
Findings of the Association for Computational Linguistics: ACL 2024, pages 4447–4462
August 11-16, 2024 ©2024 Association for Computational Linguistics

LoraRetriever: Input-Aware LoRA Retrieval and Composition for Mixed
Tasks in the Wild

Ziyu Zhao1, Leilei Gan2∗, Guoyin Wang3, Wangchunshu Zhou4,
Hongxia Yang3, Kun Kuang15∗, Fei Wu167∗

1Department of Computer Science and Technology, Zhejiang University,
2College of Software and Technology, Zhejiang University, 3ByteDance Inc.,

4AIWaves Inc., 5Law&AI Lab, Zhejiang University, 6Shanghai AI Laboratory
7Shanghai Institute for Advanced Study, Zhejiang University

{ziyuzhao.cs, leileigan, kunkuang, wufei}@zju.edu.cn

Abstract

Low-Rank Adaptation (LoRA) provides an ef-
fective yet efficient solution for fine-tuning
large language models (LLMs). The mod-
ular and plug-and-play nature of LoRA en-
ables the integration of diverse domain-specific
LoRAs to enhance the capabilities of LLMs.
Previous research on exploiting multiple Lo-
RAs either focuses on specific isolated down-
stream tasks or fixes the selection of LoRAs
during training. However, in real-world sce-
narios, LLMs receive diverse prompts cov-
ering different tasks, and the pool of candi-
date LoRAs is often dynamically updated. To
bridge this gap, we propose LoraRetriever, a
retrieve-then-compose framework that adap-
tively retrieves and composes multiple Lo-
RAs according to the input prompts. Lo-
raRetriever contains three main components:
firstly, identifying and retrieving LoRAs rel-
evant to the given input; secondly, formulat-
ing strategies for effectively integrating the re-
trieved LoRAs; and thirdly, developing effi-
cient batch inference to accommodate hetero-
geneous requests. Experimental results indicate
that LoraRetriever consistently outperforms the
baselines, highlighting its practical effective-
ness and versatility. Our code is available at
https://github.com/StyxXuan/LoraRetriever.

1 Introduction

Recently, large language models (LLMs) such as
ChatGPT (Liu et al., 2023b) and Llama (Touvron
et al., 2023) have shown notable successes in a
range of fields (Hadi et al., 2023; Wang et al.,
2023; Wu et al., 2023). Nevertheless, due to
the prohibitively high computation costs for fine-
tuning LLMs on specific domains, there is a grow-
ing shift towards Parameter-Efficient Fine-Tuning
(PEFT) (Liu et al., 2022; Hu et al., 2023, 2021;
Zhao et al., 2024), which only updates a small frac-
tion of the model’s parameters or integrates new

∗Corresponding authors.

LLM

LoRA Pool

A2

B2

A0 A3

B3

LoRA0 LoRA1 LoRA2 LoRA3

B0

A1

B1

A4

B4

A5

B5

LoRA4 LoRA5

LLM LLM LLM

Upload/Update

Serving

How might one describe the
sentiment of this review? ...

Translate to Finnish ...

 Which is the tallest building in the
world? ...

Generate a sentence that describes
the following data ...

a) LoRA from Diverse Tasks

Close-book QA Translation Sentiment

b)Multi-LoRA Serving Framework

Plug & Play

c) Mixed-task Scenario

Figure 1: Illustration of serving multiple LoRAs within
a dynamically updated LoRA pool for mixed-task sce-
narios. a) LoRAs from various domains and tasks aimed
at enhancing specific capabilities of the LLM can be
uploaded to or updated to the LoRA pool. b) The multi-
LoRA serving framework aims to leverage the plug-and-
play nature of LoRAs to offer comprehensive services.
c) The downstream tasks, presented in a mixed-task
form, require personalized expert routing.

trainable parameters that augment the model’s capa-
bilities. Within this sphere, Low-Rank Adaptation
(LoRA) (Hu et al., 2021) stands out for its remark-
able effectiveness, modularity, and plug-and-play
capabilities. As AI communities like Huggingface
and ModelScope witness an influx of LoRA pa-
rameters tailored for diverse tasks and domains,
there is an increasing emphasis on employing var-
ious LoRA experts to provide a comprehensive
service (Sheng et al., 2023).

Recent research has explored the integration of
the mixture of expert (MoE; Jacobs et al. (1991);
Jordan and Jacobs (1994)) with LoRAs (Wang
et al., 2022; Liu et al., 2023a; Zadouri et al., 2023;
Muqeeth et al., 2023; Anonymous, 2024). How-
ever, these methods lock in the selection of Lo-
RAs while training, lacking the ability to dynami-
cally update and scale in scenarios where the LoRA
pool may consistently expand. LoRAhub (Huang

4447

https://github.com/StyxXuan/LoraRetriever
https://huggingface.co/
https://modelscope.cn/home/

et al., 2023) and AdapterSoup (Chronopoulou et al.,
2023) explore composing LoRAs for specific down-
stream tasks. However, these two methods offer
a one-size-fits-all solution for downstream tasks,
overlooking the heterogeneous nature of diverse
real-world requests.

To bridge these gaps, our paper explores the
"mixed-task scenario" as exemplified by platforms
like ChatGPT (Liu et al., 2023b) and Gemini (Team
et al., 2023), wherein the nature of user requests
encompasses diverse prompts covering different
tasks. While LLMs present a unified solution for
a broad spectrum of tasks, their performance can
still falter in certain specialized areas(Liu et al.,
2023a; Yang et al., 2023; Chai et al., 2024). This
is where the integration of LoRAs becomes cru-
cial. As shown in Fig.1, our vision encompasses
a multi-LoRA serving framework capable of dy-
namic enhancement, continuously improving its
functionality as new LoRA modules are added and
updated. Through the plug-and-play capabilities
of LoRA, the framework can provide personalized
services for heterogeneous downstream requests.

In this paper, we introduce LoraRetriever, a
retrieve-then-compose framework designed to ex-
ploit the plug-and-play nature of LoRA in mixed-
task scenarios. Our framework consists of three key
components: (1) Input-aware LoRA Retrieval:
The first step of our framework is aligning user
inputs with the corresponding LoRAs through sen-
tence embeddings and is further refined by an in-
struction fine-tuning (Su et al., 2022; Asai et al.,
2022) for effective LoRA retrieval. Through the
retriever, we achieve a more flexible LoRA rout-
ing mechanism, whose training stage is disentan-
gled from the training and inference of the LLM.
(2) LoRA Composition: Our framework next em-
ploys two strategies for compositing the retrieved
LoRAs in the first step. The Fusion of LoRAs av-
erages multiple LoRAs’ parameters and constructs
a singular comprehensive model for each input.
The Mixture of LoRAs activates multiple LoRAs
simultaneously and then averages the output of
each submodule of the LoRAs. Compositing top-
k LoRAs increases the recall rate for the correct
LoRA and improves the generalization of unseen
tasks by integrating the LoRAs of similar tasks. (3)
Batch Inference of Multiple LoRAs: Most previ-
ous work on the input-adaptive inference of LLMs
does not support batch inference (Zhou et al., 2020;
Chronopoulou et al., 2023). To tackle the challenge

of heterogeneous batched requests, we construct a
unique LoRA mapping matrix for batch samples.
This allows for tailored inferences through efficient
matrix multiplication, ensuring each request acti-
vates its corresponding LoRAs while maintaining
batch processing efficiency.

To assess the performance of LoraRetriever, we
established a mixed-task evaluation benchmark
comprising 48 LoRAs spanning a variety of natural
language understanding and generation tasks. The
experimental results underline the effectiveness of
the proposed methods in serving both in-domain
and out-of-domain downstream requests. Further-
more, the retrieval routing method exhibits a robust
generalization capability: although the retriever is
trained on just 40% of the tasks, it effectively re-
trieves the corresponding LoRAs for unseen tasks.

2 Related Work

Mixture of Experts. The Mixture of Experts
(MoE) method combines various specialized sub-
modules, guided by a gating network to tailor
responses to different input types (Jacobs et al.,
1991; Jordan and Jacobs, 1994; Shen et al., 2023;
Riquelme et al., 2021; Dou et al., 2023). Some
work (Wang et al., 2022; Zadouri et al., 2023; Zhu
et al., 2023; Liu et al., 2023a; Dou et al., 2023)
focuses on using the MoE method for PEFT to
achieve more effective and efficient model fine-
tuning. Other work (Anonymous, 2024; Muqeeth
et al., 2023) focuses on using MoE to coordinate
existing LoRA experts without specifically training
the experts’ parameters. These methods require
training additional parameters for gating and are
limited to a fixed number of LoRAs, making them
unsuitable for complex and dynamic scenarios. Our
method can be seen as gating through a retriever,
hence achieving flexibility and generalization on
unseen experts.

Adapter Merging. In addition to model ensem-
bling through the MoE, there is an increasing focus
on aggregating adapters from different domains
through the method of Adapter Merging. Adapter-
Soup (Chronopoulou et al., 2023) aggregates differ-
ent adapters in the parameter space, allowing large
language models to adapt to new domains with-
out additional training. LoRAhub (Huang et al.,
2023) employs random sampling of LoRA parame-
ters from various domains and tasks, followed by
black-box optimization to learn the weights of dif-
ferent LoRA parameters without involving model

4448

gradient backpropagation. These methods offer
a one-size-fits-all solution for downstream tasks,
which cannot be applied in the mixed-task scenario
for providing personalized service.

3 Preliminaries

This section begins with a concise introduction to
the Low-Rank Adaptation, followed by a detailed
formalization of the mixed-task scenario.

3.1 Low-Rank Adaptation
Directly fine-tuning large language models with all
parameters is computationally intensive and is not
feasible in low-resource scenarios. Based on the
idea that only a small number of low-rank parame-
ters need to be fine-tuned for sufficient performance
in new domains, Hu et al. (2021) proposed the Low-
Rank Adaptation, where the LoRA module can be
combined with the pre-trained parameters in paral-
lel for efficient inference.

