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Abstract

Chain-of-Thought (CoT) has become a vital
technique for enhancing the performance of
Large Language Models (LLMs), attracting
increasing attention from researchers. One
stream of approaches focuses on the iterative
enhancement of LLMs by continuously veri-
fying and refining their reasoning outputs for
desired quality. Despite its impressive results,
this paradigm faces two critical issues: (1) Sin-
gle verification method: The current paradigm
relies solely on a single verification method. (2)
Wrong Information Ignorance: The traditional
paradigm directly ignores wrong information
during reasoning and refines the logic paths
from scratch each time. To address these chal-
lenges, we propose Wrong-of-Thought (WoT),
which includes two core modules: (1) Multi-
Perspective Verification: A multi-perspective
verification method for accurately refining the
reasoning process and result, and (2) Wrong In-
formation Utilization: Utilizing wrong informa-
tion to alert LLMs and reduce the probability
of LLMs making same mistakes. Experiments
on 8 popular datasets and 5 LLMs demonstrate
that WoT surpasses all previous baselines. In
addition, WoT exhibits powerful capabilities in
difficult computation tasks.

1 Introduction

Failure is the mother of success.

– Chinese Idiom

In recent years, large language models (LLMs)
have made significant advancements in a series of
natural language processing tasks (Achiam et al.,
2023; Touvron et al., 2023). Additionally, with the
emergence of Chain-of-Thought (CoT) (Wei et al.,
2022), the performance of LLMs has been further
unlocked by guiding them through step-by-step
reasoning (Liu et al., 2023a; Qin et al., 2023).
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Figure 1: Previous multi-thoughts integration meth-
ods (a) vs. Wrong-of-Thought (b). Previous meth-
ods only used a Single Verification and did not utilize
the wrong information. In contrast, WoT offers Multi-
Perspective Verification and utilizes Wrong Information.

A common category of CoT research focuses
on iteratively enhancing LLMs by continuously re-
verifying and refining corresponding reasoning out-
puts to achieve better quality. Madaan et al. (2023)
demonstrate this approach by prompting the model
to self-verify the results and provide feedback on
previously generated drafts, producing better out-
puts. Similarly, Chen et al. (2023) improve code
debugging by leveraging external program execu-
tion results and model explanation code. When
examining methodologies to guide the rethinking
of models, Zheng et al. (2024) emphasize the reuse
of previously generated answers. Meanwhile, Qi
et al. (2023) introduce a problem-solving frame-
work inspired by human divide-and-conquer strate-
gies, which incorporates self-questioning and re-
cursive thinking processes. Building upon this, Liu
et al. (2023b) propose XoT, shown as Figure 1 (a),
which integrates multiple reasoning paths with mul-
tiple logical modes. Specifically, they generate the
rationale in program format and apply a single ver-
ification method to check the correctness of the
reasoning. If errors are detected, the LLMs are
instructed to switch to another reasoning thought
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and start the reasoning process from scratch. De-
spite achieving impressive results, they still face
two significant challenges:

(1) Single verification method: They rely solely
on the single verification method like basic
syntax assertions, resulting in errors that fail
to fully evaluate and validate the reasoning of
models. This approach leads to suboptimal
verification accuracy, significantly impeding
overall reasoning performance.

(2) Wrong Information Ignorance: Once the error
is detected, they typically disregard wrong in-
formation and re-generate the reasoning from
scratch. However, it also loses a large amount
of feedback signals brought by error informa-
tion, which is often considered very important
in model understanding (Zhang et al., 2024a;
Tong et al., 2024; Chen et al., 2024b).

Motivated by this, we introduce the Wrong-of-
Thought (WoT) framework, as illustrated in Fig-
ure 1 (b). To address the first challenge, we intro-
duce Multi-Perspective Verification, which incorpo-
rates two additional explicit verification methods,
mirroring human problem-solving processes. First,
it ensures the variables in equations or code match
the information provided in the question. Second,
it resolves again the question to check for consis-
tency in the results. We instruct LLMs to integrate
these two perspectives to enhance solution verifica-
tion. To address the second challenge, we introduce
Wrong Information Utilization, which utilizes pre-
vious wrong reasoning information to guide LLMs
in avoiding similar mistakes. By referencing past
mistakes, LLMs can enhance their reasoning per-
formance and minimize repetitive errors.

