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Abstract

The effectiveness of Large Language Mod-
els (LLMs) relies on their capacity to under-
stand instructions and generate human-like re-
sponses. However, aligning LLMs with com-
plex human preferences remains a significant
challenge due to the potential misinterpreta-
tion of user prompts. Current methods for
aligning LLM behaviors fall into two cate-
gories: output optimization (such as RLHF,
RLAIF, and DPO) and input optimization (like
OPRO and BPO). While both approaches aim
to guide LLMs towards generating responses
that align with desired objectives, the labor-
intensive and intentions-inconsistent data an-
notation, as well as the strict and tedious train-
ing supervision, make them struggle to yield
optimal results across all models. To address
these shortcomings, we introduce a novel self-
renewal approach called Prompt Optimization
with Implicit Reasoning (POIR). It consists of
two key components: 1) a model-specific and
self-recirculating data collection method that
leverages self-evaluation to enhance prompts
in accordance with the model’s intrinsic log-
its, and 2) a prompt rewrite schema that in-
jects implicit reasoning for direct preference
learning. Through self-renewal optimization,
POIR refines LLM outputs to better align with
human preferences across various LLMs and
tasks, without relying on supervised fine-tuning.
Extensive experiments on a range of LLMs
and tasks demonstrate POIR’s superior perfor-
mance. We believe this advancement offers a
novel paradigm for developing LLMs that are
more attuned to user intentions.

1 Introduction

Recent advancements in Natural Language Pro-
cessing (NLP) have been primarily driven by
the development of Large Language Models
(LLMs) (Chowdhery et al., 2023; Zeng et al., 2022;
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†Corresponding Author.

Brown et al., 2020; Touvron et al., 2023; Zhang
et al., 2022). Research has shown that LLMs ex-
hibit a remarkable ability to understand and fol-
low instructions (Zhao et al., 2023), leading to
the emergence of influential applications like Chat-
GPT (Achiam et al., 2023). However, aligning
LLMs with human preferences remains a com-
plex challenge due to potential discrepancies be-
tween the intended meaning of user prompts and
the LLMs’ interpretation. Addressing this issue
requires a nuanced understanding of the interplay
between human language, context, and the limita-
tions of models, which is essential for realizing the
full potential of LLMs and ensuring their outputs
align with users’ objectives and values.

Common methods for guiding LLMs to align
with human preferences can be broadly categorized
into two approaches. The first focuses on output
alignment, which involves supervised fine-tuning
(SFT) followed by reinforcement learning such as
RLHF (Ouyang et al., 2022), RLAIF (Lee et al.,
2023; Bai et al., 2022), and DPO (Rafailov et al.,
2024). These methods aim to optimize model gen-
eration by leveraging preference-laden paired data,
typically sourced from experts and LLMs. How-
ever, this process is labor-intensive and struggles
to maintain consistency due to differing annotator
focuses, potentially confusing the LLMs during
training and hindering the alignment process.

The second approach, typically like OPRO,
PromptAgent, and BPO (Yang et al., 2023a; Wang
et al., 2024; Cheng et al., 2023), focuses on in-
put alignment through prompt optimization. By
refining input prompts, incorporating additional
context, and reformulating illogical or ambiguous
components, these methods try to bridge the gap
between user intentions and LLMs’ interpretations.
However, most of them require multiple rounds of
prompt rewriting, which is time-consuming during
the inference (Ye et al., 2023; Guo et al., 2023;
Pryzant et al., 2023). Moreover, OPRO (Yang
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Figure 1: Comparisons of three distinct approaches (RLHF, BPO, and POIR) for aligning LLMs with human
preferences. On various models, our POIR facilitates more effective prompt optimization and leads to a better
response.

et al., 2023a) needs the task-specific searches, fixed
rewriting prompts, and model-specific optimiza-
tion, which hinder its generalizability and adapt-
ability across diverse tasks and language models.
BPO (Cheng et al., 2023) uses GPT-4 to rewrite
the original prompts, and train one specific model
to generate optimized prompts. Though simple
and easy to use, its generalization to unseen text is
limited due to excessive rigid supervision. Further-
more, a single general optimized prompt may not
produce optimal results across all models.

To address these, here we introduce a novel
self-renewal approach called Prompt Optimiza-
tion with Implicit Reasoning (POIR). It contains
two components: 1) a model-specific and self-
recirculating data collection method that leverages
self-evaluation to enhance prompts, aligning them
by the model’s intrinsic logits. and 2) a prompt
rewrite schema that injects implicit reasoning for

direct preference learning. Specifically, we employ
Direct Preference Optimization (DPO) (Rafailov
et al., 2024), instructing the model to output both
optimized prompts and corresponding responses.
This design enables the model to implicitly reason
about the prompt-response relationship, facilitating
more effective prompt optimization.

POIR addresses the limitations of BPO by em-
ploying a model-specific data collection method
that generates optimized prompts tailored to differ-
ent model families. Moreover, POIR employs DPO
instead of SFT, reducing the need for high-quality
annotated data. By injecting implicit reasoning,
POIR facilitates more effective prompt optimiza-
tion and encourages a deeper understanding. Exten-
sive experiments across five models and four tasks
demonstrate POIR’s superior performance, with
win rates increasing by 9.2% to 36.2% compared
to models using BPO and DPO. Notably, the effect
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increases with model size, with POIR’s win rate
increasing by 9.2% on the Qwen-7B model and
25.6% on the 14B model compared to BPO.

