 2020), and
In-Car Assistant (In-Car) (Eric et al., 2017). The
MultiWOZ datasets are a challenging benchmark
for evaluating TOD systems with seven domains:
attraction, hotel, hospital, police, restaurant, taxi,
and train. The dataset is split into 8,438 dialogues
for training, and 1,000 each for validation and
testing. We use two versions, i.e. MultiWOZ2.0
and MultiWOZ2.1, to evaluate our model. The In-
Car dataset comprises 3,031 multi-turn dialogues
across three specific domains suitable for an in-car
assistant: calendar scheduling, weather informa-
tion retrieval, and point-of-interest navigation. The
dialogues in In-Car are more natural and diverse.
We split the dataset into training/validation/testing
sets containing 2425/302/304 dialogs respectively
as previous works do. Following the data pre-
processing procedure from (Zhang et al., 2020b),
delexicalized responses are utilized in our work to
help the model learn generalizable parameters.

5.2 Evaluation Metrics
In this work, we evaluate our models on MultiWOZ
and In-Car benchmarks as described in Section 5.1.
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Method MultiWOZ2.0 MultiWOZ2.1 In-Car

Inform Succ. BLEU Comb. Inform Succ. BLEU Comb. Match SuccF1 BLEU Comb.

E2E
SimpleTOD 84.4 70.1 15.0 92.3 85.0 70.5 15.2 93.0 - - - -
DoTS 86.6 74.1 15.1 95.5 86.7 74.2 15.9 96.3 - - - -
PPTOD 89.2 79.4 18.6 102.9 87.1 79.1 19.2 102.3 - - - -
UBAR† 85.1 71.0 16.2 94.3 86.2 70.3 16.5 94.7 - - - -
LABES - - - - 76.9 63.3 17.9 88.0 85.8 77.0 22.8 104.2
SPACE-3∗∗ 88.7 78.7 16.3 100.0 90.9 81.0 16.8 102.7 84.7 79.6 18.6 100.7
SPACE-3 95.3 88.0 19.3 111.0 95.6 86.1 19.9 110.8 85.3 83.2 22.9 107.1
GALAXY∗ 93.1 81.0 18.4 105.5 93.5 81.7 18.3 105.9 81.9 83.3 22.0 104.6
GALAXY 94.4 85.3 20.5 110.4 95.3 86.2 20.0 110.8 85.3 83.6 23.0 107.4
RL
MinTL 84.9 74.9 17.9 97.8 - - - - - - - -
GPT-Critic 90.1 76.6 17.8 101.1 - - - - - - - -
FanReward 93.1 83.9 18.0 106.5 - - - - - - - -
Oursbase 92.1 88.3 16.6 106.9 92.7 88.5 16.2 106.8 84.3 83.8 22.8 106.9
Ourslarge 96.1 92.4 17.2 111.5 96.9 91.1 16.9 110.9 86.2 86.1 23.0 109.2

Table 1: Performance comparison on MultiWOZ2.0, MultiWOZ2.1 and In-Car datasets. †: The results of UBAR are
obtained using the models provided by the authors. ∗: The results of GALAXY∗ are presented without pre-training.
∗∗: The results of SPACE-3∗∗ are results without pre-training, reimplemented using their public code.

For MultiWOZ, we report Inform and Success as
introduced in Section 4.1. Additionally, we report
BLEU (Papineni et al., 2002) that is used to mea-
sure the fluency of the generated response. Con-
sequently, we report (Comb) that is computed by
(Inform + Success) ×0.5 + BLEU as an overall
quality measure. For In-Car, we leverage Match to
measure if a system can track all correct states to
satisfy the user. SuccF1 improves on the Success
by considering both how completely (recall) and
accurately (precision) the system handles requests.

Both Inform and Match evaluate the system’s
understanding of user requirements, but Inform
further focuses on providing correct entities based
on the understanding, while Match ensures ac-
curate dialogue state tracking. Similarly, both
Success and SuccF1 assess the system’s ability to
fulfill user requests, but Success measures whether
all user requests are met, whereas SuccF1 balances
precision and recall to gauge response accuracy and
completeness. The design of our reward function
aligns with all these task completion metrics for
the dialogue datasets.