Specifically, given pre-trained weights W0 ∈
Rd×d of a sub-module of LLM, the LoRA adds
an extra trainable weight matrix as W0 +∆W =
W0 + BA, where ∆W can be decomposed into
two smaller matrices B ∈ Rd×r and A ∈ Rr×d,
where r stands for the rank of ∆W . The forward
pass can be modified as follows:

x′ = W0x+∆Wx = W0x+BAx, (1)

where x ∈ Rd is the input and the x′ ∈ Rd denote
the output.

3.2 Problem Formulation
In this part, we give a formal definition of the
mixed-task scenario. Given an original LLM L, we
have a set of k LoRAs, Φ = {ϕ1, ϕ2, · · · , ϕk}, on
the shelf, where each LoRA ϕi is trained on its cor-
responding task Ti. The mixed task inputs can be
formulated as Tmix = {x,∀x ∈ T1 ∨ T2 · · · ∨ Tk},
where ∨ stands for the logical disjunction operator.

Under the mixed-task scenario, given an input
x ∈ Tmix without its task tag, the serving process
can be written as:

y = F (g(Φ, x), x, θ), (2)

where θ denotes the original parameters of LLM,
g(Φ, x) represents the input-aware LoRA retrieval
process and returns a set of retrieved LoRAs Φi.
F (Φi, xi, θ) depicts the LoRA composition pro-
cess that integrates the retrieved LoRAs as a plug-
in to the original LLM.

4 LoraRetriever Framework

In this section, we describe the LoraRetriever
framework as shown in Fig.2 for serving multi-
LoRAs in mixed-task scenarios. This framework
contains three major components: the input-aware
LoRA retrieval module (§4.1), the LoRA composi-
tion module (§4.2), and the batch inference strategy
(§4.3).

4.1 Input-Aware LoRA Retrieval

Our goal is to construct a LoraRetriever tailored to
effectively retrieve the corresponding LoRAs for
each input in scenarios where LoRAs are dynam-
ically updated. However, existing approaches fall
short of accurately identifying LoRAs under such
conditions. MoE-based methods (Anonymous,
2024; Muqeeth et al., 2023) struggle to general-
ize when new LoRAs are introduced due to the
fixed selection of LoRAs established during router
training. Retrieval methods like sentence embed-
ding (Reimers and Gurevych, 2019; Ni et al., 2021)
or task embedding (Achille et al., 2019; Zhou et al.,
2022) fail to map both samples and LoRA into a
shared embedding space, limiting their effective-
ness in input-aware LoRA retrieval.

To achieve this goal, we propose to train a re-
triever via instruction fine-tuning (Su et al., 2022;
Asai et al., 2022), namely LoraRetriever, which
can retrieve suitable LoRAs from a massive LoRA
pool for a given input sample. The fundamental
concept behind LoraRetriever comprises two main
steps: (i) First, to embed different task-specific Lo-
RAs into embedding space for facilitating retrieval,
we posit that each LoRA can be represented by
some data points, which can be obtained by ran-
domly choosing a dozen samples from the training
dataset. Then we average their instruction embed-
dings to represent the embedding of each LoRA.
(ii) To improve generalization for unseen LoRAs
in LoRA retrieving, we train the retriever through
instruction fine-tuning (Su et al., 2022; Wei et al.,
2021) on a subset of all tasks. Training on a small
subset of tasks is designed to simulate scenarios
involving the integration of new LoRAs, thereby
underscoring our method’s generalization abilities
via instruction fine-tuning. These two strategies en-
able the effective use of limited data distributions
for input-aware retrieval and can be generalized to
unseen LoRAs.

Formally, with a sentence-embedding model
E, input sequence x, and the instruction I for

4449

Candidate LoRAs

A2

B2

A0 A3

B3

LoRA0 LoRA1 LoRA2 LoRA3

B0

A1

B1 B4

A5

B5

LoRA4 LoRA5

How might one describe the
sentiment of this review?...

Translate to Finnish ...

Mixed-Task Inputs

A6

B6

A7

B7

B4

LoRA6 LoRA7

Input-aware Retrieval

1/3 1/3 1/3 0

0 1/3 1/3 1/3

LoRA Mapping Retrieved LoRA Set

LLM

Top k Mixture

Top k Fusion

a) Input-Aware LoRA Retrieval b) LoRA Composition

c) Batch Inference
Top k Mixture

Top k Fusion

Retriever

Deduplicate

Batch Calculation

LLM

Figure 2: The LoraRetriever Framework. This framework, equipped with a pool of candidate LoRAs from various
domains/tasks, is designed to offer personalized services tailored to the input provided. It begins by executing an
input-aware LoRA retrieval process aimed at identifying LoRAs corresponding to tasks analogous to the input
(§4.1). Subsequently, it employs a specialized LoRA composition mechanism to efficiently utilize the retrieved
LoRAs (§4.2). By constructing a LoRA mapping matrix for batch inputs, the framework facilitates effective batch
inference (§4.3).

embedding purposes, the instructed embedding
can be formulated as E(I ⊕ x), where ⊕ denotes
the concatenation operation. In order to allow
the embedding to capture the similarity between
different tasks, the instruction is expressed as:
"Represent the sentence for similar task retrieval" .

Each LoRA module is embedded with m randomly
selected domain-specific samples, expressed
as E(ϕ) = 1

m

∑m
i=1E(I ⊕ xiϕ). This embed-

ding method integrates both sample-wise and
LoRA-module-wise embeddings, facilitating the
calculation of similarity between an individual
sample and a LoRA module. For measuring the
similarity between LoRA module ϕ and the input
sequence x, following (Ni et al., 2021), we lever-
age the cosine similarity between the LoraRetriever
embeddings: s(x, ϕ, I) = cos(E(I ⊕ x), E(ϕ)).

To improve LoRA retrieval by the retriever and
broaden its generalization to unseen LoRAs, we
train the embedding model E through instruction
fine-tuning on a small subset of tasks. To prevent
the need to access new samples, we use previously
employed samples for embedding LoRAs as our
training data. Consider t distinct training tasks,
represented as Ttrain = {T1, · · · , Tt}. Following
Ni et al. (2021), the training dataset D comprises
paired samples (xi, x+i), where each xi is a sample
from a task Ti ∈ Ttrain, and a positive sample
x+i is randomly selected from the same task Ti.
To complement each positive pair, we randomly

select p negative pairs (xi, x
−
ij)

p

j=1
, ensuring that

x−ij is sourced from tasks outside of Ti, thereby
x−ij /∈ Ti. The training process is achieved through
a contrastive loss (Karpukhin et al., 2020; Izacard
et al., 2021; Ni et al., 2021) defined as follows:

L =
es(xi,x

+
i ,I)/γ

es(xi,x
+
i ,I)/γ +

∑p
j=1 e

s(xi,x
−
ij ,I)/γ

,

where γ is the softmax temperature.
During the LoRA retrieval phase, the top-k Lo-

RAs are retrieved according to their similarity to
the input x. This process can be formulated as
follows:

g(xi,Φ) := Φi = TopK{s(ϕj , xi, I), ϕj ∈ Φ}.

4.2 LoRA Composition

After retrieving the top-k LoRAs Φi for an input xi,
we proceed to integrate these LoRAs into the LLM
with parameter θ. This integration is achieved by
applying two different LoRA composition strate-
gies: the Mixture of LoRAs and the Fusion of Lo-
RAs.

4.2.1 Mixture of LoRAs
The mixture of LoRAs strategy involves the aggre-
gation of the outputs of each submodule within
the assembled LoRAs. Let us denote A =
{A1, A2, . . . , An} and B = {B1, B2, . . . , Bn}

4450

as the sets representing submodules within n Lo-
RAs. For an input xi, the output derived from
the mixture of LoRAs can be expressed as x′i =
1
n

∑n
j=1BjAjxi, where x′i denotes the output.

This process signifies the integration of each LoRA
module’s output, effectively blending their contri-
butions to form a unified output.

4.2.2 Fusion of LoRAs
In contrast to the Mixture method, which combines
the output of different LoRAs, fusing the parame-
ters of these LoRAs presents an alternative compo-
sition strategy.

Let the parameters of each LoRA ϕi be denoted
by Θi. The parameter of the fused LoRA is then
represented as Θfusion = 1

k

∑k
j=1Θj . This formu-

lation allows the fused parameter to function akin
to a single LoRA.

4.3 Batch Inference of Multiple LoRAs

Implementing batch inference in the presence of
multiple LoRAs and diverse composition diagrams
poses a significant technical challenge. To address
this, we introduce a unique approach for batch in-
ference. Our method involves processing a batch
of samples denoted as X ∈ Rb×l×d, where b, l,
and d denote the batch size, sequence length, and
sample dimensionality, respectively. For each in-
put xi and its retrieved LoRAs Φi within the same
batch, we aggregate these LoRAs into a collective
set denoted by ΦB. To ensure the uniqueness of ΦB,
we eliminate duplicates, mindful of the possibility
that retrieved LoRAs may overlap across different
samples. The resulting set ΦB comprises p unique
LoRAs, where p ≤ bk. For every sample xi, a p
dimension mapping vector Mi is generated, which
specifies the indices of its corresponding LoRAs
within ΦB.

The LoRA mapping vectors are combined into
a matrix M ∈ Rb×p. The parameters of a sub-
module in LoRA can be denoted as A and B, and
are concatenated within the batched LoRAs ΦB to
obtain A ∈ Rp×r×d and B ∈ Rp×d×r. The batch
inference process of the mixture of LoRAs can be
formulated as follows:

X ′ = M ◦ (B ◦A ◦X), (3)

where we denote the batched output of a layer of
multiple LoRA as X ′ ∈ Rb×l×d and extend the
symbol ◦ to denote potential broadcasting as Wen
and Chaudhuri (2023). The batch inference process

of LoRA fusion can be formulated as

X ′ = (M ◦B)(M ◦A) ◦X. (4)

These strategies can be simply implemented by
the einsum operation, and the PyTorch-style pseu-
docode is shown in Appendix.D.