Experiments are conducted on 8 datasets and 5
LLMs. The results indicate that the WoT performs
exceptionally well across all benchmark tests, sur-
passing all existing baselines. Furthermore, in-
depth analytical experiments demonstrate that WoT
excels at difficult computational tasks.

The key contributions of this work are:

(1) We first point out two main drawbacks in iter-
ative reasoning, which lie in the monotonous
verification perspective and the ignorance of
wrong information feedback for ultimate lim-
ited logical improvement.

(2) We introduce Wrong-of-Thought (WoT) to
solve these drawbacks, which mainly con-
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Figure 2: XoT Framework. First, select a reasoning
method, either PoT or EoT and then apply assertion ver-
ification to make a judgment. If the reasoning is found to
be incorrect, switch to the alternative method and restart
the reasoning. Verify again, and if the verification is
correct, return the answer. If the reasoning reaches the
third step, utilize CoT reasoning as the answer.

sists of two modules: Multi-Perspective Ver-
ification and Wrong Information Utilization.
These modules enable accurate verification
and effective utilization of wrong information.

(3) Our experiments on 8 datasets and 5 LLMs
have shown that WoT achieves superior perfor-
mance. In addition, WoT demonstrates strong
problem-solving abilities in questions involv-
ing difficult mathematical reasoning.

All code will be open-sourced and pub-
licly available at https://github.com/
BRZ911/Wrong-of-Thought.

2 Preliminary

This section introduces the framework that main-
stream integrated multiple reasoning thoughts, it-
eratively enhancing LLMs by continuously re-
verifying and refining corresponding reasoning.
XoT (Liu et al., 2023b), as shown in Figure 2, is
an integrated reasoning framework that combines
three reasoning modes: Program-of-Thought (PoT)
(Chen et al., 2022), Equation-of-Thought (EoT)
(Liu et al., 2023b), and Chain-of-Thought (CoT)
(Wei et al., 2022). PoT enables LLMs to gener-
ate Python code and then uses the external Python
executor to run the results. EoT involves LLMs
generating mathematical equations, which are then
solved using an external calculator. CoT is a tech-
nique that guides LLMs to reason step-by-step.
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Figure 3: Overview of the Wrong-of-Thought (WoT) framework, incorporating three core modules: Planning and
Solving (§3.1), Multi-Perspective Verification (§3.2), and Wrong Information Utilization (§3.3).

In the XoT framework, the First step involves
initiating the reasoning plan and selecting a rea-
soning method from either EoT or PoT to perform
the reasoning. Once the reasoning process is com-
pleted, the result is computed through an external
executor. The answer is then verified using an
assertion verification. If the reasoning result is de-
termined to be correct, the answer is returned. If
the initial reasoning is deemed incorrect and aban-
doned, the Second step is to switch to an alternative
reasoning mode and restart the process. After ob-
taining and verifying the new reasoning answer, if
it is still incorrect, the Third step is to directly use
CoT reasoning as the final answer.

3 Wrong-of-Thought
This section introduces Wrong-of-Thought (WoT).
The content is divided into three parts: Planning
and Solving (§3.1), Multi-Perspective Verification
(§3.2), and Wrong Information Utilization (§3.3).

3.1 Planning and Solving

Following XoT (Liu et al., 2023b), as shown in Fig-
ure 3 (§3.1), initially, a planner selects a reasoning
method from either EoT or PoT based on the in-
putted question. After the Solver module generates
the reasoning process, an external executor com-
putes the result, yielding a preliminary solution.
The next step is to validate the current solution.

3.2 Multi-Perspective Verification

To address the challenge of verification methods
being singular and significantly hindering the over-
all performance, we propose a Multi-Perspective

Verification (MPV), as shown in Figure 3 (§3.2).
Specifically, Multi-Perspective Verification is appli-
cable to the reasoning verification of EoT and PoT,
which includes the following three aspects:

(1) Assertion Verification: We adopt the verifica-
tion method from the XoT (Liu et al., 2023b).
We use LLMs to identify the intermediate
variables in the solution and format them as
Assertion Statements . These assertion state-

ments are then executed using external tools
to obtain the verification results.