2 Related Work

Aligning LLMs with human preferences has been a
focus of extensive research. Two main approaches
have emerged: output alignment, which employs
SFT followed by RLHF to optimize model outputs,
and input alignment, which focuses on rewriting
input prompts. This section provides a detailed
discussion of these methods.

2.1 Output Alignment
SFT followed by RLHF is an active area of research
aimed at improving final responses by aligning out-
puts. During the SFT stage, LLMs are trained
on high-quality datasets to strengthen their foun-
dational instruction-following abilities (Achiam
et al., 2023). Then RLHF is employed to incor-
porate scalable human feedback into the instruc-
tion process. One classic approach (Ouyang et al.,
2022) trains a reward model using paired prefer-
ence data and subsequently instructs LLMs based
on this learned critic using the Proximal Policy
Optimization (PPO) algorithm (Schulman et al.,
2017). Despite its effectiveness in aligning LLMs
with human intents, this approach faces several
challenges, including the scarcity of high-quality
preference data and difficulties in ensuring prefer-
ence consistency due to annotator variations (Lee
et al., 2023; Rafailov et al., 2024). Reinforcement
Learning from AI Feedback (RLAIF) addresses
the reliance on human annotation by using larger
LLMs (Chowdhery et al., 2023) to judge prefer-
ences (Lee et al., 2023). Direct Preference Op-
timization (DPO)(Rafailov et al., 2024) proposes
an intuitive contrastive loss for directly training
LLMs, eliminating the need for a reward model
and reducing training complexity and cost. How-
ever, the quality of the generated text is intrinsically
constrained by the quality of input prompt, empha-
sizing the need for further research into enhancing
prompt efficacy and robustness.

2.2 Input Alignment
Prompt optimization aims to enhance performance
by rewriting prompts to better align with the
underlying human intent. OPRO (Yang et al.,
2023a) leverages LLMs to iteratively generate new
prompts by learning from the optimization trajec-
tory of previously explored prompts. Similarly,

ProTeGi (Pryzant et al., 2023) employs LLMs to
generate "textual gradients" that identify and rectify
prompt deficiencies by editing prompts in seman-
tically opposite directions. EVOPROMPT (Guo
et al., 2023) utilizes evolutionary algorithms and
differential evolution to guide LLMs in evolv-
ing prompt populations via evolution operators.
TRAN (Yang et al., 2023b) focuses on generating
rules from observed errors to establish a rule set
that prevents recurrent mistakes in LLM outputs.
APE (Zhou et al., 2022) advances prompt optimiza-
tion by assessing prompts on limited datasets and
refining them based on the resulting feedback. De-
spite these advancements, the multiple iterations of
prompt revision and dependency on additional data
render these methods time-intensive, constraining
their efficiency and practicality, especially in sce-
narios demanding swift inference.

The most recent method, BPO (Cheng et al.,
2023), tries to address this by training a seq2seq
model. It first uses GPT-4 to rewrite prompts with
given responses from multiple publicly available
preference datasets, then employs supervised fine-
tuning (SFT) to train a LLaMA-7B-Chat model as
a prompt optimizer, generating optimized prompts
using only the original prompt as input. However,
BPO has several limitations. Firstly, training data
is derived from multiple preference datasets with
potentially conflicting preferences. Secondly, SFT
requires high-quality annotated data, which can be
costly to obtain through manual annotation or using
advanced models like GPT-4. Moreover, various
LLMs are trained on data with different distribu-
tions, and a single general optimized prompt may
not produce optimal results across all model fami-
lies.

3 Method

The objective of prompt optimization is to construct
a mapping that transitions the original prompt to its
optimized version. BPO (Cheng et al., 2023) trains
a seq2seq prompt optimizer through SFT. However,
as mentioned earlier, SFT has some drawbacks, in-
cluding its reliance on high-quality data and the
use of a strict cross-entropy (CE) loss that super-
vises the generation of LLMs on a token-by-token
basis. This approach introduces a susceptibility to
overfitting.

For instance, an optimized prompt like "What
is the Pythagorean theorem?" holds the same in-
tent as "Please provide a detailed explanation of
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Figure 2: An overview of POIR. The data collection pipeline includes: (1) Generate diverse prompts through
initial prompt seeds; (2) Optimize prompts through iterative prompt optimization and self-evaluation by the LLM;
(3) Construct preference data by pairing high-scoring and low-scoring optimized prompts. In the training stage,
a prompt optimizer is trained by DPO for generating an optimized {prompt, response} pair given the original
prompt. During the inference stage, the prompt optimizer is used to generate optimized prompts that can lead to
better-aligned responses.

the Pythagorean theorem." Despite their semantic
equivalence, the rigid supervision might lead to a
substantial loss for such variations due to its em-
phasis on matching specific token sequences. This
overfitting problem may restrict the flexibility of
the model in handling diversely expressed prompts,
detracting from the adaptability and utility of the
optimized prompts in more generalized applica-
tions. As a result, this may potentially constrain
the model’s overall effectiveness.