5 Experiments

This section outlines the evaluation framework for
assessing different approaches in mixed-task sce-
narios. Furthermore, a comprehensive analysis
of the proposed LoraRetriever framework is pre-
sented.

5.1 Evaluation Framework

Base Model & LoRA Configuration. To test
various methods in the mixed-task scenarios, we
leverage Llama-2-{7b,13b} (Touvron et al., 2023)
as the base models and train a range of LoRAs for
a spectrum of tasks. We select a portion of the Flan-
v2 datasets (Wei et al., 2021) to train 48 LoRAs for
a spectrum of tasks covering Natural Language Un-
derstanding (NLU) and Natural Language Genera-
tion (NLG). Following the categorization by Wei
et al. (2021), these tasks can be grouped into 10
distinct task clusters. We train each LoRA accord-
ing to the Alpaca (Taori et al., 2023) format and
rank r, and the scaling hyperparameter α are set to
6 and 12, respectively. The details of the LoRAs
training can be found in the Appendix. E.

Mixed Task Evaluation Dataset. For construct-
ing the mixed-task dataset, we randomly chose 50
samples from the test set for each task used in train-
ing 48 LoRAs, subsequently mixing and shuffling
these samples to form a unified dataset with 6000
data entries. Further details about these datasets
are available in the Appendix.E.

Baseline Methods. We compared our method
with the following baselines: (1) Mixture of Ex-
perts (Zhu et al., 2023; Zadouri et al., 2023; Liu
et al., 2023a; Wang et al., 2022; Anonymous, 2024).
(2) SMEAR (Muqeeth et al., 2023); (3) Adapter-
Soup (Chronopoulou et al., 2023); (4) LoRAhub
(Huang et al., 2023). Specifically, we implement
three variants of MoE. A detailed description of the
baseline models can be found in Appendix.A, with
their implementations presented in Appendix.F.

Implementation of LoraRetriever. To train the
LoraRetriever, we continue to perform instruction

4451

Task
Perfect

Selection
Selection Fusion Mixture MoE

Top1
MoE
Top3

MoE
Soft

SME-
AR

Adapter
Soup

LoRA
HubIID OOD IID OOD IID OOD

w/ Llama2-7b
Struct to TextRouge−1 64.0 61.3 50.1 49.4 45.9 55.9 50.4 45.6 46.8 47.9 48.0 4.5 35.6
Struct to TextRouge−2 39.6 37.0 26.6 25.7 23.5 30.0 26.4 21.9 22.9 23.8 24.2 1.1 17.7
Struct to TextRouge−l 57.0 54.5 43.9 43.6 40.3 49.5 44.0 39.8 40.7 41.7 42.4 4.5 31.6
TranslationBLEU 13.1 12.8 12.0 12.2 12.3 12.8 12.2 9.5 10.5 10.7 11.0 1.4 8.5

COMMONSENSE 62.5 55.5 46.0 51.0 48.0 61.5 50.0 54.5 52.0 51.5 50.0 46.0 17.5
SENTIMENT 90.0 89.5 89.0 79.0 78.5 89.5 90.5 70.0 75.0 74.5 74.0 73.5 0.5
READING Comp. 67.3 51.7 40.3 47.3 45.0 51.3 47.3 48.7 47.7 48.7 45.7 40.7 2.7
CLOSE-BOOK QA 45.0 40.0 43.0 41.0 37.5 45.0 48.5 40.5 38.5 40.0 32.0 31.5 1.0
COREFERENCE 52.0 50.0 46.0 47.0 53.0 63.0 49.0 61.0 59.0 57.0 58.0 43.0 1.0
READ. COOMP. W/ COM 69.0 69.0 30.0 35.0 19.0 46.0 40.0 31.0 29.0 29.0 23.0 14.0 3.0
PARAPHRASE 65.5 58.0 45.5 45.5 44.0 56.5 45.5 42.0 38.5 36.0 34.5 46.5 1.0
NLI 72.3 70.0 60.6 51.4 53.8 67.9 64.3 50.3 49.6 48.3 50.8 62.4 10.5

w/ Llama2-13b
Struct to TextRouge−1 65.4 62.6 49.4 52.7 49.7 57.7 52.1 46.8 47.0 48.5 48.3 7.1 39.3
Struct to TextRouge−2 40.8 38.2 25.8 29.2 26.8 32.6 28.1 24.5 25.1 25.7 25.2 2.5 20.7
Struct to TextRouge−l 58.7 56.0 42.9 45.9 43.2 50.8 45.4 41.1 41.9 42.7 42.2 6.4 34.6
TranslationBLEU 12.9 12.9 12.7 14.6 14.1 14.6 14.1 11.8 12.4 11.9 12.4 0.8 10.2

COMMONSENSE 69.5 59.0 47.5 61.0 56.0 64.0 60.5 65.0 66.0 64.0 61.0 17.5 34.0
SENTIMENT 90.0 90.5 91.0 87.0 83.5 91.5 91.5 90.0 89.5 90.0 89.0 79.5 11.0
READING Comp. 76.0 60.3 48.0 56.7 49.3 60.3 51.3 53.7 53.3 52.3 51.3 48.7 3.3
CLOSE-BOOK QA 64.0 60.0 53.0 62.0 58.0 63.0 61.0 59.5 57.5 58.5 57.5 34.5 6.5
COREFERENCE 74.0 75.0 65.0 55.0 59.0 76.0 64.0 61.0 62.0 56.0 57.0 55.0 10.0
READ. COOMP. W/ COM 82.0 80.0 33.0 57.0 49.0 78.0 58.0 51.0 48.0 49.0 49.0 13.0 14.0
PARAPHRASE 77.5 68.0 52.5 55.5 45.5 71.0 55.5 50.0 52.5 47.5 52.0 64.0 2.5
NLI 82.4 78.9 70.2 69.8 66.4 78.1 75.7 67.7 71.0 67.4 66.6 67.5 14.9

Table 1: We report the average performance of each task cluster. The full results of each task are shown in
Appendix.C. "IID" signifies that LoraRetriever can access any LoRA for every test sample, encompassing the LoRA
specific to the sample’s task. "OOD" indicates that for each test sample, we mask the LoRA associated with its
specific task during the retrieval phase. Consequently, no sample can access its ideal LoRA, allowing us to assess
the LoraRetriever’s cross-task generalization capability. The performance of perfectly selected corresponding LoRA
for each sample is colored in gray. We have bolded the best performance of each task and underlined the best
performance in the "OOD" setting.

Method Top 1 Top 3 Top 5 Top 8

all-mpnet-base-v2 58.40 78.26 84.77 90.24
all-MiniLM-L6-v2 51.73 73.11 80.54 87.18
msmarco-distilbert-cos-v5 45.84 66.01 75.14 82.67
gtr-t5-xl 53.19 69.72 77.41 83.59

LoraRetriever 0% 60.80 79.29 85.57 91.58
LoraRetriever 40% 63.16 89.09 95.45 98.97
LoraRetriever 100% 74.08 97.37 99.15 99.82

Table 2: Comparison of Sentence Embedding
Techniques in LoRA Retrieval: The notation
LoraRetrieverk% signifies that the model underwent sup-
plementary training on k percent of the tasks. The per-
formance of the selected retriever model in the evalua-
tion phase is highlighted in gray.

fine-tuning based on Instructor-xl (Su et al., 2022).
The training data consisted of only 40% of the tasks
used to train task-specific LoRAs, with each task
represented by 20 samples randomly selected from
its respective LoRA training set. In this process,
we categorized samples from the same LoRA as
positive examples, while those from different Lo-
RAs were considered negative examples. Addition-
ally, the three distinct strategies for LoRA compo-
sition are: (1) Selection, which involves choosing
the highest-ranked (top-1) retrieved LoRA and ap-
plying it in a singular LoRA manner, and can be

Methods 0% 40% (∆%) 100% (∆%)

Selection 57.99 62.42 (+7.64%) 64.01 (+2.55%)
Fusion 51.50 51.50 (+0.00%) 52.27 (+1.49%)
Mixture 62.24 63.54 (+2.09%) 64.19 (+1.02%)

Table 3: Average Performance of LoraRetriever on NLU
Tasks Across Different LoRA Composition Strategies
and Task Training Percentages.

viewed as a variant for Mixture and Fusion meth-
ods; (2) Mixture, which averaging the outputs of
each submodule from the top-k retrieved LoRAs;
and (3) Fusion, a method that averages the parame-
ters of the top-k retrieved LoRAs. Throughout our
experiments, k = 3 is established as the default
setting.

Metrics. Following Wei et al. (2021), we assess
the performance on the "Struct to Text" task using
Rouge-{1, 2, L} and on the "Translation" tasks
using BLEU. Additionally, for the NLU tasks, we
evaluate the exact match accuracy of each method.