(2) Process Verification: For process verifica-
tion, we provide the LLMs only with the
Current Process , excluding the computed re-

sults. We ask the LLMs to recheck each step
of the current reasoning process to ensure that
the variables in the solution equations or code
correspond one-to-one with the question in-
formation, explicitly demonstrating the verifi-
cation reasoning process.

(3) Result Verification: In the results verification
phase, we provide the LLMs with both the
current reasoning process and the computed
results. We instruct the LLMs to recheck the
Current Result by re-solving the problem. If

the result passes re-verification, the LLMs out-
put “right”; otherwise, they output “error”.
This explicitly demonstrates the verification
reasoning results.

To enhance the robustness of our verification,
we employ a voting mechanism to select the judg-
ments that exhibit higher consistency across differ-
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ent verification perspectives Vi. These consistent
judgments are then used as the final MVP results V̂
for the output R of the reasoning method Mi. The
verification can be formalized as follows:

V̂ = argmax
Vt∈V

N∑

t=1

∑

R∈Mi

1(Vt = R), (1)

where Vt represents verification methods, V repre-
sents the set of the three verification methods, R
represents the output using the reasoning method
Mi, and 1(Vt = R) returns 1 if the verification
method Vt matches output R, and 0 otherwise.

3.3 Wrong Information Utilization
To address the issue of previous methods ignoring
wrong information, we propose Wrong Informa-
tion Utilization (WIU), as shown in Figure 3 (§3.3).
Specifically, after the previous solution is validated
and determined to be wrong, we incorporate the
prior Wrong Information within the context of the
current solution method. This guides the LLMs to
avoid repeating the same mistakes. Formally, the
reasoning for the question Q after utilizing wrong
reasoning information can be expressed by the fol-
lowing formula:

R̂ = argmax
R∈Mi

P (R|Q, I,WI), (2)

where R̂ represents the final reasoning result.
P (R|Q, I,WI) denotes the probability of gener-
ating the reasoning path R under the conditions
of question Q, prompt I , and Wrong Information
WI. R is a reasoning of the reasoning method Mi.

After obtaining the reasoning results, we use the
Multi-Perspective Verification to make a judgment.
If the judgment is correct, the answer is returned
directly. If the judgment is wrong, following XoT,
we proceed to the third step, where the errors from
this step and the previous step will be used as wrong
examples for CoT reasoning.

4 Experiments

4.1 Experimental Setting
We conduct experiments on eight widely used com-
prehensive datasets, including GSM8K (Cobbe
et al., 2021), GSM-Hard (Gao et al., 2023), Al-
gebra (He-Yueya et al., 2023), MultiArith (Roy and
Roth, 2015), SingleEQ (Koncel-Kedziorski et al.,
2015), SingleOP (Roy et al., 2015), AddSub (Hos-
seini et al., 2014), and SVAMP (Patel et al., 2021).

The effectiveness of the WoT framework was vali-
dated on these challenging benchmarks.

Additionally, we select the single reasoning
methods CoT (Wei et al., 2022), PoT (Chen et al.,
2022), and EoT (Liu et al., 2023b), as well as the
ensemble method XoT (Liu et al., 2023b), as base-
lines. The verification process was conducted on
a comprehensive set of five LLMs. Among these,
three are open-source LLMs: Mistral-7B-Instruct
(Jiang et al., 2023), Qwen-7B-Chat (Bai et al.,
2023), and Qwen-14B-Chat (Bai et al., 2023). The
other two LLMs are closed-source: Gemini-1.0-Pro
(Team et al., 2023) and GPT-3.5-Turbo (OpenAI,
2022). These models were selected to provide a
diverse representation of current advanced LLMs,
both open and closed-source, ensuring a robust and
comprehensive verification.

Following XoT (Liu et al., 2023b), all experi-
ments used 8-shot correct examples as prompts.
The experimental results were evaluated using Ac-
curacy as the evaluation metric. The top-p and tem-
perature parameters for all experiments were set
to LLMs default parameters in the official model
configuration, which are within the range of [0,1].

