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Large language models (LLMs) have garnered a great deal of attention for their exceptional
generative performance on commonsense and reasoning tasks. In this work, we investigate
LLMs’ capabilities for generalization using a particularly challenging type of statement: gener-
ics. Generics express generalizations (e.g., birds can fly) but do so without explicit quantification.
They are notable because they generalize over their instantiations (e.g., sparrows can fly)
yet hold true even in the presence of exceptions (e.g., penguins do not). For humans, these
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generic generalizations play a fundamental role in cognition, concept acquisition, and intuitive
reasoning. We investigate how LLMs respond to and reason about generics.

To this end, we first propose a framework grounded in pragmatics to automatically gen-
erate both exceptions and instantiations – collectively exemplars. We make use of focus—a
pragmatic phenomenon that highlights meaning-bearing elements in a sentence—to capture the
full range of interpretations of generics across different contexts of use. This allows us to derive
precise logical definitions for exemplars and operationalize them to automatically generate
exemplars from LLMs. Using our system, we generate a dataset of ∼370k exemplars across
∼17k generics and conduct a human validation of a sample of the generated data.

We use our final generated dataset to investigate how LLMs reason about generics. Humans
have a documented tendency to conflate universally quantified statements (e.g., all birds can fly)
with generics. Therefore, we probe whether LLMs exhibit similar overgeneralization behavior
in terms of quantification and in property inheritance. We find that LLMs do show evidence of
overgeneralization, although they sometimes struggle to reason about exceptions. Furthermore,
we find that LLMs may exhibit similar non-logical behavior to humans when considering
property inheritance from generics.

1. Introduction

Large language models (LLMs) have garnered a great deal of attention for their excep-
tional performance on a range of reasoning tasks, including commonsense reasoning.
In this work, we investigate the ability of LLMs to reason about generalizations, using a
particular type of statement that is fundamental to human reasoning: generics. Generics
express generalizations about the world (e.g., birds can fly) but do so without explicit
quantification (e.g., without quantifiers such as “most”, “some”, “all”). Since generics
generalize over their INSTANTIATIONS (e.g., sparrows can fly) while holding true even
in the presence of EXCEPTIONS (e.g., penguins cannot fly), they are challenging to reason
about. Our work investigates how LLMs reason about generics and how this compares
to human capabilities.

For humans, generalization is a fundamental component of cognition, knowledge
acquisition, and reasoning. And generics appear to be the default mechanism for this
generalization; children acquire generics earlier than explicitly quantified statements
and, along with adults, fall back on generics in cognitively challenging situations (Leslie
2007, 2008; Leslie and Gelman 2012; Meyer, Gelman, and Stilwell 2011; Hollander,
Gelman, and Star 2002). One benefit for humans of generic generalizations is that they
support flexible and efficient reasoning: They allow humans to reason with incom-
plete information and draw inferences in novel situations (Asher and Morreau 1995).
However, despite this, there has been limited investigation in NLP on the capabilities
of computational models to reason about generics. Since LLMs underlie most natural
language reasoning systems, it is crucial to understand whether they have similar
flexible reasoning abilities (e.g., about generics) to humans. Therefore, the goal of this
work is to provide insights into how LLMs process generics.

The present investigation is carried out in two stages. In the first stage, we propose
a new theoretically grounded framework, GenerIX, that specifies logical-form based
definitions for multiple interpretations of generics and their INSTANTIATIONS and EX-
CEPTIONS (collectively, henceforth EXEMPLARS). To incorporate contextually sensitive
interpretations into the definitions, GenerIX uses the notion of pragmatic focus—a
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phenomenon that highlights meaning-bearing elements in a sentence and relates to
discourse context. We also introduce ExempliFI, a model that operationalizes the for-
mal definitions to automatically generate EXEMPLARS from LLMs. Our focus-sensitive
framework for generics provides us with flexibility and control over the generation
of EXEMPLARS with ExempliFI. For example, “birds can fly” expresses a generalization
about the kind birds, so EXCEPTIONS will be birds that cannot fly (e.g., penguins); with
focus on BIRDS, “BIRDS can fly” emphasizes birds in contrast to other animals that can
fly (e.g., bats), making those alternatives the EXCEPTIONS. By incorporating multiple
focus interpretations, we use ExempliFI to generate a diverse dataset of ∼370k EXEM-
PLARS for ∼17k generics covering different usages. We validate the dataset’s quality
using human evaluation on a subset of the generated data. The generated EXEMPLARS
include both knowledge-based (e.g., “ostriches can’t fly”) and reasoning-based outputs
(e.g., “a bird with a broken wing cannot fly”). The increased quality and diversity of
our EXEMPLARS dataset allows us to use the EXEMPLARS to probe LLMs’ reasoning
about generics.