To address these limitations, POIR employs
DPO (Rafailov et al., 2024) to train the prompt opti-
mizer, thereby mitigating the issues caused by SFT.
The comprehensive workflow of POIR is illustrated
in Figure 2. We first leverage the model’s inherent
capabilities for prompt generation, response evalu-
ation, and prompt optimization to produce paired
data for the upcoming prompt optimizer training.
This pipeline is delineated in Section 3.1. By utiliz-
ing the model’s inherent capabilities, POIR reduces
its reliance on expensive and potentially inconsis-
tent annotated data, addressing another limitation
of existing approaches.

After acquiring these data, we employ DPO

with an implicit reasoning approach to train the
prompt optimizer, as detailed in Section 3.2. This
approach enables the model to implicitly reason
about the relationship between the prompt and the
response, facilitating more effective prompt opti-
mization without the need for strict token-level
supervision. By incorporating the model’s inherent
capabilities, POIR aims to provide a more robust
and adaptable approach to prompt optimization that
can effectively handle diverse prompts and align
with human preferences across a wide range of
model families and tasks.

3.1 Data Collection Pipeline

As illustrated in Figure 2, our data collection stage
consists of two steps to obtain a large amount of
prompt optimization preference data, starting from
a set of seed prompts. It is worth noting that the
entire process relies solely on the model’s self-
evaluation capabilities, without any assistance from
experts like GPT-4. This approach significantly
reduces costs and ensures consistency in prefer-
ence pairs and alignment between the data source
and the model being trained, potentially improv-
ing the efficacy of model training and enhancing
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overall performance. The time and computational
resources required for this process is provided in
the appendix.

In the first step, we utilize a small number of
seed prompts to generate a large quantity of new
prompts. Specifically, using meta-learning ap-
proach, we randomly extract four prompts from
the seed repository each time and employ few-shot
learning to generate new prompts, which are then
added back to the seed repository. This process
is iteratively repeated until a sufficient amount of
data is obtained. To address potential issues such as
repetition and prohibited content, we apply a filter
after generation. The filter ensures data quality and
compliance by setting length thresholds to elimi-
nate excessively long or short entries and employs
keyword matching to remove inappropriate content.
Additionally, the ROUGE-L metric is used to filter
out highly similar data.

In the second step, we inject the large number of
new prompts obtained from the first step into the
self-evaluation pipeline, which is used to collect
paired data for training. First, we input the orig-
inal prompt (Pori) into the model and obtain a re-
sponse. Then, the model critiques its own response
using a multidimensional evaluation criterion en-
compassing accuracy, completeness, and safety,
assigning scores ranging from 1 to 5. The evalua-
tion is conducted by the model itself based on the
given criteria, leveraging its inherent capabilities
without any assistance from experts like GPT-4.
Next, based on the criticism and original prompt,
the model generates an optimized prompt (Popt).
This loop continues until the responses achieve a
score of 4/5 or reach three rounds. Finally, we
parse the good responses (Rgood, scores of 4 or
5), bad responses (Rbad, scores of 1, 2, or 3), and
their corresponding prompts (Pgood, Pbad). This
procedure yields a sizable paired dataset for fur-
ther training, with each sample represented as (Pori,
Pgood, Rgood, Pbad, Rbad), where Pori stands for the
original prompt.

The prompt templates used by the LLM through-
out the above process, as well as the collected data
samples, are presented in the appendix. By lever-
aging the model’s self-evaluation capabilities and
iteratively generating and filtering prompts, POIR
efficiently collects a large amount of high-quality,
model-specific preference data without relying on
expensive expert annotations. This approach ad-
dresses the limitations of existing methods, such as
the reliance on costly and potentially inconsistent

annotated data, while ensuring data uniformity and
potentially improving training efficacy and overall
performance.

3.2 Prompt Optimization with Implicit
Reasoning

Leveraging the preference data obtained from Sec-
tion 3.1, we employ Direct Preference Optimiza-
tion (DPO) for prompt optimization learning. In
contrast to the tightly controlled SFT, DPO adopts
a preference-focused strategy that encourages a
wider range of prompt expressions, addressing the
limitations of SFT’s strict token-level supervision.
To enhance the model’s adeptness at learning opti-
mization preferences, we design a preference train-
ing paradigm that simultaneously considers both
the optimized prompt and its corresponding re-
sponse. This dual-focus strategy facilitates prompt
optimization via implicit reasoning mechanisms,
which is essentially a form of implicit chains of
thought (CoT) (Wei et al., 2022). During train-
ing stage, we require the prompt optimizer to gen-
erate not only the optimized prompt but also its
corresponding answer. And during inference, we
specifically output only the rewritten prompt, ter-
minating generation at a predetermined token to
prevent the LLM from generating an answer. Im-
plicit reasoning enables the model to implicitly rea-
son about the relationship between the prompt and
its associated response, facilitating more effective
prompt optimization. Formally, the objective of im-
plicit reasoning is to maximize the joint probability
P (Popt, A|Pori), which represents the likelihood of
obtaining both the optimized prompt Popt and its
corresponding answer A, given the original prompt
Pori. This joint probability can be decomposed as
follows:

P (Popt, A|Pori) = P (Popt|Pori)P (A|Popt, Pori) (1)

This formulation indicates that implicit
reasoning optimizes the original prompt by
simultaneously considering P (Popt|Pori) and
P (A|Popt, Pori). P (Popt|Pori) denotes the proba-
bility of the optimized prompt given the original
prompt, while P (A|Popt, Pori) represents the
probability of generating answer A given both the
original and optimized prompts.