4.2 Main Results

The main experimental results are shown in Table 1.
Based on the results, we can observe:

(1) WoT reaches superior performance. WoT
surpasses all baselines, achieving superior perfor-
mance on eight datasets, with an average improve-
ment of 2.8% compared to XoT across five LLMs.
This extensive experimental result demonstrates the
effectiveness of the integration of Multi-Perspective
Verification and Wrong Information Utilization in
WoT, enhancing overall performance.

(2) WoT can also work on LLMs with smaller
parameters. WoT achieves an average improve-
ment of 4.2% and 2.3% on the smaller parame-
ter open-source models, Mistral-7B-Instruct and
Qwen1.5-7B-Chat, respectively, demonstrating ro-
bust performance. The ability of WoT to maintain
high performance on models with fewer parame-
ters highlights its potential for broad applicability
in various practical scenarios, including those with
limited computational resources.

(3) WoT demonstrates a powerful ability to solve
difficult reasoning questions. WoT achieves an
average performance on GSM-Hard that was 5.7%
higher than the baselines on five LLMs, represent-
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Method GSM-hard GSM8K Algebra MultiArith SingleEQ SingleOP AddSub SVAMP Average

Mistral-7B-Instruct (Jiang et al., 2023)

CoT (Wei et al., 2022) 16.6 47.5 36.0 68.8 78.3 81.1 73.9 60.8 57.9
PoT (Chen et al., 2022) 30.8 45.0 28.4 72.8 75.8 64.4 74.7 56.5 56.0
EoT (Liu et al., 2023b) 16.1 22.3 27.0 25.0 31.1 33.6 29.1 23.5 26.0
XoT (Liu et al., 2023b) 26.2 52.8 46.8 77.8 86.6 85.4 80.0 67.9 65.5
Wrong-of-Thought 36.7 54.6 50.5 80.8 88.0 87.9 88.9 70.0 69.7

Qwen-7B-Chat (Bai et al., 2023)

CoT (Wei et al., 2022) 18.6 52.8 43.7 83.2 87.4 83.1 80.5 70.7 65.0
PoT (Chen et al., 2022) 39.0 56.2 38.7 84.8 90.6 89.7 82.5 71.3 69.1
EoT (Liu et al., 2023b) 35.3 49.2 34.2 61.5 76.0 63.5 65.1 48.0 54.1
XoT (Liu et al., 2023b) 38.3 61.8 54.5 88.7 92.1 92.3 85.1 76.4 73.6
Wrong-of-Thought 42.0 63.7 57.2 91.3 94.1 93.6 86.3 79.3 75.9

Qwen-14B-Chat (Bai et al., 2023)

CoT (Wei et al., 2022) 31.0 63.4 56.8 89.8 88.0 85.4 85.3 80.8 72.6
PoT (Chen et al., 2022) 57.1 69.5 62.6 95.7 95.7 96.1 86.8 81.6 80.6
EoT (Liu et al., 2023b) 57.6 68.5 62.6 85.7 90.6 82.2 83.8 79.2 76.3
XoT (Liu et al., 2023b) 55.3 76.3 80.2 92.0 94.1 94.5 86.1 84.8 82.9
Wrong-of-Thought 60.6 77.5 81.5 98.3 96.7 95.4 88.1 86.3 85.5

Gemini-1.0-Pro (Team et al., 2023)

CoT (Wei et al., 2022) 45.6 81.9 81.5 94.8 96.1 94.7 92.9 83.0 83.8
PoT (Chen et al., 2022) 63.8 77.1 58.1 96.3 96.3 96.3 91.6 87.1 83.3
EoT (Liu et al., 2023b) 52.2 61.1 63.5 80.0 79.7 75.3 78.0 71.3 70.1
XoT (Liu et al., 2023b) 64.6 82.1 83.3 96.5 96.1 96.3 91.4 86.9 87.2
Wrong-of-Thought 69.1 84.4 85.6 97.3 97.4 97.3 93.4 89.2 89.2

GPT-3.5-Turbo (OpenAI, 2022)