5.3 Baselines

We comprehensively evaluate our approach by com-
paring it with a wide array of methods on the Multi-
WOZ2.0 and MultiWOZ2.1 datasets. We select
several prominent E2E models as baselines, in-
cluding SimpleTOD (Hosseini-Asl et al., 2020),
DoTS (Jeon and Lee, 2021), PPTOD (Su et al.,
2022), UBAR (Yang et al., 2021), GALAXY (He

et al., 2022b), and SPACE-3 (He et al., 2022a).
Furthermore, we compare our approach with cur-
rent representative reinforcement learning (RL)
models, including MinTL (Lin et al., 2020), GPT-
Critic (Jang et al., 2022), and FanReward (Feng
et al., 2023). These approaches demonstrate the
potential of RL for TOD models and offer valu-
able comparative perspectives. We compare our
approach against several strong baselines on the
In-Car dataset, including LABES (Zhang et al.,
2020a), SPACE-3 (He et al., 2022a), and GALAXY
(He et al., 2022b). Additionally, we present results
for GALAXY and SPACE-3 without pre-training
across the three datasets to provide a comprehen-
sive evaluation. Two pre-trained models, the Flan-
T5-Base and Flan-T5-Large (Chung et al., 2024),
are utilized as the backbone of our approach (see
Appendix A).

5.4 Main Results

As shown in Table 1, our approach achieves new
state-of-the-art results across all datasets in the
combined score (Comb). These gains are primar-
ily due to the increased Inform and Success rates.
We achieve competitive BLEU scores on Multi-
WOZ, possibly because our approach focuses on
understanding and responsiveness over fluency.
However, our model performs best on the In-Car
dataset, demonstrating its ability to generate fluent
responses. Additionally, our model is compared
with two strong baselines, SPACE-3 and GALAXY,
both of which utilize multiple TOD datasets for
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Figure 3: Results of low-resource experiments. 5% (121 dialogues), 10% (242 dialogues), 20% (485 dialogues),
30% (727 dialogues), 40% (970 dialogues), and 50% (1212 dialogues) of training data is used to train each model.
Results are shown as mean values over five runs.

pre-training and are subsequently fine-tuned on
the MultiWOZ and In-Car datasets. Our approach,
without a pre-training step, demonstrates a signifi-
cantly greater improvement compared to their re-
sults without pre-training. For instance, on the
MultiWOZ2.0 dataset, our method achieves an in-
crease of +3 points in the Inform rate and +11.4
points in the Success rate. This indicates that our
approach, which offers step-by-step rewards for
RL, effectively helps boost TOD task completion.

5.5 DST Results

We evaluate our approach on the DST task, a multi-
turn slot-filling challenge where the model must
track slot-value pairs throughout the conversation.
We use joint goal accuracy (JGA) as the evalua-
tion metric (Heck et al., 2020), which measures
the percentage of turns in which the model cor-
rectly predicts all slot values. The experiments are
conducted on the MultiWOZ 2.0 dataset, and we
benchmark our method against a diverse set of re-
cent approaches. The results, presented in Table
Table 2, show that our method achieves the highest
JGA score, showing its superior effectiveness.

Method JGA

Neural Reading (Gao et al., 2019) 41.10
TRADE (Wu et al., 2019) 48.62
COMER (Ren et al., 2019) 48.79
DSTQA (Zhou and Small, 2019) 51.44
SOM-DST (Kim et al., 2020) 51.38
MinTL (Lin et al., 2020) 52.10
UBAR (Yang et al., 2021) 52.59
SOLOIST (Peng et al., 2021) 53.20
Oursbase 53.54
Ourslarge 53.92

Table 2: DST comparison results of various methods.

5.6 Ablation Study

We conduct an ablation study on the MultiWOZ2.0
dataset to evaluate the effectiveness of our progres-
sive goal-oriented reward mechanism. As shown
in Table 3, when the understanding reward Ru is
removed, leaving only the generation reward, the
combined score drops significantly to 105.2. This
substantial decrease highlights the crucial role of
immediate feedback during dialogue state track-
ing. When we remove the generation reward Rg,
the combined score decreases by 6.1 points. This
suggests that the generation reward is also impor-
tant for task completion. If Ru and Rg are all
removed, that is the result of only SFT, the perfor-
mance degrades to a lower value. Overall, the study
demonstrates that our progressive reward mecha-
nism greatly improves the system’s ability to per-
form understanding and generation tasks.