To maximize P (Popt, A|Pori), the model must
consider both the quality of the optimized prompt
and the quality of the corresponding answer A dur-
ing prompt rewriting. This encourages the model to
generate higher-quality prompts that lead to better
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Model Index Method Vicuna Eval Dolly Eval BPO-test Eval Self-Instruct Eval
∆WR

A B A
Win Tie B

Win
A

Win Tie B
Win

A
Win Tie B

Win
A

Win Tie B
Win

Vicuna-
13B-chat

1 POIRV NAN 64.1 4.5 31.3 70.2 3.0 26.8 55.8 4.0 40.2 64.3 2.5 34.2 +30.5
2 POIRV BPO 56.5 5.0 38.5 59.5 6.0 34.5 53.2 4.8 42.0 64.7 3.8 32.5 +21.6
3 POIRV DPO_awo 56.0 7.1 36.9 57.5 9.5 33.0 52.4 7.4 40.2 50.8 7.4 41.8 +16.2

Qwen-
14B-chat

4 POIRQ NAN 66.7 8.0 25.3 70.9 4.0 25.1 54.4 6.4 39.2 69.2 3.9 26.9 +36.2
5 POIRQ BPO 56.9 6.0 37.1 56.3 9.0 34.7 70.9 4.0 25.1 54.4 6.4 39.2 +25.6
6 POIRQ DPO_awo 59.3 9.0 31.7 66.5 5.0 28.5 48.0 6.8 45.2 55.0 3.7 41.3 +20.5

Vicuna-
7B-chat

7 POIRV NAN 60.0 6.0 34.0 52.8 3.0 44.2 52.4 4.4 43.3 53.8 6.2 40.0 +14.4
8 POIRV BPO 59.0 3.0 38.0 56.4 5.1 38.5 54.0 3.5 42.5 51.2 1.3 47.5 +13.5
9 POIRV DPO_awo 51.6 10.2 38.2 50.3 12.3 34.4 50.0 9.6 40.4 50.5 10.8 38.7 +10.7

Qwen-
7B-chat

10 POIRQ NAN 59.3 5.0 35.7 55.5 1.0 43.5 58.0 4.0 38.0 63.1 1.0 35.9 +21.0
11 POIRQ BPO 51.4 6.9 41.7 47.0 7.0 46.0 47.3 4.3 37.4 56.5 3.0 40.5 +9.2
12 POIRQ DPO_awo 56.9 7.2 35.9 54.0 8.3 34.7 51.8 5.2 43.0 47.8 13.3 38.9 +14.5

Mistral-
7B

13 POIRM NAN 53.9 5.6 40.6 51.5 3.0 45.5 54.1 1.9 44.0 57.0 1.2 41.8 +11.2
14 POIRM BPO 50.3 8.1 41.6 50.0 3.5 46.5 50.0 3.5 46.5 51.2 2.5 46.3 +5.2
15 POIRM DPO_awo 53.2 7.4 39.4 58.5 9.0 32.5 51.3 7.3 41.4 55.9 8.0 33.1 +18.1

Table 1: GPT-4’s evaluations compare POIR-aligned, DPO of "align with output," BPO of "align with input," and
original LLMs without alignment (∆WR denotes the change in win rate compared to the baseline).

answers, addressing the limitations of existing ap-
proaches that focus solely on prompt optimization
without considering the resulting response quality.

We believe that implicit reasoning and reminis-
cent of CoT, has the potential to significantly en-
hance the performance of preference learning by
facilitating a more comprehensive understanding
of the relationship between prompts and their cor-
responding responses. This approach goes beyond
the strict token-level supervision of SFT and en-
ables the model to generate more effective opti-
mized prompts that lead to higher-quality answers.

In the following section, we conduct extensive
experiments to demonstrate the effectiveness of im-
plicit reasoning in enhancing prompt optimization
and improving the overall performance of LLMs in
various tasks and settings.

4 Experiments

4.1 Experiment Setup
Baseline. To verify the efficiency of proposed
method, we conducted extensive experiments on
three model families (Qwen (Bai et al., 2023), Vi-
cuna (Chiang et al., 2023), and Mixtral (Jiang et al.,
2024)). There are five models in total: Qwen-
7B/14B, Vicuna-7B/14B, and Mistral-7B, to eval-
uate the generalizability across diverse model ar-
chitectures and scales. For each model, we will
compare three methods, as the "align with output"

method DPO, the most recent "align with input"
method BPO, and POIR.