CoT (Wei et al., 2022) 42.2 80.0 72.1 97.3 96.5 94.7 89.4 80.2 81.5
PoT (Chen et al., 2022) 70.3 77.4 81.5 97.8 98.6 94.3 88.9 79.2 86.0
EoT (Liu et al., 2023b) 53.4 64.0 70.3 84.8 61.4 68.5 70.1 58.9 66.4
XoT (Liu et al., 2023b) 71.3 83.6 84.7 97.8 97.6 94.5 89.4 83.0 87.7
Wrong-of-Thought 76.2 85.2 89.6 99.0 99.0 96.1 93.2 86.7 90.6

Table 1: Experimental results of Acc. (%) on eight datasets and five LLMs. Bold represents the best performance.

ing a significant improvement. The GSM-Hard
dataset, a mathematical reasoning dataset where
small numerical values are replaced with large ones
(average result: 7.3e9), demonstrates the strong
performance of WoT in difficult reasoning tasks.

4.3 WoT Analysis
To gain a more profound understanding of WoT, we
propose the following research questions based on
experiments on GPT-3.5-Turbo (OpenAI, 2022):

(1) Can Wrong Information Utilization lead to
performance improvement?

(2) Can Multi-Perspective Verification lead to
more accurate judgment results?

(3) Can WoT reduce the number of required rea-
soning steps?

(4) Why does WoT have strong capabilities in dif-
ficult mathematical reasoning?

(5) What is the intuition behind WoT?

4.3.1 Answer 1: Wrong Information
Utilization can boost performance

To intuitively verify the performance improvements
brought by using wrong information, we select PoT,
EoT, and CoT that utilized wrong information from
the GSM8K dataset for evaluation. We compare
their performance with and without wrong infor-
mation. Additionally, we test the WoT performance
without the Wrong Information Utilization. Due
to the limitation within the WoT, EoT and PoT can
only collect incorrect information once, resulting
in a single wrong example. On the other hand, CoT
can collect incorrect information up to two times,
resulting in two wrong examples.

The results are shown in the Figure 5. After
incorporating wrong information from the previ-
ous step, EoT and PoT improved by 8% and 8.9%,
respectively. We can observe that CoT, which uti-
lized additional wrong information from the previ-
ous two steps, improved by 13.1%. Furthermore,
as shown in Table 2, the WoT framework without
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Methods GSM-hard GSM8K Algebra MultiArith SingleEQ SingleOP AddSub SVAMP AVG

Wrong-of-Though 76.2 85.2 89.6 99.0 99.0 96.1 93.2 86.7 90.6

w/o WIU 73.9 84.0 87.8 98.8 98.4 95.9 92.6 85.5 89.6 (-1.0)
w/o MPV 73.1 82.4 87.4 98.3 98.6 94.5 90.4 85.6 88.8 (-1.8)
w/o WIU & MPV 71.3 83.6 84.7 97.8 97.6 94.5 89.4 83.0 87.7 (-2.9)

Table 2: Ablation experiment on GPT-3.5-Turbo. “w/o WIU” refers to removing Wrong Information Utilization
(WIU). “w/o MPV” refers to removing Multi-Perspective Verification (MPV). “w/o WIU & MPV” refers to removing
both Wrong Information Utilization and Multi-Perspective Verification.
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Figure 5: Comparison of performance without utilizing
wrong reasoning information and with integrated wrong
reasoning information.

Wrong Information Utilization exhibits a perfor-
mance decrease across all datasets, with an average
reduction of 1.0%. This demonstrates that incorpo-
rating wrong information can boost the reasoning
performance of the LLMs, and more significant
improvements can be achieved by utilizing more
additional wrong reasoning information.

4.3.2 Answer 2: Multi-Perspective Verification
can lead to more accurate judgments

To demonstrate that Multi-Perspective Verification
can accurately judge the results generated by EoT
and PoT, we directly evaluated the performance
of the three perspectives and the final voting re-

sults of the three perspectives. For accurate assess-
ment, we use accuracy (Acc.) and F1 score (F1)
as evaluation metrics. Additionally, we evaluate
the performance of the WoT framework without
Multi-Perspective Verification to demonstrate the
effectiveness of Multi-Perspective Verification.