5.2 Main Results

The main results of the mixed-task evaluation are
shown in Tab.1. We present the mean performance
across each task cluster and additionally evalu-
ate the LoraRetriever’s effectiveness in an out-of-

4452

domain (OOD) setting. In the OOD configuration,
we mask the corresponding LoRA for each sample,
thereby inhibiting LoraRetriever from retrieving
the ideal LoRA for each sample. In this way, we
can assess the cross-task generalization capability
of LoraRetriever. From the results, we have the
following observations: (1) The proposed frame-
work, LoRARetriever, which performs input-aware
LoRA retrieval and composition, markedly sur-
passes other baselines focusing on specific down-
stream tasks. (2) Among them, the performance of
Mixture and Selection is similar in IID scenarios,
while Fusion’s performance is weaker compared to
the other two methods. The reasons are as follows:
(i) In the IID setting, LoraRetriever can achieve
strong top-1 selection, leading to similar results be-
tween Selection and the Mixture; (ii) As different
tasks are inherently heterogeneous, it is inferior to
directly average top-k LoRA parameters in the Fu-
sion. (3) In the OOD setting, the Mixture exceeds
the performance of the Selection, and the perfor-
mance of Fusion is similar to that of the Selection.
The reasons can be as follows: (i) The selection
cannot retrieve the associated LoRA for the input
sample in the OOD setting, leading to a signifi-
cant performance drop. (ii) The Mixture can fully
leverage the capabilities of similar tasks to address
OOD tasks, alleviating the performance drop. (4)
The performance of the MoE and SMEAR methods
is weaker than that of LoraRetriever. The limita-
tion stems from the restricted capacity of these
methods for adaptation and generalization to dy-
namically changing environments populated with
diverse LoRAs, thereby diminishing their efficacy
in mixed-task scenarios. (5) In mixed-task sce-
narios, although AdapterSoup uniformly searches
for appropriate LoRAs for downstream tasks, the
retrieved LoRAs fall short in personalization for
each request, hindering their effectiveness for each
specific task. (6) LoRAhub proves to be entirely in-
effective in the mix-task scenario. First, the fusion
of LoRAhub depends on randomly selected LoRAs,
which may not be relevant. Second, the presence of
heterogeneous tasks introduces conflicting param-
eter optimization directions, resulting in the total
breakdown of parameter fusion.

5.3 Analysis

Performance of Retriever. We compare Lo-
raRetriever with some popular off-the-shelf sen-
tence embedding models in Huggingface and adopt

na
tu

ra
l

ar
c

ar
c

st
or

y
pi

qa
co

pa
he

lla
sw

ag
de

fin
ite ws

c cb wn
li

m
nl

i
an

li
an

li
an

li
m

nl
i

sn
li

qn
li

rte
pa

ws gl
ue

gl
ue

co
sm

os
re

co
rd

m
ul

tir
c

sq
ua

d
sq

ua
d

op
en

bo
ok

qa
bo

ol
dr

op ss
t2

ye
lp

im
db

se
nt

im
en

t1
40 we

b
da

rt
e2

e
co

m
m

on
wm

t1
6

wm
t1

6
wm

t1
6

wm
t1

6
wm

t1
6

wm
t1

4
wm

t1
6

natural
arc
arc

story
piqa
copa

hellaswag
definite

wsc
cb

wnli
mnli
anli
anli
anli

mnli
snli
qnli
rte

paws
glue
glue

cosmos
record
multirc
squad
squad

openbookqa
bool
drop
sst2
yelp

imdb
sentiment140

web
dart
e2e

common
wmt16
wmt16
wmt16
wmt16
wmt16
wmt14
wmt16

LoRA Embedding Similarity Heatmap by Domains

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3: LoRA embedding similarity heatmap. Tasks
from the same domain are grouped in square brackets.

the model nomenclature following Wolf et al.
(2020). To analyze the effect of the percentage
of the tasks for training LoraRetriever, we trained
three variants of LoraRetriever with different per-
centages. Tab.2 shows the performance of different
retrieval models for retrieving relevant LoRAs. It
is shown that guiding sentence embedding mod-
els with specific prompts leads to a performance
improvement in retrieval compared to common re-
trieval models. After instruction fine-tuning, the re-
triever significantly enhanced the ability to retrieve
corresponding LoRA based on the input. Conduct-
ing instruction fine-tuning on 40% of the tasks re-
sulted in a 2.36% increase in top-1 accuracy and a
9.80% increase in top-3 accuracy. Training across
all tasks achieved the largest improvement. To
demonstrate the generalizability of the proposed
framework when dealing with unseen LoRAs, we
used a retriever trained on 40% of the tasks in the
main experiment to simulate the scenario of dy-
namic updates to the LoRA pool that might occur
while providing services with LoraRetriever.

Tab.3 shows the performance of LoraRetriever
trained with different proportions of tasks for LoRA
retrieval. It is observed that for the selection and
mixture methods, training under 40% of the tasks
has already seen significant improvements. The
best performance is achieved when trained under
all tasks, but the improvement compared to 40%
is relatively small, which to some extent reflects
the good generalization ability of instruction fine-
tuning of LoraRetriever.

Fig.3 illustrates the similarity between task em-

4453

b) Throughput Varyinig Batch Sizea) Performance with Different Number of LoRAs

Figure 4: The left figure shows the performance of
LoraRetriever varying the number of LoRAs. The right
figure shows the performance of Throughput varying
the batch size.

beddings for different tasks through a heatmap,
where tasks from the same task cluster are grouped
in square brackets. It is shown that task embed-
dings within the same domain are more similar,
indicating that the LoraRetriever embeddings can
serve as task embeddings to characterize the simi-
larities between different tasks and be applied for
LoRA retrieval.

Impact of the number of Retrieved LoRA.
Fig.4 (a) illustrates the performance of the num-
ber of retrieved LoRAs on the mean accuracy of
the NLU tasks. The results indicate that as the num-
ber of retrieved LoRAs increases, the performance
of the Mixture initially improves slightly but then
stabilizes. In contrast, the Fusion shows a contin-
uous decline in performance with an increasing
number of LoRAs, which once again demonstrates
that under the conditions of heterogeneous tasks,
the simple averaging of parameters can compro-
mise the original capabilities of the LoRAs. In
particular, in the OOD setting, the performance of
the Mixture improves significantly as the number
of LoRAs increases, illustrating that in the absence
of an ideal LoRA choice for a request, leveraging
the capabilities of multiple LoRAs of similar tasks
can effectively achieve cross-task generalization.

Effectiveness of Batch Inference Strategy. To
evaluate the efficiency of our proposed batch infer-
ence strategy, we compared the throughput of dif-
ferent batch sizes. The throughput is defined as the
number of both input and output tokens per second
across all requests in the mixed-task benchmark.
We specifically compared the computational effi-
ciency with that of a single LoRA. Our evaluation
encompassed the entire evaluation dataset, and we
limited the generation to the first produced token to
mitigate discrepancies caused by varying genera-
tion lengths across different methods. These exper-
iments were conducted on an NVIDIA A100 GPU

Freundschaft ist das
Herzstück im Kampf, um
diese Herausforderung zu
meistern. Translate to
French

La solidarité est le cœur
de la lutte pour affronter
cette épreuve.

Input:

Output:
wmt16_csen
wmt16_deen
wmt14_enfr

Retrieved
LoRAs

Concepts: tunsoare, păr,
stil Write a sentence that
includes all these words in
Romanian.

Tunsoare cu părul în stil
afro.

Input:

Output:
wmt16_csen
wmt16_roen
common_gen

Retrieved
LoRAs

Answer the following
question using English:
Soru: Misyonerler Güney
Afrika'da kilise okullarını
hangi yüzyılda dikkate
değer bir şekilde
kurmuşlardır? Cevap:
Güney Afrika'daki en eski
okullardan bazıları, on
dokuzuncu yüzyılın
başlarında misyonerler
tarafından kurulan özel
kilise okullarıdır. Soru
tatmin edici bir şekilde
cevaplandı mı?
SEÇENEKLER: - evet.-
hayır.

Yes

Input:

Output:

wmt16_csen
wmt16_tren
glue_qqp

Retrieved
LoRAs

Figure 5: Showcasing How the LoRARetrieval Frame-
work Employs Multiple LoRAs for Cooperative Prob-
lem Solving.

(80GB) utilizing bfloat16 precision. As illustrated
in Fig.4 (b), our batch inference strategy markedly
improves the throughput of the framework, with a
slight throughput reduction compared to a single
LoRA. Notably, the Fusion outperforms the mix-
ture strategy in throughput efficiency, attributed to
its parameter averaging approach that circumvents
the need for parallel computation across multiple
LoRAs.

Showcases. We showcase the framework’s ability
to adeptly integrate multiple LoRAs for synergistic
problem-solving, as evidenced in Fig.5. We man-
ually craft three problems in Fig.5, which cannot
retrieve any single LoRA to solve these problems
directly, necessitating the cooperation of existing
LoRAs. Specifically, the first example requires Lo-
raRetriever to integrate NLI and translation tasks’
capabilities. The retrieved LoRA wmt16-tren is
utilized for comprehending Turkish, while glue-
qqp is applied to NLI tasks. In the second sce-
nario, LoRAs are integrated for translating from
German to French. Although there is no direct
LoRA for German-to-French translation, the com-
bined use of wmt16-deen for German-to-English
and wmt14-enfr for English-to-French enables an
effective German-to-French translation. The third
scenario illustrates the fusion of distinct capabili-
ties by combining Romanian translation with text
generation: leveraging the wmt16-roen LoRA for
Romanian comprehension and the common-gen
LoRA for generating text, LoraRetriever success-
fully merges these diverse functionalities. This
demonstration emphasizes the framework’s sub-
stantial ability to blend distinct LoRA capabilities,
anticipating further exploration of capability fusion

4454

of LoRAs as a future direction.

6 Conclusion

This paper investigates a new problem of serving
multiple LoRAs with a dynamically updated LoRA
pool for downstream heterogeneous requests. To
this end, we introduce a framework named Lo-
raRetriver to identify and retrieve the appropriate
LoRAs based on a specific input. Subsequently,
we focus on the composition of these retrieved Lo-
RAs to ensure a tailored and practical application
in real-world situations. We also propose an ef-
ficient batch inference strategy to accommodate
batched requests. Subsequent experiments have
also demonstrated the effectiveness of our proposed
LoraRetriever.