Dataset. We utilized four datasets in our evalua-
tion: (1) Dolly Eval, a subset of 200 instances ran-
domly sampled from the human-generated Dolly
dataset (Conover et al., 2023), which encompasses
8 task categories; (2) Vicuna Eval (Chiang et al.,
2023), containing 80 diverse questions across 8 cat-
egories; (3) Self-Instruct Eval (Wang et al., 2022),
a human evaluation dataset with 252 expert-written,
user-oriented instructions motivated by real-world
applications; and (4) BPO-test Eval (Cheng et al.,
2023), a 200-sample split from the datasets used
to construct our training set. To evaluate the mod-
els’ output, we employed a pairwise scoring (win
rate) setup using powerful GPT-4 as evaluators in-
stead of our own models to avoid potential bias to-
wards answers generated by models from the same
source. (Cheng et al., 2023; Zheng et al., 2024).
The version and scoring prompts for GPT-4 were
adapted from MT-bench (Zheng et al., 2024), as
shown in Appendix. To mitigate position bias and
reduce cost, we randomly shuffled the models’ re-
sponses in each evaluation.

Implementation Details. For the first data
collection stage, each model independently gen-
erated 10,000 preference data, with its intrinsic
self-recirculating and evaluation capabilities. Dur-
ing the training phase, for all DPO training, the
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Model Index Method Vicuna Eval Dolly Eval BPO-test Eval Self-Instruct Eval
∆WR

A B A
Win Tie B

Win
A

Win Tie B
Win

A
Win Tie B

Win
A

Win Tie B
Win

Vicuna-
13B-chat

1 POIRV DPO_awi 48.2 5.6 46.2 47.5 8.0 44.5 54.2 8.9 36.9 58.2 3.8 40.0 +10.1
2 POIRV POIRQ 61.3 8.0 30.7 60.0 9.5 30.0 57.5 7.5 34.9 55.0 2.5 42.5 +23.9
3 POIRV SFT 60.0 7.0 33.0 66.5 7.5 26.0 63.5 3.2 33.3 52.5 3.7 43.8 +26.6

Qwen-
14B-chat

4 POIRQ DPO_awi 49.7 9.2 41.1 46.9 10.6 43.4 51.5 7.0 41.5 54.4 5.1 40.5 +9.0
5 POIRQ POIRV 54.3 6.0 39.7 53.0 10.0 37.0 53.8 2.4 43.8 49.8 9.2 41.0 +12.4
6 POIRQ SFT 59.5 9.0 31.5 52.5 8.0 39.5 50.0 4.0 46.0 47.5 7.5 45.0 +11.9

Vicuna-
7B-chat

7 POIRV DPO_awi 51.8 8.0 40.2 51.8 8.0 40.2 51.8 8.0 40.2 51.8 8.0 40.2 +11.6
8 POIRV POIRQ 58.5 7.5 35.0 58.0 4.0 38.0 65.9 9.1 25.0 60.6 11.4 28.0 +29.3
9 POIRV SFT 59.8 7.0 33.2 62.5 9.0 28.5 55.4 5.4 39.3 56.3 3.8 40.0 +23.3

Qwen-
7B-chat

10 POIRQ DPO_awi 56.8 8.5 34.7 47.0 12.5 40.5 53.1 7.7 39.2 56.0 8.0 36.0 +15.6
11 POIRQ POIRV 55.3 6.5 38.2 53.5 9.0 37.5 58.2 13.6 28.2 52.3 5.1 42.6 +18.2
12 POIRQ SFT 50.9 7.0 42.1 50.7 10.6 38.7 52.9 8.7 38.4 55.3 7.3 37.4 +13.3

Mistral-
7B

13 POIRM DPO_awi 47.2 7.8 45.0 50.0 5.5 44.5 53.0 5.5 41.5 62.3 6.5 31.2 +12.6
14 POIRM SFT 52.5 7.0 40.5 47.5 7.5 45.0 57.1 5.2 37.8 61.3 3.7 35.0 +15.0

Table 2: GPT-4’s evaluations compare POIR-aligned models, DPO of "align with input", SFT of "align with
input", and POIR-aligned models with different source data (∆WR denotes the change in win rate compared to the
baseline).

TRL library(von Werra et al., 2020) and Deep-
Speed(Rasley et al., 2020) was deployed. A learn-
ing rate of 1e-6 and a β value of 0.4 were set.
Training was conducted with a batch size of 1 per
GPU for 1 epoch. For all SFT training, it was ex-
ecuted using DeepSpeed with a learning rate of
2e-5 and the training was conducted with a batch
size of 4 per GPU for 3 epoch. All experiments
were carried out on 8 NVIDIA A800 GPUs. For
BPO, we directly used published model (7B)1, as
the authors recognize it as a universal black-box
method for various models. Regarding RLHF, in
line with the best practices from leading studies on
the llm-leaderboard2, all models underwent train-
ing leveraging the ultra-feedback (Cui et al., 2023)
and orca (Mukherjee et al., 2023) datasets.

4.2 Overall Result

The win rates of response quality between different
models and methods are shown in Table 1, where
NAN indicates that the original prompt is sent to
the untrained model for inference. POIRV/Q/M

means the optimizer was trained on the data col-
lected by Vicuna, Qwen or Mistral, and the model
input is the optimized prompt while generating re-
sponse. In detail, the leftest column represents the

1https://huggingface.co/THUDM/BPO
2https://huggingface.co/spaces/HuggingFaceH4/

open_llm_leaderboard

untrained model used directly to generate responses
given the optimized prompts (POIR and BPO) or
the original prompts (NAN and DPO).