6 Analysis and Discussion

In this section, we first explore how well our model
performs in low-resource settings (Section 6.1). Be-
sides, we show that our approach can be integrated
into recent state-of-the-art LLMs for better perfor-
mance (Section 6.2). Lastly, we conduct human
evaluation on the generated outputs (Section 6.3).

6.1 Low-Resource Evaluation

Due to the challenge of creating extensive, well-
annotated dialogue datasets for real-world appli-
cations, we also explore the performance of our
approach with limited training samples. We train
models using the In-Car dataset and randomly sam-
ple 5%, 10%, 20%, 30%, 40%, and 50% of the
training data. Our approach is benchmarked against
two robust baselines, SPACE-3 and GALAXY.
Both models are initialized with their pre-trained
versions and subsequently fine-tuned using the sam-
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Model Inform Succ. BLEU Comb.

Ours 96.1 92.4 17.2 111.5
−Ru 91.2 87.0 16.1 105.2
−Rg 92.1 87.5 15.6 105.4
−Ru −Rg 86.0 81.8 17.2 101.1

Table 3: Ablation results on MultiWOZ2.0.

pled datasets from the In-Car dataset. Our model is
trained through SFT and RL stages both with the
sampled data. To ensure fairness, all models are
trained for 30 epochs. Figure 3 presents the experi-
mental results. As illustrated, our approach consis-
tently outperforms the baselines across all sample
sizes on the metrics of Match, SuccF1, and BLEU.
The performance advantage is especially prominent
when the training data is limited. This suggests
that our model demonstrates enhanced generaliz-
ability and is more apt for tackling new TOD tasks.
It is noted that results between Ours-large and
Ours-base are similar. This may be because, in a
low-data setting, the smaller model (Ours-base)
better utilizes the available data. In contrast, the
larger model (Ours-large) may not have been
fully trained with the limited data, leading to no
significant performance improvement.

6.2 Integration with LLMs
Recently, LLMs have led to remarkable advance-
ments in NLP, demonstrating impressive emergent
abilities. However, LLMs often underperform
compared to specialized models for TOD tasks
(Hudeček and Dušek, 2023; Li et al., 2023). We uti-
lize few-shot dialogue examples of the training set
of MultiWOZ2.0 to prompt LLMs. As shown in the
top half of Table 4, the powerful representatives of
LLMs, including Codex (code-davinci-002) (Chen
et al., 2021), ChatGPT (gpt-3.5-turbo) (Ouyang
et al., 2022), Claude (Claude 3 sonnet) (Anthropic,
2024), and GPT-4o1, do not perform as well as our
model. Additionally, fine-tuning LLMs for TOD
systems can also be resource-intensive and com-
putationally inefficient. There has been a surge of
research interest that combines LLMs with small
models for specific applications. We follow the
recent work DSP (Li et al., 2023), which utilizes a
small tunable model for dialogue policy learning
to generate dialogue acts. The dialogue acts are
used as hints to prompt LLMs to generate the final
response. To demonstrate the advantages of our
approach, we employ our generation reward func-

1https://openai.com/index/hello-gpt-4o/

Method MultiWOZ2.0

Inform Succ. BLEU Comb.

Codex† 76.7 41.5 7.7 66.8
ChatGPT† 71.8 44.1 10.5 68.4
Claude 78.3 41.2 2.9 62.7
GPT-4o 77.0 53.1 5.2 70.3
DSP w/ ChatGPT† 95.3 82.3 10.9 99.6
Ours w/ ChatGPT 95.1 91.2 9.8 102.9
Ourslarge 96.1 92.4 17.2 111.5

Table 4: Performance comparison on MultiWOZ2.0
based on different LLMs. †: The results are reported in
the work of DSP(Li et al., 2023).

tion to enhance the policy learning for the small
model. To be fair, we use the same data setup as the
DSP method -10% of the training data for SFT and
RL training. Our approach shows superior perfor-
mance on the MultiWOZ2.0 dataset. The Success
rate is 8.9% higher than the DSP results reported in
their work. This demonstrates that our method has
superior generation capabilities, leading to more
effective task completion.