Limitation

While promising, there are still some drawbacks
of LoraRetriever. (1) User data privacy issues.
When users upload LoRA, we need to use a small
amount of training data (10-20 pieces) to represent
the distribution of the LoRA model. In privacy-
sensitive scenarios, representation with data may
not be feasible. Aligning LoRA parameters and
sample distributions in the embedding space in a
manner that respects data privacy presents a worth-
while direction for future exploration. (2) The pro-
posed LoraRetriever framework is only suitable for
multi-LoRA collaboration under the same model
architecture. However, in reality, the model ar-
chitecture chosen by the users themselves and the
PEFT method are not necessarily the same, which
is worth further research on how to design the cor-
responding collaborative mechanism for such sce-
narios.

Ethics Statement

In this work, we take the open-sourced Llama-
2 (Touvron et al., 2023) model and Flan-v2 (Wei
et al., 2021) dataset in the experiment. One po-
tential ethical concern may arise when applying
the proposed framework to real-world scenarios,
as the data uploaded by LoRA contributors may
contain user privacy. However, we believe this can
be addressed by proper anonymization before up-
loading. Therefore, we believe our work will not
pose a severe ethical concern.

Acknowledgment

This work was supported by the National Nat-
ural Science Foundation of China (62441605,
62376243, 62037001, U20A20387), and the Starry
Night Science Fund of Zhejiang University Shang-
hai Institute for Advanced Study (SN-ZJU-SIAS-
0010).

References
Alessandro Achille, Michael Lam, Rahul Tewari,

Avinash Ravichandran, Subhransu Maji, Charless C
Fowlkes, Stefano Soatto, and Pietro Perona. 2019.
Task2vec: Task embedding for meta-learning. In
Proceedings of the IEEE/CVF international confer-
ence on computer vision, pages 6430–6439.

Anonymous. 2024. MoLE: Mixture of loRA experts.
In The Twelfth International Conference on Learning
Representations.

Akari Asai, Timo Schick, Patrick Lewis, Xilun Chen,
Gautier Izacard, Sebastian Riedel, Hannaneh Ha-
jishirzi, and Wen-tau Yih. 2022. Task-aware retrieval
with instructions. arXiv preprint arXiv:2211.09260.

Ziwei Chai, Guoyin Wang, Jing Su, Tianjie Zhang, Xu-
anwen Huang, Xuwu Wang, Jingjing Xu, Jianbo
Yuan, Hongxia Yang, Fei Wu, et al. 2024. An ex-
pert is worth one token: Synergizing multiple expert
llms as generalist via expert token routing. arXiv
preprint arXiv:2403.16854.

Alexandra Chronopoulou, Matthew E Peters, Alexander
Fraser, and Jesse Dodge. 2023. Adaptersoup: Weight
averaging to improve generalization of pretrained
language models. arXiv preprint arXiv:2302.07027.

Shihan Dou, Enyu Zhou, Yan Liu, Songyang Gao, Jun
Zhao, Wei Shen, Yuhao Zhou, Zhiheng Xi, Xiao
Wang, Xiaoran Fan, Shiliang Pu, Jiang Zhu, Rui
Zheng, Tao Gui, Qi Zhang, and Xuanjing Huang.
2023. Loramoe: Revolutionizing mixture of experts
for maintaining world knowledge in language model
alignment.

Muhammad Usman Hadi, Rizwan Qureshi, Abbas Shah,
Muhammad Irfan, Anas Zafar, Muhammad Bilal
Shaikh, Naveed Akhtar, Jia Wu, Seyedali Mirjalili,
et al. 2023. A survey on large language models:
Applications, challenges, limitations, and practical
usage. Authorea Preprints.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Zhiqiang Hu, Yihuai Lan, Lei Wang, Wanyu Xu, Ee-
Peng Lim, Roy Ka-Wei Lee, Lidong Bing, and Sou-
janya Poria. 2023. Llm-adapters: An adapter family

4455

https://openreview.net/forum?id=uWvKBCYh4S
http://arxiv.org/abs/2312.09979
http://arxiv.org/abs/2312.09979
http://arxiv.org/abs/2312.09979

for parameter-efficient fine-tuning of large language
models. arXiv preprint arXiv:2304.01933.

Chengsong Huang, Qian Liu, Bill Yuchen Lin, Tianyu
Pang, Chao Du, and Min Lin. 2023. Lorahub: Effi-
cient cross-task generalization via dynamic lora com-
position.

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Se-
bastian Riedel, Piotr Bojanowski, Armand Joulin,
and Edouard Grave. 2021. Unsupervised dense in-
formation retrieval with contrastive learning. arXiv
preprint arXiv:2112.09118.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan,
and Geoffrey E Hinton. 1991. Adaptive mixtures of
local experts. Neural computation, 3(1):79–87.

Michael I Jordan and Robert A Jacobs. 1994. Hierarchi-
cal mixtures of experts and the em algorithm. Neural
computation, 6(2):181–214.

Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for
open-domain question answering. arXiv preprint
arXiv:2004.04906.

Qidong Liu, Xian Wu, Xiangyu Zhao, Yuanshao Zhu,
Derong Xu, Feng Tian, and Yefeng Zheng. 2023a.
Moelora: An moe-based parameter efficient fine-
tuning method for multi-task medical applications.
arXiv preprint arXiv:2310.18339.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengx-
iao Du, Zhilin Yang, and Jie Tang. 2022. P-tuning:
Prompt tuning can be comparable to fine-tuning
across scales and tasks. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 61–68.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding,
Yujie Qian, Zhilin Yang, and Jie Tang. 2023b. Gpt
understands, too. AI Open.

Mohammed Muqeeth, Haokun Liu, and Colin Raffel.
2023. Soft merging of experts with adaptive routing.
arXiv preprint arXiv:2306.03745.

Jianmo Ni, Gustavo Hernández Ábrego, Noah Con-
stant, Ji Ma, Keith B Hall, Daniel Cer, and Yinfei
Yang. 2021. Sentence-t5: Scalable sentence encoders
from pre-trained text-to-text models. arXiv preprint
arXiv:2108.08877.

Xiaonan Nie, Shijie Cao, Xupeng Miao, Lingxiao Ma,
Jilong Xue, Youshan Miao, Zichao Yang, Zhi Yang,
and CUI Bin. 2021. Dense-to-sparse gate for mixture-
of-experts.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
arXiv preprint arXiv:1908.10084.

Carlos Riquelme, Joan Puigcerver, Basil Mustafa,
Maxim Neumann, Rodolphe Jenatton, André Su-
sano Pinto, Daniel Keysers, and Neil Houlsby. 2021.
Scaling vision with sparse mixture of experts. Ad-
vances in Neural Information Processing Systems,
34:8583–8595.

Sheng Shen, Le Hou, Yanqi Zhou, Nan Du, Shayne
Longpre, Jason Wei, Hyung Won Chung, Barret
Zoph, William Fedus, Xinyun Chen, et al. 2023.
Mixture-of-experts meets instruction tuning: A win-
ning combination for large language models. arXiv
preprint arXiv:2305.14705.

Ying Sheng, Shiyi Cao, Dacheng Li, Coleman
Hooper, Nicholas Lee, Shuo Yang, Christopher Chou,
Banghua Zhu, Lianmin Zheng, Kurt Keutzer, et al.
2023. S-lora: Serving thousands of concurrent lora
adapters. arXiv preprint arXiv:2311.03285.

Hongjin Su, Weijia Shi, Jungo Kasai, Yizhong Wang,
Yushi Hu, Mari Ostendorf, Wen-tau Yih, Noah A
Smith, Luke Zettlemoyer, and Tao Yu. 2022. One
embedder, any task: Instruction-finetuned text em-
beddings. arXiv preprint arXiv:2212.09741.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. 2023. Stan-
ford alpaca: An instruction-following llama
model. https://github.com/tatsu-lab/
stanford_alpaca.

Gemini Team, Rohan Anil, Sebastian Borgeaud,
Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai,
Anja Hauth, et al. 2023. Gemini: a family of
highly capable multimodal models. arXiv preprint
arXiv:2312.11805.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao
Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai Tang,
Xu Chen, Yankai Lin, et al. 2023. A survey on large
language model based autonomous agents. arXiv
preprint arXiv:2308.11432.

Yaqing Wang, Sahaj Agarwal, Subhabrata Mukherjee,
Xiaodong Liu, Jing Gao, Ahmed Hassan Awadal-
lah, and Jianfeng Gao. 2022. Adamix: Mixture-
of-adaptations for parameter-efficient model tuning.
arXiv preprint arXiv:2210.17451.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M Dai, and Quoc V Le. 2021. Finetuned lan-
guage models are zero-shot learners. arXiv preprint
arXiv:2109.01652.

4456

http://arxiv.org/abs/2307.13269
http://arxiv.org/abs/2307.13269
http://arxiv.org/abs/2307.13269
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca

Yeming Wen and Swarat Chaudhuri. 2023. Batched
low-rank adaptation of foundation models. arXiv
preprint arXiv:2312.05677.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2020. Transformers: State-of-the-art natural
language processing. In Proceedings of the 2020 con-
ference on empirical methods in natural language
processing: system demonstrations, pages 38–45.

Yiquan Wu, Siying Zhou, Yifei Liu, Weiming Lu, Xi-
aozhong Liu, Yating Zhang, Changlong Sun, Fei Wu,
and Kun Kuang. 2023. Precedent-enhanced legal
judgment prediction with llm and domain-model col-
laboration. arXiv preprint arXiv:2310.09241.

Hongyang Yang, Xiao-Yang Liu, and Christina Dan
Wang. 2023. Fingpt: Open-source financial large
language models. arXiv preprint arXiv:2306.06031.

Ted Zadouri, Ahmet Üstün, Arash Ahmadian, Beyza Er-
miş, Acyr Locatelli, and Sara Hooker. 2023. Pushing
mixture of experts to the limit: Extremely parameter
efficient moe for instruction tuning. arXiv preprint
arXiv:2309.05444.