We can find that POIR significantly outper-
formed all compared methods across different mod-
els and datasets. Taking Qwen-14B-chat as an ex-
ample (index 4), compared to the original prompts,
POIR achieved a win rate of 66.7%, 70.9%, 54.4%,
and 69.2% on the Vicuna, Dolly, BPO-test, and self-
instruction eval sets respectively, demonstrating the
effectiveness of POIR in enhancing the quality and
alignment of the model’s responses.

Specifically, POIR outperformed DPO, which
aligned output, with win rate improvements rang-
ing from 10.2% to 20.5% (indices 3, 6, 9, 12, 15).
Moreover, POIR surpassed BPO, the current SOTA
prompt optimization method, across all models,
with improvements ranging from 5.2% to 25.6%
(indices 2, 5, 8, 11, 14). These results indicate the
superiority of POIR compared to existing meth-
ods, and the performance gain becomes more pro-
nounced as the model size increases.

4.3 Ablation Study

As shown in Table 2, we conducted experiment
to investigate the impact of three key innovations
in POIR: homogeneous data, implicit reasoning,
and the choice of training method (DPO vs. SFT).
These innovations constitute the primary advance-
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Model Method Vicuna Eval Dolly Eval BPO-test Eval Self-Instruct Eval
∆WR

A B A
Win

Tie B
Win

A
Win

Tie B
Win

A
Win

Tie B
Win

A
Win

Tie B
Win

GPT-3.5-turbo POIR_S1 ori. 57.9 6.1 36.0 64.8 5.2 30.0 55.2 10.0 34.8 55.2 10.0 34.8 +25.7
GPT-4 POIR_S1 ori. 65.2 5.8 29.0 70.4 6.6 23.0 62.0 11.0 27.0 62.0 11.0 27.0 +39.5
vicuna-13B-1.3v POIR_S1 ori. 56.2 7.3 36.5 59.0 8.5 32.5 52.5 8.0 39.5 52.5 8.0 39.5 +19.7
Qwen-14B-chat POIR_S1 ori. 53.6 10.5 35.9 57.4 10.2 32.4 50.5 9.5 40.0 50.5 9.5 40.0 +17.7

Table 3: Win rates between POIR-aligned, BPO-aligned and original LLM, evaluated by GPT-4. ("POIR S1"
denotes results obtained from stage 1, “ori.” denotes “original”, and “WR” denotes “win rates”).

ments of POIR compared to existing methodolo-
gies.

Firstly, the effect of implicit reasoning was as-
sessed by comparing the performance of models
trained with and without implicit reasoning. In the
setting without implicit reasoning, the model was
trained to generate only the optimized prompt with-
out producing the corresponding response. The
experimental results, corresponding to indices 1, 4,
7, 10, and 13 in Table 2, demonstrate the impor-
tance of implicit reasoning. Secondly, to evaluate
the importance of homogeneous data, we trained
models on non-homologous data, which was gen-
erated from different source models. The results,
corresponding to indices 2, 5, 8, and 11, suggest
that models trained on non-homologous data ex-
hibited lower performance compared to those on
homologous data. This finding highlights the sig-
nificance of maintaining consistency in data distri-
bution for optimal model performance. Thirdly, We
conducted a comparative analysis between models
aligned with POIR and those aligned with SFT. The
outcomes, as illustrated in indices 3, 6, 9, 12, and
14, underscore the efficacy of our methodology in
alignment.

To evaluate the effectiveness of POIR beyond
the GPT-4 evaluation paradigm, we conducted ex-
periments on widely used benchmarks, including
HellaSwag (Zellers et al., 2019), ARC (Clark et al.,
2018), and MMLU (Hendrycks et al., 2020). These
benchmarks play a crucial role in advancing LLM
by challenging models to perform deeper reason-
ing and understanding across a variety of contexts.
As shown in Table 4, POIR improved the model’s
performance on all these benchmarks compared
to both the original models (NAN) and the BPO-
aligned models.

Furthermore, we tested the effectiveness of
POIR on black-box models, specifically GPT-3.5-
turbo and GPT-4(Achiam et al., 2023). Since these

models cannot be directly trained, we evaluated the
performance of POIR’s stage 1 alone, which lever-
ages the model’s inherent capabilities for prompt
optimization. As shown in Table 3, POIR’s stage
1 significantly improved the performance of these
black-box models across all evaluation datasets.
For GPT-3.5-turbo, POIR’s stage 1 increased the
win rate by 25.7 percentage points compared to
the original prompts. Similarly, for GPT-4, POIR’s
stage 1 boosted the win rate by an impressive 39.5
percentage points.

Model
Vicuna-7B-chat Qwen-7B-chat Mistral-7B

NAN BPO POIR NAN BPO POIR NAN BPO POIR

MMLU (5) 49.9 50.3 52.4 56.9 58.7 58.7 59.1 60.3 60.6

ARC-C (25) 53.8 54.0 54.9 51.3 51.1 52.3 63.6 64.9 66.5

HellaSwag (10) 77.4 76.8 78.1 76.7 78.3 79.5 84.8 84.3 86.2

Table 4: Comparison of general capabilities between
SFT-aligned and POIR-aligned models.