SPACE-3 GALAXY Ours
(a) Appropriateness

3.0

3.2

3.4

3.6

3.8

4.0

Sc
or

e

SPACE-3 GALAXY Ours
(b) Fluency

3.0

3.2

3.4

3.6

3.8

4.0

Sc
or

e

Figure 4: The human evaluation results regarding ap-
propriateness and fluency. The numbers represent the
average and the standard deviation for each method.

6.3 Human Evaluation

The automatic evaluation metric like BLEU might
not be able to accurately evaluate the generation
quality (Freitag et al., 2021, 2022; Wu and Aji,
2023). To thoroughly evaluate our approach, we
conduct a human evaluation of the generated re-
sponses using our developed platform. We compare
our model with the top two baselines, SPACE-3
and GALAXY, from Table 1 on the In-Car dataset.
Following previous works (Zhang et al., 2020b;
Ramachandran et al., 2022; Jang et al., 2022), we
use two metrics: 1) Appropriateness: how well the
response fits the dialogue context, and 2) Fluency:
the clarity and coherence of the response. We ran-
domly select 50 dialogue turns from the test set,
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showing each turn and its history to 6 evaluators.
Evaluators score each response on a 5-point Likert
Scale (1 to 5), where 1 represents the lowest quality
and 5 represents the highest quality. Importantly,
the evaluators are unaware of the model identities to
ensure unbiased judgments. As shown in Figure 4,
our model outperforms the baselines in terms of
appropriateness and matches SPACE-3 in fluency.
This aligns with the results in Table 1 and further
validates that our approach can not only achieve
superior dialogue-task completion performance but
also ensures high-quality responses.

7 Conclusion

We introduce a new approach for incorporating RL
into TOD systems. Our approach focuses on im-
proving both understanding and generation tasks
by addressing challenges related to sparse and de-
layed rewards. We devise a progressive reward
mechanism that combines understanding and gener-
ation rewards at the token level, facilitating gradual
learning. Through extensive experiments on stan-
dard benchmarks using Flan-T5-Base and Flan-T5-
Large backbones, we demonstrate the effectiveness
of our approach and achieve state-of-the-art results
on three widely used datasets.

8 Limitations

While our proposed approach using step-by-step re-
wards has shown promising results, it may struggle
to capture all the nuances of TOD tasks fully. As a
result, biases could be unintentionally introduced,
causing the model to learn suboptimal strategies.
In the future, developing a comprehensive reward
model grounded in our reward function would be
beneficial. Such a model can learn intricate patterns
and enhance flexibility and adaptability.

Moreover, the reward design in our approach re-
lies on predefined informable and requestable lists
in the dialogue schema. While this is a common
practice in task-oriented dialogue systems, it is
limited when extending to open-domain dialogues.
Open-domain dialogues typically lack fixed slots
and values, which makes it challenging to apply
this reward mechanism effectively. In the future,
it would be valuable to have a more generalizable
approach that supports both task-oriented and open-
domain dialogues in conversational agents.
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A Implementation Details

SFT Details. In the supervised fine-tuning stage,
we use a train batch size of 8 and an evaluation
batch size of 16. We set the learning rate to
2 × 10−5 and train the model for a total of 30
epochs. For generation settings of inference, the
maximum length is set to 256 tokens for the Multi-
WOZ dataset and 168 tokens for the In-Car dataset
respectively. The shorter maximum length for the
In-Car dataset is due to the relatively shorter utter-
ances compared to those in the MultiWOZ datasets.
It is important to note that the In-Car dataset does
not include dialogue act annotations. Hence, we
predict only the belief state and system response,
formatting the input as It = [prefix : ut−1 : bst−1 :
srt−1 : ut].

RL Details. The policy network is trained for 20k
episodes, with 5 epochs per batch for enforcement
learning. The batch size is set to 8, and the learning
rate is 2× 10−6. We employ sampling with a top-
k value of 50 during training. Following (Ziegler
et al., 2019), the KL coefficient β in Equation 5 is
dynamically adapt during training:

et = clip
(
DKL(π∥πo)− KLt

KLt
,−0.2, 0.2

)
, (6)

βt+1 = βt(1 +Kβet), (7)

where KLt is the KL divergence between initial
model πo and current policy π. β are initially set
to 0.01. Kβ is the update rate which we set to 0.2
in our experiments.