The results are shown in Figure 4. We can di-
rectly observe that our proposed Process Verifica-
tion and Result Verification outperform the Asser-
tion Verification used in XoT with respect to accu-
racy and F1 score. Furthermore, the final Voting
Verification further improves the accuracy. For EoT,
Acc and F1 improved by 6% and 5.7%, respectively,
while for PoT, they improved by 5% and 3.8%, re-
spectively. Additionally, as shown in Table 2, the
performance of WoT decreased by an average of
1.8% after the removal of Multi-Perspective Ver-
ification. This demonstrates the effectiveness of
Multi-Perspective Verification, bringing significant
benefits to overall performance improvement.

4.3.3 Answer 3: WoT can effectively minimize
the reasoning steps needed

To compare the reasoning steps required by XoT
and WoT in solving mathematical questions, we
conduct experiments and record the average rea-
soning steps needed. As shown in Figure 6, the
results indicate that WoT significantly reduces the
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reasoning steps in each dataset, with an average re-
duction of 8% steps. This indirectly demonstrates
the effectiveness of Multi-Perspective Verification,
and Wrong Information Utilization in WoT. Ac-
curate verification and efficient reasoning can ef-
fectively reduce the number of required reasoning
steps, thereby enhancing reasoning efficiency.

4.3.4 Answer 4: Tips for solving difficult
mathematical questions with WoT

To delve deeper into the reasons behind the signifi-
cant performance improvement of WoT in solving
reasoning challenges, we conduct a detailed anal-
ysis in this section. In the GSM-hard dataset, we
extract the proportions of the methods ultimately
used for reasoning, as shown in Figure 7. Our
analysis reveals notable changes in the reasoning
method proportions between XoT and WoT: the pro-
portion of CoT decreased from 21% → 6%, while
the proportion of PoT increased from 48% → 63%.

This change reflects the advantage of WoT in
reasoning strategies. The numerical values in the
GSM-hard dataset are usually large, often involv-
ing more than 10 digits. Because CoT reasoning
has lower accuracy when handling large number
value calculations, with an accuracy rate of only
42.2%. Since XoT relies more on CoT for rea-
soning, it results in lower accuracy. In contrast,
WoT introduces a multiple perspectives verification
mechanism, enabling more accurate judgment of
reasoning results. Consequently, WoT more fre-
quently adopts PoT for reasoning, thereby avoiding
errors associated with CoT, and achieving signifi-
cant overall improvement.

48%

31%

21%

63%

31%

6%

XoT WoT

Acc.Method

42.2CoT

70.3PoT

53.4EoT

71.3XoT

76.2WoT
Results on GSM-hard

Figure 7: The proportion of reasoning methods ulti-
mately used to solve questions by XoT and WoT on the
GSM-hard dataset.

4.3.5 Answer 5: Qualitative analysis
To better comprehend WoT, we introduce a real-
world example for qualitative analysis. As illus-
trated in Figure 8 (a), upon receiving a question,
XoT selects EoT for reasoning. However, due to
the limited reasoning capability of EoT, an incor-
rect result of “8” was generated. During Assertion
Verification, this incorrect result was mistakenly
identified as correct. As XoT relied solely on As-
sertion Verification, it erroneously output “8” as
the final result. This example clearly illustrates the
limitations of the single verification method and its
adverse impact on reasoning accuracy.

In contrast, as shown in Figure 8 (b), WoT, when
presented with the same question, initially also ar-
rives at the incorrect answer “8”. However, both
Process Verification and Result Verification iden-
tified “8” as incorrect. Consequently, the system
switches to PoT for the next reasoning step. In
PoT reasoning, after being warned with a wrong
example, PoT generates the correct reasoning and
arrives at the correct result, “2”. This result then
passed verification from all three perspectives, ul-
timately confirming the correct answer, “2”. This
case further demonstrates the effectiveness of WoT,
as combining three verification perspectives and
utilizing wrong reasoning information significantly
enhances reasoning capability.