Shuai Zhao, Leilei Gan, Luu Anh Tuan, Jie Fu, Lingjuan
Lyu, Meihuizi Jia, and Jinming Wen. 2024. De-
fending against weight-poisoning backdoor attacks
for parameter-efficient fine-tuning. arXiv preprint
arXiv:2402.12168.

Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian
McAuley, Ke Xu, and Furu Wei. 2020. Bert loses
patience: Fast and robust inference with early exit. In
Advances in Neural Information Processing Systems,
volume 33, pages 18330–18341. Curran Associates,
Inc.

Wangchunshu Zhou, Canwen Xu, and Julian McAuley.
2022. Efficiently tuned parameters are task embed-
dings. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
pages 5007–5014, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

Yun Zhu, Nevan Wichers, Chu-Cheng Lin, Xinyi
Wang, Tianlong Chen, Lei Shu, Han Lu, Canoee
Liu, Liangchen Luo, Jindong Chen, et al. 2023.
Sira: Sparse mixture of low rank adaptation. arXiv
preprint arXiv:2311.09179.

A Details of Baseline Methods

(1) Mixture of Experts (Zhu et al., 2023; Zadouri
et al., 2023; Liu et al., 2023a; Wang et al., 2022;
Anonymous, 2024). Many works have considered
coordinating different adapters through MoE, and
here we explored three distinct variants: one em-
ploying a soft mixture of experts and the other
utilizing discrete routing (top1 and top3). Detailed

information on the training aspects of MoE meth-
ods is provided in the Appendix.F. (2) SMEAR
(Muqeeth et al., 2023) introduces the concept of
adaptive routing by performing a weighted average
of different adapters’ parameters to utilize various
experts effectively. For the MoE and SMEAR base-
lines, challenges arise in scaling due to training
confined to a limited set of LoRAs. Consequently,
we strategically selected a dedicated LoRA expert
for each domain to specialize in router training. (3)
AdapterSoup (Chronopoulou et al., 2023) uni-
formly selects the corresponding LoRAs for the
entire downstream task, which lacks the ability to
provide personalized service for diverse requests.
(4) LoRAhub (Huang et al., 2023) enables black-
box optimization to learn the weights of various
LoRA parameters, thereby facilitating weighted pa-
rameter averaging for specific downstream tasks.
In our implementation, we conformed to the de-
fault setting, which entails randomly selecting 20
LoRAs from the available LoRA pool and perform-
ing weighted parameter averaging. For the MoE,
SMEAR, and LoRAhub approaches, we selected
20 data samples from the training datasets of all
tasks to serve as their training data.

Trainable
Parameters

LoRA

LoRA

LoRA

Fixed LoRA
Selection Retriever

LoRA LoRA

LoRA LoRA

LoRA
Pool

LoRA

LoRA

One-size-fits-all
strategy

Specific
Task

LoRA LoRA

Input-aware
Selection

Mixed
Task

LoRA LoRA

LoRA LoRA

a) Comparation of LoraRetriever with MOE methods.

b) Comparation of LoraRetriever with LoRAhub&AdapterSoup.

Figure 6: The advantages of LoraRetriever compared
to previous methods. The above figure shows the differ-
ence between our method and MoE in expert routing;
the figure below demonstrates the difference between
our method’s focus on mixed-task scenarios and previ-
ous methods that only targeted specific tasks.

B Main Difference between
LoraRetriever and Baseline Methods

As depicted in Fig.6, LoraRetriever distinguishes it-
self from baseline methods significantly. It utilizes

4457

https://proceedings.neurips.cc/paper/2020/file/d4dd111a4fd973394238aca5c05bebe3-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/d4dd111a4fd973394238aca5c05bebe3-Paper.pdf
https://doi.org/10.18653/v1/2022.emnlp-main.334
https://doi.org/10.18653/v1/2022.emnlp-main.334

an off-the-shelf retriever for routing experts, con-
trasting with MoE’s approach, to achieve not only
more flexibility but also enhanced generalization
to unseen LoRAs. Moreover, unlike isolated task-
focused methods like LoRAhub and AdapterSoup,
LoraRetriever is adept at adaptively managing het-
erogeneous downstream tasks.

C Full Results

In Tab.4, we show the full results of the mixed-task
scenario of all tasks.

D PyTorch-style pseudocode for batch
inference

The batch inference process can be easily achieved
through a few lines of einsum operation. We show
the PyTorch style pseudocode in Alg.1.

Algorithm 1: PyTorch-style pseudocode
for batch inference
X: (b,l,d), M: (b,p)

A: (p,r,d), B: (p,d,r)

LoRA fusion computation

FA=torch.einsum(’bp,prd->brd’,M,A)

FB=torch.einsum(’bp,pdr->bdr’,M,B)

mid=torch.einsum(’bld,brd->blr’,X,FA)

res=torch.einsum(’blr,bdr->bld’,mid,FB)

LoRA mixture computation

mid=torch.einsum(’bld,prd->blpr’,X,A)

mid=torch.einsum(’blpr,pdr->blpd’,mid,B)

res=torch.einsum(’blpd,bp->bld’,mid,M)

E Details of Training and Evaluation
datasets

We leverage a subset of flan-v2 datasets (Wei et al.,
2021) as shown in Fig.7 for LoRA expert training
and mixed-task dataset generation. We summarize
the details of the used datasets as follows:

Struct-to-Text Conversion: This task evaluates
the capability to generate natural language descrip-
tions from structured data inputs. We use the fol-
lowing datasets: (1) CommonGen; (2) DART; (3)
E2ENLG; (4) WebNLG;

Translation: Translation involves converting
text from one language to another, maintaining
the original meaning and nuances. We use the
following datasets: (1) En-Fr from WMT’14; En-
De, En-Tr, En-Ru, En-Fi, En-Ro from WMT’16;
(3) En-Es from Paracrawl.

Commonsense Reasoning: This involves as-
sessing the ability to apply physical or scientific
principles alongside common sense in reasoning
tasks. We use the following datasets: (1) COPA,
(2) HellaSwag, (3) PiQA, and (4) StoryCloze.

Sentiment Analysis: A fundamental task in nat-
ural language processing (NLP) that determines the
sentiment polarity (positive or negative) of a given
text. We use the following datasets: (1) IMDB, (2)
Sentiment140, (3) SST-2, and (4) Yelp.

Closed-Book Question Answering: This task
challenges models to answer questions about gen-
eral knowledge without direct access to external
information sources. We use the following datasets:
(1) ARC, (2) NQ, and (3) TriviaQA.

Paraphrase Detection: This task requires mod-
els to ascertain whether two sentences convey the
same meaning, indicating semantic equivalence.
We use the following datasets: (1) MRPC, (2) QQP,
and (3) Paws Wiki.

Coreference Resolution: Involves identifying
instances within a text that refer to the same entity,
demonstrating an understanding of textual context.
We use the following datasets: (1) DPR and (2)
WSC273.

Reading comprehension: Assesses the capabil-
ity to derive answers to questions from a provided
text containing relevant information. We use the
following datasets: (1) BoolQ, (2) DROP, (3) Mul-
tiRC, (4) OBQA, (5) SQuADv1, (6) SQuADv2.

Reading Comprehension with Commonsense:
Merges traditional reading comprehension skills
with commonsense reasoning, requiring under-
standing beyond the explicit text. We use the fol-
lowing datasets: (1) CosmosQA; (2) ReCoRD.

Natural Language Inference: Focuses on de-
ducing the relationship between two sentences, de-
termining if the second sentence logically follows
from, contradicts, or is unrelated to the first sen-
tence. We use the following datasets: (1) ANLI,
(2) CB; (3) MNLI; (4) QNLI; (5) SNLI; (6) WNLI;
(7) RTE.

F Implementation Details of Baseline
Methods

F.1 MoE baselines

We use E to denote the LoRA expert and R to de-
note the router. The MoE methods can be expressed

4458

Task / Llama-2-7b
Perfect

Selection
Selection Fusion Mixture MoE

Top1
MoE
Top3

MoE
Soft

SME-
AR

Adapter
Soup

LoRA
HubIID OOD IID OOD IID OOD

Struct to Text
WebNLG Rouge-1 71.2 67.0 53.9 49.4 45.4 57.8 53.9 45.1 47.6 49.1 51.1 3.9 32.5
WebNLG Rouge-2 50.6 44.5 30.0 25.9 24.1 33.5 29.4 22.6 25.8 26.1 27.9 0.9 17.3
WebNLG Rouge-l 64.4 60.9 49.1 45.5 41.0 52.3 49.6 40.0 41.9 43.3 45.4 3.9 31.1
DART Rouge-1 71.7 67.9 58.4 56.3 53.4 63.2 60.0 55.4 56.3 56.9 60.0 3.3 40.0
DART Rouge-2 49.1 45.8 34.9 32.3 30.6 36.6 35.4 30.3 31.0 30.8 33.0 1.3 20.1
DART Rouge-l 64.6 61.1 52.4 50.3 47.9 56.3 52.4 49.7 50.8 50.2 54.8 3.3 35.2
E2ENLG Rouge-1 66.1 65.8 59.3 62.2 57.2 66.0 58.7 52.9 54.0 55.3 53.2 4.2 50.1
E2ENLG Rouge-2 40.0 39.4 34.1 34.7 32.0 38.8 32.1 26.9 27.6 28.8 27.5 2.4 26.3
E2ENLG Rouge-l 56.7 55.7 50.2 52.7 49.1 56.9 49.0 45.1 45.0 47.0 45.1 4.2 42.2
CommonGen Rouge-1 46.9 44.7 29.0 29.9 27.7 36.5 29.0 29.0 29.3 30.1 27.6 6.6 19.8
CommonGen Rouge-2 18.8 18.3 7.3 9.9 7.2 11.1 8.6 7.7 7.1 9.3 8.4 0.0 6.9
CommonGen Rouge-l 42.5 40.5 24.0 25.8 23.3 32.7 24.8 24.4 25.1 26.3 24.3 6.6 18.0