5 Conclusion

In this study, our innovative Prompt Optimization
via Implicit Reasoning (POIR) presents an obvious
leap forward in aligning LLMs with human pref-
erences without the need for expert supervision.
By introducing a unique data collection pipeline
complemented with a preference learning scheme
that hinges on implicit reasoning, POIR effectively
enhances the quality of model responses. Our
methodology for data collection showcases the abil-
ity to refine prompts autonomously while maintain-
ing the critical information from the ori. prompt.
The effectiveness of POIR is empirically validated
through comprehensive experiments across multi-
ple models and datasets, demonstrating that our
approach outperforms conventional ones.
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Limitations

Although the POIR reduces the dependence on ex-
ternal high-quality data by relying on data gen-
erated and evaluated by the model itself, this ap-
proach still depends on the quality and diversity
of the initial seed data. If the initial data is biased
or insufficient, it may affect the final optimization
results. Furthermore, the POIR method requires
large-scale models (such as 13B models) for data
generation and self-assessment. Therefore, in en-
vironments with smaller-scale models or limited
resources, POIR may be challenging to achieve
the same performance improvements. However,
as model performance continues to enhance in the
future, smaller-scale models are also expected to
realize self-assessment loops. Lastly, our experi-
ments have only conducted on models of 7B and
13B parameters, which are the most commonly de-
ployed for online use. We have yet to explore the
implications of our method on models with a ca-
pacity of 70B parameters. Future work will include
such larger-scale experiments to further ascertain
the efficacy and generalizability of our approach
across various model sizes.
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A Time and Computational Resource

Time for Data Collection: In our implementation,
the data collection process necessitated the deploy-
ment of eight A800 GPUs operating for approxi-
mately eight hours. Training: The training process
for both POIR and BPO was conducted using a
cluster of eight A800 GPUs. The computational
time required for training was comparable for both
models, with an average duration of approximately
three hours.

B Details of GPT-4 Judge

To ensure a comprehensive and unbiased evalua-
tion of the model responses across the four datasets
(Dolly Eval, Vicuna Eval, Self-Instruct Eval, and
BPO-test Eval), we harnessed the advanced lan-
guage understanding and generation capabilities of
GPT-4. By employing GPT-4 as an expert evalu-
ator, we were able to obtain high-quality assess-
ments of the responses generated by the various
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models and alignment methods. All evaluations
involving GPT-4 consistently used the Microsoft
Azure GPT-4-turbo, version "2023-12-01-preview".
The template used to guide GPT-4 in evaluating the
responses is shown in Table 5.

System message:
Please act as an impartial judge and evaluate the quality of the re-
sponses provided by two AI assistants to the user question displayed
below. You should choose the assistant that follows the user’s instruc-
tions and answers the user’s question better. Consider factors such as
helpfulness, relevance, accuracy, depth, creativity, and level of detail.
Avoid any bias. Decide objectively and output your final verdict as
"[[A]]", "[[B]]", or "[[C]]".
Prompt template:

[User Question]

[The Start of Assistant A’s Answer]

[The End of Assistant A’s Answer]

[The Start of Assistant B’s Answer]

[The End of Assistant B’s Answer]

Table 5: Template for Assessing the Quality of Model
Responses with GPT-4

C Template for Data Collection Pipeline

Instruction
You are a professional "Instruction Generation Officer" whose job is to generate
two innovative instructions based on the given seed instructions, covering differ-
ent topics, formats, and levels of complexity.
When generating new instructions, you can:

• Modify the context, subject, or framing of the seed instructions

• Explore creative, thought-provoking, or unconventional perspectives

Please generate a total of two novel and interesting instructions inspired by the
following 5 seed instructions.

• Seed Instruction: {}

• Seed Instruction: {}

• Seed Instruction: {}

• Seed Instruction: {}

• Seed Instruction: {}

Keep in mind:

• Generated Instruction 1 should be no longer than 15 words.

• Generated Instruction 2 can be slightly longer but should still aim for
brevity.

Output
Generated Instruction 1:
Generated Instruction 2:

Table 6: Template for Generating New Prompts with
Few-Shot Methods

Instruction
Based on the given instruction and associated response, critically evaluate the
quality of the response in terms of its accuracy, helpfulness, and safety. Assign a
score from 1 to 5, where 1 marks a response with significant errors or harmful
content, and 5 denotes an outstanding response that not only meets but exceeds
expectations.
Use the following scale for your evaluation:

• 1 point: The response is inadequate, containing significant errors or
harmful content.

• 2 points: The response is barely adequate, with notable inaccuracies or
irrelevant information, and potentially minor harmful content.

• 3 points: The response is acceptable, adhering to the instructions with
no harmful content but may lack in depth, detail, or insight.

• 4 points: The response is commendable, with only slight issues that
prevent it from achieving excellence.

• 5 points: The response is exemplary, surpassing the basic requirements
by providing comprehensive, accurate insights with additional value
beyond what was explicitly asked.

Be rigorous in your evaluation. Only award a score of 5 for responses that are
exceptional in every criterion, with no detectable imperfections. There’s no need
to elaborate on strengths.
Instruction: ""
Response: ""
Output using the following format:
Score: [Assign a score based on the above criteria, formatted as "Score:X" where
X is the score].
Evaluation: [In one clear and concise sentence, identify at least one specific area
for improvement, unless you have awarded a score of 5].