Model and Implementation Details. We use
Flan-T5 base (∼250M parameters) and Flan-T5
large (∼780M parameters) models as the backbone,
which are the extensions of the T5 model designed
to enhance performance on a wide range of natural
language processing tasks. Our experiments are all
run on a server equipped with 8 NVIDIA A800.

B Reward Curve

Figure 5 shows how rewards increase incrementally
during token-by-token generation when completing
slot-values or values. The plateau phases represent
the process of generating a complete slot value or
value. We present the reward patterns for three
tasks: DSP, DPL, and RG. The curves demonstrate
that our approach provides gradually increasing
dense rewards for end-to-end models, effectively
supporting understanding and generation tasks.
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Figure 5: Reward accumulation for different tasks: DST+DPL, DST+RG, and DST+DPL+RG during token
generation. Our reward function progressively provides important feedback for understanding and generation tasks.

C Case Study

To evaluate the effectiveness of our dialogue sys-
tem, we develop a user interface using the Stream-
lit2 as shown in Figure 6. The interface allows
users to select a dialogue goal and interact with
the system according to that goal. Users assess the
system’s responses utilizing the evaluation method-
ology detailed in Section 6.3.

We provide an example comparison from our
model and GALAXY in Figure 7. It illustrates
a scenario in which our model generates more
accurate and comprehensive results compared to
GALAXY.

D Error Examples

We present a representative error example in our
predicted results in Figure 8. We observe that the
response of our model includes all the necessary
value information for the task, but it lacks conversa-
tional fluency. This indicates that our designed re-
ward function prioritizes task completion efficiency
over dialogue naturalness. Future work could ex-
plore integrating metrics like BLEU into the reward
function to enhance both task completion and con-
versational fluency.

2https://streamlit.io/
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Figure 6: Our user interface allows users to evaluate the dialogue system. They can select dialogue goals, interact
with the system, and provide feedback on the responses.
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i need a resturant that serves british food .

there are [value_choice] [value_food] restaurant -s . what price
range -s do you want ?

i am open to any price range , but am looking for somewhere
located in the centre area of town .

i would recommend [value_name] , they are [value_price] , would
you like more info on them ?

yes can i please get more info .

may i also get the         for the restaurant ?

absolutely , there address is 
 . is there anything else i may help you with today ?

DA OURS: [restaurant] [inform]                 phone[general]
[reqmore]
DA GALAXY: [restaurant] [inform] phone

BS OURS: [restaurant] food british area centre name cotto
BS GALAXY: [restaurant] food british area centre name cotto

SR OURS: sure, their address is [value_address], their postcode is
[value_postcode], and their phone number is [value_phone]. is there
anything else i can help you with?

SR GALAXY: their phone number is [value_phone]

pmul0187

address

[value_address] [value_postcode]

address postcode

Figure 7: An example showing our model’s effectiveness in predicting comprehensive restaurant information. Green,
purple, and red text represent predicted results of our model and GALAXY for BS, DA, and SR respectively.
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mul0317

i am looking for an expensive restaurant in the south part of town .

[value_name] is [value_price] and in the [value_area] .

actually , i am looking for an expensive restaurant in the south part of town
. [value_name] is [value_price] and in the [value_area] .

[value_name] is an [value_food] food restaurant in the [value_price] price rang
and the [value_area] .

what is its postcode and address ?

DA PRED: [restaurant] [inform] postcode address
DA GOLD:                  [restaurant] [inform] address postcode 

BS PRED: [restaurant] pricerange expensive area south food italian
BS GOLD: [restaurant] pricerange expensive area south food italian

SR PRED: the postcode is [value_postcode] and the address is [value_address].
SR GOLD: sure . their address is [value_address] and their postcode is [value_postcode]
. 

[general] [greet] [general] [reqmore]

would you like their telephone number as well ?

Figure 8: Error Example. Black text is the input context. Green, purple, and red text represent predicted (PRED)
and ground truth (GOLD) for BS, DA, and SR. Red highlights indicate incorrect or missing key tokens.
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