Translation
Paracrawl-enes 24.3 24.2 20.3 22.9 22.3 22.8 22.1 18.0 18.8 19.5 21.6 4.5 16.4
WMT’16-tren 3.2 3.1 2.6 3.5 3.3 3.7 2.6 3.5 3.2 3.4 3.2 0.0 2.0
WMT’16-ruen 10.8 10.4 9.8 9.2 9.3 11.0 10.8 6.2 7.8 8.3 7.3 0.0 4.8
WMT’16-deen 18.9 18.7 20.3 17.9 18.8 18.8 18.7 11.6 14.0 14.7 16.6 1.1 11.4
WMT’16-fien 6.5 6.5 7.0 7.2 7.1 7.3 7.8 6.2 6.2 6.1 6.5 0.7 4.3
WMT’16-roen 13.9 14.0 12.3 12.8 13.3 13.1 12.2 9.8 10.7 10.1 10.3 0.3 8.0
WMT’14-enfr 16.5 16.1 16.9 17.7 18.0 17.8 18.0 15.9 17.3 17.1 16.4 3.5 15.2
WMT’16-csen 10.7 9.4 7.0 6.1 6.2 8.3 5.8 4.7 6.3 6.3 6.3 0.8 6.1

COMMONSENSE
StoryCloze 72.0 62.0 42.0 72.0 68.0 84.0 58.0 74.0 70.0 70.0 68.0 62.0 48.0
PIQA 46.0 46.0 32.0 34.0 36.0 38.0 34.0 40.0 38.0 38.0 36.0 38.0 0.0
COPA 86.0 74.0 68.0 78.0 70.0 80.0 68.0 72.0 70.0 72.0 70.0 56.0 22.0
HellaSwag 46.0 40.0 42.0 20.0 18.0 44.0 40.0 32.0 30.0 26.0 26.0 28.0 0.0
sentiment
SST-2 98.0 98.0 96.0 74.0 78.0 96.0 94.0 56.0 68.0 66.0 66.0 74.0 0.0
Yelp 98.0 94.0 94.0 96.0 96.0 98.0 98.0 86.0 90.0 86.0 84.0 80.0 0.0
IMDB 96.0 96.0 96.0 92.0 82.0 96.0 96.0 76.0 80.0 80.0 84.0 80.0 0.0
sentiment140 68.0 70.0 70.0 54.0 58.0 68.0 74.0 62.0 62.0 66.0 62.0 60.0 2.0
READING Comp.
MultiRC 68.0 52.0 38.0 44.0 44.0 48.0 44.0 54.0 52.0 50.0 48.0 40.0 6.0
SQuADv2 62.0 56.0 12.0 30.0 20.0 22.0 16.0 24.0 24.0 26.0 22.0 16.0 0.0
SQuADv1 68.0 66.0 68.0 64.0 64.0 62.0 68.0 68.0 70.0 66.0 66.0 54.0 4.0
OBQA 82.0 68.0 58.0 64.0 60.0 78.0 66.0 62.0 64.0 66.0 60.0 40.0 0.0
BoolQ 84.0 60.0 60.0 68.0 70.0 80.0 76.0 74.0 68.0 76.0 70.0 72.0 6.0
drop 40.0 8.0 6.0 14.0 12.0 18.0 14.0 10.0 8.0 8.0 8.0 22.0 0.0
CLOSE-BOOK QA
NQ 18.0 16.0 10.0 16.0 14.0 16.0 10.0 12.0 12.0 12.0 4.0 12.0 0.0
ARC-e 50.0 56.0 70.0 54.0 56.0 66.0 82.0 58.0 58.0 60.0 58.0 48.0 0.0
ARC-c 46.0 42.0 46.0 34.0 34.0 50.0 46.0 46.0 42.0 42.0 42.0 24.0 0.0
TriviaQa 66.0 46.0 46.0 60.0 46.0 48.0 56.0 46.0 42.0 46.0 24.0 42.0 4.0
COREFERENCE
DPR 54.0 50.0 50.0 56.0 60.0 68.0 56.0 64.0 60.0 62.0 62.0 46.0 2.0
WSC 50.0 50.0 42.0 38.0 46.0 58.0 42.0 58.0 58.0 52.0 54.0 40.0 0.0
READ. COOMP. W/ COMMONSENSE
CosmosQa 68.0 68.0 34.0 46.0 32.0 50.0 46.0 44.0 46.0 44.0 38.0 14.0 6.0
record 70.0 70.0 26.0 24.0 6.0 42.0 34.0 18.0 12.0 14.0 8.0 14.0 0.0
PARAPHRASE
Paws Wiki 90.0 64.0 40.0 44.0 42.0 56.0 46.0 56.0 50.0 48.0 54.0 60.0 2.0
QQP 74.0 74.0 68.0 66.0 60.0 80.0 58.0 50.0 40.0 36.0 28.0 54.0 0.0
MRPC 60.0 58.0 58.0 60.0 62.0 60.0 58.0 42.0 44.0 40.0 42.0 60.0 2.0
STSB 38.0 36.0 16.0 12.0 12.0 30.0 20.0 20.0 20.0 20.0 14.0 12.0 0.0
NLI
CB 88.9 80.0 62.2 77.8 57.8 86.7 66.7 68.9 64.4 68.9 62.2 55.6 13.3
WNLI 70.0 68.0 46.0 44.0 50.0 60.0 54.0 56.0 56.0 42.0 44.0 52.0 0.0
ANLI-r1 50.0 50.0 50.0 40.0 42.0 40.0 42.0 40.0 40.0 36.0 38.0 38.0 24.0
ANLI-r2 46.0 46.0 46.0 32.0 36.0 46.0 46.0 40.0 36.0 38.0 32.0 46.0 20.0
ANLI-r3 46.0 42.0 38.0 38.0 40.0 44.0 50.0 28.0 32.0 34.0 38.0 40.0 24.0
MNLI-m 88.0 84.0 88.0 62.0 66.0 80.0 88.0 48.0 54.0 50.0 56.0 76.0 0.0
MNLI-mm 92.0 90.0 94.0 64.0 82.0 88.0 90.0 48.0 48.0 50.0 60.0 84.0 2.0
SNLI 96.0 84.0 84.0 56.0 58.0 90.0 92.0 54.0 52.0 54.0 54.0 82.0 0.0
QNLI 94.0 94.0 26.0 46.0 48.0 74.0 38.0 56.0 56.0 54.0 60.0 70.0 0.0
RTE 52.0 62.0 72.0 54.0 58.0 70.0 76.0 64.0 58.0 56.0 64.0 80.0 22.0

Table 4: Mixed Tasks evaluation on both NLU & NLG tasks. “OOD" indicates that during retrieval, we masked the
corresponding task’s LoRA for testing generalization when facing unknown tasks.

4459

Task / Llama-2-13b
Perfect

Selection
Selection Fusion Mixture MoE

Top1
MoE
Top3

MoE
Soft

SME-
AR

Adapter
Soup

LoRA
HubIID OOD IID OOD IID OOD

Struct to Text
WebNLG Rouge-1 72.6 68.5 51.9 55.2 51.3 59.7 53.7 47.0 47.8 48.3 49.7 6.6 34.2
WebNLG Rouge-2 51.4 47.5 28.6 30.1 27.4 35.6 29.1 25.5 26.4 27.0 26.3 3.2 16.8
WebNLG Rouge-l 66.0 62.4 48.3 49.4 46.2 55.1 49.0 42.5 44.3 43.5 44.3 6.3 32.4
DART Rouge-1 74.0 67.0 57.0 60.4 58.7 62.6 60.6 57.9 57.0 58.7 58.9 12.5 43.3
DART Rouge-2 54.6 45.9 33.6 37.4 35.2 38.9 37.3 32.6 33.2 34.1 34.3 5.9 25.5
DART Rouge-l 67.7 61.2 50.0 54.0 52.2 55.0 53.4 50.9 50.9 51.8 51.5 11.8 38.1
E2ENLG Rouge-1 66.4 66.1 59.2 65.6 61.7 66.7 63.9 52.8 53.9 55.5 55.1 2.5 58.6
E2ENLG Rouge-2 39.6 39.3 32.8 36.6 33.5 39.0 36.4 27.8 28.4 28.3 28.8 0.9 31.6
E2ENLG Rouge-l 56.7 56.4 48.9 53.4 49.7 56.2 53.7 43.0 44.5 45.1 45.4 2.2 48.2
CommonGen Rouge-1 48.5 48.9 29.3 29.5 27.0 41.7 30.0 29.5 29.3 31.5 29.5 6.9 21.2
CommonGen Rouge-2 17.7 20.3 8.2 12.6 11.3 17.0 9.5 12.2 12.3 13.5 11.5 0.0 8.8
CommonGen Rouge-l 44.3 44.1 24.4 26.7 24.6 36.7 25.3 28.0 27.9 30.3 27.8 5.4 19.7

Translation
Paracrawl-enes 24.4 25.4 23.1 28.3 27.2 27.4 25.8 21.8 21.5 20.0 24.2 4.0 19.0
WMT’16-tren 2.9 2.4 1.2 3.7 3.2 3.4 2.7 3.0 3.3 2.7 3.3 0.0 1.9
WMT’16-ruen 11.8 11.5 10.3 11.8 11.5 10.5 12.0 8.8 9.9 9.3 8.8 0.0 8.1
WMT’16-deen 19.9 19.9 20.7 20.2 20.7 20.2 20.2 16.5 18.6 18.1 18.3 2.2 15.1
WMT’16-fien 7.3 6.8 5.1 9.8 7.3 8.7 7.8 8.0 8.3 8.4 8.3 0.0 6.3
WMT’16-roen 14.0 13.9 10.9 11.6 11.1 17.4 13.3 7.9 9.1 9.3 9.3 0.0 7.4
WMT’14-enfr 16.6 17.1 18.4 20.7 21.1 18.7 20.9 17.4 17.5 18.7 17.2 0.4 15.1
WMT’16-csen 6.6 6.2 11.6 11.1 10.5 10.3 10.1 10.6 10.7 9.0 9.4 0.0 8.8