Table 7: Template for Evaluating Responses and Provid-
ing Reasons and Scores

INPUT:
Original question: ""
Expert Evaluation: ""
OUTPUT FORMAT is as following with the start "Revised question:":
Revised question: [Using the expert evaluation as a guide, carefully refine the
previous optimized question to better align with the intent of the "Original
question". Make appropriate adjustments, even if diverging from the expert’s
suggestions, to ensure clarity and brevity. The revised question must not be more
than fifty percent longer than the original question.]

Table 8: Template for Optimizing and Updating the
Prompt Based on Feedback

D Cases of Preference Data Collection

Appendix D presents a sample of the preference
data pairs collected through the self-recirculating
data collection pipeline described in Section 3.1.
Each case consists of a rejected prompt and a cho-
sen prompt, demonstrating how the pipeline refines
and optimizes the prompts to enhance their quality
and alignment with the model’s capabilities. These
examples showcase the effectiveness of the data
collection process in generating high-quality train-
ing data for the subsequent prompt optimization
stage.

3040



Case for data collection

Rejected Prompt: Are you able of writing a poem about a sad love
story?
Chosen Prompt: Can you write a poem with a sad love story that has
depth and originality, experimenting with different forms and styles,
and delving deeper into the emotions and experiences of the characters,
while also incorporating a clear narrative structure and specific details
to make the story more relatable and engaging?

Case for data collection

Rejected Prompt: Make a list of linux distros to try in old intel atom
netbooks having only 1GB of ram.
Chosen Prompt: What are some lightweight Linux distros suitable for
old Intel Atom netbooks with 1GB of RAM, and provide information
on their specific features and benefits? The response should be com-
prehensive and accurate, with no detectable inaccuracies or harmful
content.

Case for data collection

Rejected Prompt: Compare the performance of a linear regression
model with a neural network model.
Chosen Prompt: Compare the performance of linear regression and
neural network models in terms of complexity, ability to handle non-
linear relationships, feature engineering, generalization, and computa-
tional resources. Provide an accurate, helpful, and safe response.

Case for data collection

Rejected Prompt: Analyze the popularity of the term ’artificial intelli-
gence’ in the last five years.
Chosen Prompt: How has the popularity of the term "artificial intelli-
gence" changed in the last five years, and what factors have contributed
to this trend? Can you provide specific examples of the growing inter-
est and investment in AI technology, and discuss the potential positive
impacts it may have?

Case for data collection

Rejected Prompt: Generate a song title for a song about unrequited
love.
Chosen Prompt: Generate a list of five song titles for a song about
unrequited love, and provide a brief explanation of the song’s content
for each title to make it more engaging and informative.

Case for data collection

Rejected Prompt: What is the likely outcome of a jury trial?
Chosen Prompt: How does the outcome of a jury trial typically depend
on specific circumstances, and what factors are likely to influence it?

Figure 3: 6 pairs of training data examples gathered
through the Data Collection Pipeline.

E Case of Prompts Optimized by POIR

Appendix E illustrates a selection of prompts op-
timized by the Prompt Optimization with Implicit
Reasoning (POIR) method introduced in this pa-
per. For each case, the original prompt is presented
alongside the optimized prompt generated by POIR.
These examples demonstrate how POIR refines the
prompts to improve their clarity, specificity, and
alignment with the desired task, ultimately lead-
ing to higher-quality responses from the language
model. The optimized prompts showcase the effec-
tiveness of the POIR approach in enhancing prompt
quality and model performance.

Case for data inference

Origin Prompt: Summarize the novel ’Pride and Prejudice’ in three
sentences.
Optimized Prompt: Can you provide a concise summary of the novel
’Pride and Prejudice’ by Jane Austen, including the main characters
and themes, in three sentences or less?

Case for data inference

Origin Prompt: Come up with a tagline for a fast-casual restaurant
serving grilled cheese sandwiches.
Optimized Prompt: Design a tagline for a fast-casual restaurant that
specializes in grilled cheese sandwiches, and provide a brief expla-
nation of how the tagline reflects the restaurant’s concept and target
audience.

Case for data inference

Origin Prompt: Can I make cotton candy at home? My kids would be
very excited if I could make it at home.
Optimized Prompt: I’m interested in making cotton candy at home,
but I’m not sure if it’s possible or if it’s safe for my kids. Can you
provide more information on how to make cotton candy at home and
any safety precautions I should take?

Case for data inference

Origin Prompt: what are some insults for old people?
Optimized Prompt: Can you provide some examples of ageist lan-
guage or insults that should be avoided when talking about older adults,
and suggest more respectful ways to communicate with or about them?

Case for data inference

Origin Prompt: What caused Covid 19?
Optimized Prompt: Can you explain the current understanding of the
origins of Covid-19 and the scientific evidence supporting it? What are
some ongoing research efforts to better understand the virus’s origins?

Case for data inference

Origin Prompt: What are the top 5 rock bands of all time?
Optimized Prompt: Could you provide a list of the top 5 rock bands
of all time and briefly explain why each band is considered significant
in the history of rock music? Additionally, could you provide some
examples of their most popular songs or albums?

Figure 4: Prompt examples optimized by POIR.
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