5 Related Work

The rapid advancement of LLMs in recent years has
introduced new opportunities in natural language
processing (OpenAI, 2022; Team et al., 2023; Qin
et al., 2024a,b). Particularly, the introduction of
Chain-of-Thought (CoT) (Wei et al., 2022) opens
a novel direction in this domain, attracting many
researchers (Zhang et al., 2022; Fei et al., 2023,
2024; Zhang et al., 2024b; Xu et al., 2024a; Chen
et al., 2024a). Specifically, Wei et al. (2022) pro-
pose using manually constructed CoT demonstra-
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(a) XoT (b) Wrong-of-Thought (WoT)
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fred_cards = 5 \n lisa_cards = 3…

Answer: 2

Assertion Assertion ResultProcess Assertion ResultProcess

Wrong Information

Figure 8: The case study. Figure (a) shows XoT reasoning, where it initially outputs an incorrect answer, “8”.
Assertion Verification mistakenly validated this as correct, resulting in the final wrong output of “8”. Figure (b)
shows WoT reasoning. EoT first outputs an incorrect answer, which was identified as wrong by Process and Result
Verification, switching to PoT. Using the wrong reasoning of EoT, PoT arrived at the correct answer, “2”. All three
verification methods then confirmed this result, leading to the correct output of “2”.

tions to enhance LLMs performance. Addition-
ally, Chen et al. (2022) introduce the Program-
of-Thoughts (PoT), enabling LLMs to generate
Python programs to solve mathematical problems.
Liu et al. (2023b) propose Equation-of-Thoughts
(EoT), allowing LLMs to generate mathematical
equations and then use external calculators to com-
pute the results, offering a new perspective on
problem-solving with LLMs. Chen et al. (2024b)
propose a framework that iteratively explores and
self-evaluates trees of thoughts, allowing LLMs to
learn from trial and error and improve the quality
of final answers. Xu et al. (2024b) propose tran-
sitioning LLMs from passive to active learning,
thus enhancing their problem-solving capabilities.
Zhou et al. (2024) present a method for LLMs to
improve self-criticism and self-discovery, thereby
forming explicit structures to enhance reasoning
performance. Chen et al. (2023) propose using er-
ror code to implement code self-debug and improve
the code generation capability of LLMs.

In the realm of nonlinear problem solving, Yao
et al. (2023) introduce the Tree-of-Thoughts (ToT)
framework, enabling LLMs to generate multiple
reasoning paths to tackle mathematical reasoning
tasks. Sel et al. (2023) propose the Algorithm-of-
Thoughts (AoT), which not only generates mul-
tiple paths but also selects the optimal nodes, al-
lowing for the repeated utilization of reasoning
pathways. Besta et al. (2024) introduce Graph-
of-Thoughts (GoT), a framework that models the

information generated by LLMs as arbitrary graphs,
enabling the synergistic integration of all reasoning
processes. Ning et al. (2024) propose Skeleton-of-
Thought (SoT), which first generates the skeleton
of the answer and then utilizes LLMs for batched
resolution, enhancing inference efficiency. Liu et al.
(2023b) propose XoT, which integrates multiple
reasoning thoughts and utilizes single assertion
verification to decide whether to switch reasoning
methods, achieving impressive results.

Compared to previous research, WoT employs
multiple perspectives of verification while incorpo-
rating wrong information utilization. This greatly
and effectively enhances overall reasoning perfor-
mance. To our knowledge, this work is the first
to incorporate Multi-Perspective Verification and
Wrong Information Utilization within the continu-
ously verifying and iterative framework.

6 Conclusion

In this work, we propose WoT, a framework that op-
timizes outputs by utilizing wrong information and
multi-perspective verification. WoT comprises two
core modules: Multi-Perspective Verification and
Wrong Information Utilization. WoT achieves more
accurate reasoning thought switching and utilizes
wrong reasoning information. Extensive evalua-
tions on eight datasets and five models demonstrate
that WoT achieves superior performance. Further-
more, WoT exhibits powerful capabilities in diffi-
cult computation tasks.
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Limitations

This work proposes a WoT framework to enhance
verifying iteratively generated reasoning answers
by Multi-Perspective Verification and Wrong Infor-
mation Utilization. However, in our work, since
“Assertion Verification” requires reliance on exter-
nal rule executors, how to verify natural language-
based CoT through assertions remains a question
worthy of future research. Secondly, our verifica-
tion method primarily validates the logical correct-
ness of the model. Verifying the clarity and quality
of the logical expression might further enhance
the effectiveness of model reasoning. Finally, WoT
may spend more tokens due to the incorporation of
three verification perspectives and wrong reasoning
information. We hope future work develops more
efficient methods to address this challenge.
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