COMMONSENSE
StoryCloze 96.0 80.0 56.0 90.0 76.0 80.0 76.0 96.0 98.0 94.0 92.0 18.0 64.0
PIQA 48.0 52.0 30.0 46.0 46.0 46.0 46.0 42.0 40.0 36.0 38.0 14.0 10.0
COPA 76.0 74.0 68.0 74.0 74.0 78.0 76.0 72.0 80.0 80.0 76.0 22.0 60.0
HellaSwag 58.0 30.0 36.0 34.0 28.0 52.0 44.0 50.0 46.0 46.0 38.0 16.0 2.0
sentiment
SST-2 98.0 98.0 98.0 86.0 86.0 98.0 100.0 98.0 96.0 98.0 96.0 82.0 26.0
Yelp 98.0 98.0 100.0 94.0 92.0 98.0 98.0 98.0 98.0 98.0 98.0 82.0 0.0
IMDB 96.0 98.0 98.0 88.0 82.0 98.0 98.0 100.0 100.0 100.0 98.0 90.0 4.0
sentiment140 68.0 68.0 68.0 80.0 74.0 72.0 70.0 64.0 64.0 64.0 64.0 64.0 14.0
READING Comp.
MultiRC 88.0 72.0 36.0 64.0 42.0 66.0 44.0 44.0 48.0 40.0 40.0 72.0 2.0
SQuADv1 74.0 62.0 62.0 58.0 58.0 60.0 60.0 64.0 66.0 64.0 60.0 42.0 8.0
SQuADv2 66.0 58.0 34.0 38.0 24.0 34.0 24.0 26.0 22.0 24.0 24.0 36.0 0.0
OBQA 86.0 80.0 72.0 76.0 76.0 88.0 82.0 80.0 76.0 78.0 76.0 48.0 0.0
BoolQ 84.0 68.0 66.0 84.0 82.0 78.0 78.0 86.0 84.0 88.0 86.0 74.0 10.0
Drpo 58.0 22.0 18.0 20.0 14.0 36.0 20.0 22.0 24.0 20.0 22.0 20.0 0.0
CLOSE-BOOK QA
NQ 30.0 28.0 12.0 22.0 14.0 24.0 16.0 12.0 10.0 12.0 10.0 6.0 2.0
ARC-e 90.0 90.0 88.0 92.0 92.0 94.0 94.0 90.0 90.0 86.0 90.0 58.0 8.0
ARC-c 68.0 66.0 58.0 64.0 60.0 68.0 70.0 68.0 60.0 68.0 62.0 38.0 4.0
TriviaQa 68.0 56.0 54.0 70.0 66.0 66.0 64.0 68.0 70.0 68.0 68.0 36.0 12.0
COREFERENCE
DPR 90.0 90.0 72.0 68.0 66.0 88.0 72.0 76.0 76.0 68.0 72.0 52.0 20.0
WSC 58.0 60.0 58.0 42.0 52.0 64.0 56.0 46.0 48.0 44.0 42.0 58.0 0.0
READ. COOMP. W/ COMMONSENSE
CosmosQa 84.0 82.0 38.0 80.0 76.0 82.0 70.0 74.0 74.0 74.0 80.0 8.0 28.0
record 80.0 78.0 28.0 34.0 22.0 74.0 46.0 28.0 22.0 24.0 18.0 18.0 0.0
PARAPHRASE
Paws Wiki 92.0 70.0 52.0 74.0 50.0 88.0 74.0 54.0 66.0 54.0 62.0 90.0 8.0
QQP 90.0 88.0 76.0 66.0 56.0 84.0 62.0 70.0 66.0 60.0 66.0 78.0 2.0
MRPC 84.0 70.0 62.0 64.0 64.0 78.0 64.0 62.0 62.0 62.0 64.0 82.0 0.0
STSB 44.0 44.0 20.0 18.0 12.0 34.0 22.0 14.0 16.0 14.0 16.0 6.0 0.0
NLI
CB 100.0 91.1 84.4 84.4 80.0 93.3 88.9 73.3 82.2 75.6 77.8 73.3 13.3
WNLI 72.0 72.0 62.0 70.0 68.0 76.0 66.0 58.0 66.0 56.0 56.0 76.0 6.0
ANLI-r1 70.0 70.0 70.0 56.0 50.0 64.0 68.0 48.0 44.0 44.0 46.0 50.0 12.0
ANLI-r2 64.0 56.0 56.0 38.0 36.0 60.0 60.0 48.0 48.0 48.0 42.0 48.0 8.0
ANLI-r3 68.0 56.0 56.0 46.0 46.0 62.0 60.0 46.0 48.0 56.0 58.0 48.0 20.0
MNLI-m 88.0 90.0 88.0 88.0 88.0 86.0 88.0 90.0 94.0 88.0 80.0 96.0 4.0
MNLI-mm 90.0 90.0 94.0 94.0 92.0 94.0 100.0 94.0 98.0 88.0 88.0 80.0 2.0
SNLI 90.0 88.0 88.0 76.0 74.0 90.0 92.0 96.0 96.0 94.0 86.0 80.0 16.0
QNLI 94.0 94.0 30.0 68.0 56.0 74.0 58.0 60.0 62.0 60.0 56.0 56.0 32.0
RTE 88.0 82.0 74.0 78.0 74.0 82.0 76.0 64.0 72.0 64.0 76.0 68.0 36.0

Table 5: Mixed Tasks evaluation on both NLU & NLG tasks. “OOD" indicates that during retrieval, we masked the
corresponding task’s LoRA for testing generalization when facing unknown tasks.

4460

Natural language inference

ANLI (R1-R3) RTE

CB SNLI

MNLI WNLI

QNLI

Commonsense

CoPA

HellaSwag

PiQA

StoryCloze

Sentiment

IMDB

Sent140

SST-2

Yelp

Paraphrase

MRPC

QQP

PAWS

Struct to text

CommonGen

DART

Reading Comp.

BoolQ RTE

CB SNLI

QNLI

Reading Comp. W/
commonsense

CosmosQA

ReCoRD

Coreference

DRP

WSC273

Closed-book QA

ARC (easy/chal.)

NQ

E2ENLG

WEBNLG

Struct to text

WMT-16 Tr/En

WMT-16 De/En

WMT-16 Ru/En

WMT-16 Fi/En

WMT-16 Ro/En

WMT-14 En/Fr

STS-B

TQA

ParaCrawl EN/ES

Figure 7: Datasets and task clusters used to train LoRAs and generate mixed-task evaluation set in this paper (NLU
tasks in blue; NLG tasks in green).

in the following way:

y =
k∑

i=i

R(x)iEi(x). (5)

We implied two variants of the MoE routing mech-
anism. (1) Dense Gating. Following (Zadouri
et al., 2023), the router network consists of a dense
layer with trainable parameter Wg, and the gating
score could be obtained through a softmax function
by:

si = R(x)i = softmax(W T
g x), (6)

(2)Sparse Gate. To maintain the sparsity while
training, we leverage the Gumbel softmax trick as
(Muqeeth et al., 2023; Nie et al., 2021), where the
router can be written as:

R̂(x)i =
(log(R(x)i) + gi)/τ∑k

i=1 exp((log(R(x)i) + gi)/τ)
(7)

where gi ∼ Gumbel(0, 1) and τ is the temperature.
Due to MoE not being easily scalable and arbi-

trarily adding new LORAs, we randomly selected
a LoRA as an expert for each task cluster in the
experiment and trained the corresponding Router’s
parameters. We randomly selected 20 samples for
each task during training to form a unified dataset
for parameter training.

F.2 SMEAR

SMEAR (Muqeeth et al., 2023) does not per-
form routing aggregation on the Adapter output
but rather aggregates the Adapter at the parame-
ter level. We adopt the same setting as the MoE
methods, and the results could be calculated in the

following way:

ΘSMEAR =
k∑

i=i

R(x)iΘi, (8)

where Θi denote the parameter of the LoRA-i.

F.3 AdapterSoup

AdapterSoup (Chronopoulou et al., 2023), for new
downstream tasks, retrieves the parameters that
need to be involved in aggregation through sen-
tence bert and performs weight-space averaging on
these parameters to adapt to the new domain. We
have uniformly retrieved 3 LoRAs for mixed-task
to test their capabilities under mixed-task condi-
tions.

F.4 LoRAhub

LoRAhub (Huang et al., 2023) also aggregates 20
LoRAs randomly for new downstream tasks. In
order to learn the weight of LoRA, a black-box op-
timization method is employed to learn the weight
of each LoRA without calculating the gradients of
the large model. It performs weighted averaging at
the parameter level. Similar to the training process
of MoE, we randomly selected 20 samples for each
task to form a unified training dataset for black-box
optimization.

G More Related Works

Personalized LoRA serving. Sheng et al. (2023)
propose S-LoRA to discuss serving thousands of
concurrent LoRA. The framework targets scenar-
ios in which multiple tasks must be handled si-
multaneously without compromising the efficiency
of the base models. Wen and Chaudhuri (2023)

4461

propose FLoRA, which enables efficient batching
of diverse request types in low-rank adaptation
(LoRA) of foundation models. These studies dis-
cuss how to deploy or train personalized LoRAs.
However, these methods can only utilize a single
user-specified LoRA during inference, failing to
fully leverage the combination of LoRAs from dif-
ferent tasks. Moreover, the primary focus of these
discussions is on computational strategies in GPUs
and training strategies, which are orthogonal to the
routing strategies with which we are concerned.

4462