In the second stage of this work, we use our generated dataset to probe how
LLMs reason about generics. In particular, we concentrate on two human phenomena,
namely, overgeneralization and inheritance reasoning. The fundamental role of gener-
ics in human generalization has been demonstrated through studies on the Generic
OverGeneralization (GOG) effect (Leslie, Khemlani, and Glucksberg 2011). The GOG
effect is the documented tendency of humans to treat universally quantified statements
(e.g., all birds can fly) as generics and therefore compatible with EXCEPTIONS (Khemlani
et al. 2007; Meyer, Gelman, and Stilwell 2011; Leslie, Khemlani, and Glucksberg 2011),
when in fact, from a logical point of view, a universally quantified statement cannot
be true if there are exceptions to it. Therefore, using our EXEMPLARS dataset, we first
probe whether LLMs exhibit similar overgeneralization behavior when reasoning about
quantification. We find that LLMs do show evidence of the GOG effect and EXCEPTIONS
do not entirely eliminate this effect.

Generic generalizations play an important role for humans in reasoning about
property inheritance (e.g., if Polly is a bird and we know birds can fly, can Polly fly?).
Humans can draw such inferences from generics, and, when presented with counter-
examples (e.g., Bob is a penguin and Bob cannot fly), may revise their conclusions to
accommodate the new information (Elio and Pelletier 1996; Pelletier and Elio 2005).
We use our EXEMPLARS dataset to probe whether LLMs exhibit similar behavior in
reasoning about property inheritance. Our results show that while LLMs do make
property inheritance inferences based on generics, they are less consistent about making
adjustments in their reasoning when presented with new information.

Our contributions are as follows: (1) we propose a novel pragmatics-based com-
putational framework to define and represent generics and EXEMPLARS; (2) we opera-
tionalize our framework and propose a system to automatically generate EXEMPLARS
for a range of pragmatic and contextual interpretations of generics; (3) we generate a
large scale, high quality dataset of EXEMPLARS, improving over prior work; and (4) we
investigate how LLMs reason about generics and show that LLMs exhibit similar non-
logical behavior to humans when considering quantification and property inheritance.
In the remainder of the article, we first provide an overview and background on generics
and EXEMPLARS (§2). Next, we discuss our pragmatically grounded framework GenerIX
for EXEMPLARS (§3) and how we operationalize this in our system ExempliFI to auto-
matically generate EXEMPLARS (§4). Then we present our investigations into how LLMs
reason about generics (§5). Finally, we present the details of our generation system and
the system validation results (§6).
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2. Generics and EXEMPLARS: An Overview

Generics are statements that express generalizations about the world (e.g., “tigers are
striped”, “ducks lay eggs”) and are notable for their lack of quantification. That is,
a generic statement (e.g., “birds can fly”) describes a relation between a concept and
a property without explicit quantification (e.g., quantifiers such as “all” or adverbs of
quantification such as “normally” or “usually”). Generics are challenging to analyze
semantically for a number of reasons. First, the truth of a generic is not related to
prevalence of the property. For example, “ducks lay eggs” is felicitous while “ducks are
female” is not, despite the relevant populations of ducks in both instances being nearly
identical (Leslie and Lerner 2016). Secondly, the lack of quantification in generics allows
them to have both INSTANTIATIONS (i.e., examples where the generic does apply) and
EXCEPTIONS (i.e., counterexamples to the generic)—collectively EXEMPLARS.

2.1 Analyzing Generics

Generics have been extensively studied in semantics and philosophy with the goal of
developing truth conditional semantic analyses (e.g., Lewis 1975; Carlson 1977, 1989;
Krifka 1987). Specifically, these works aim to provide formal methods to determine
the circumstances under which a generic is or is not true.1 Many of these frameworks
for analyzing generics propose a special generic operator, which has a similar role to
quantifiers like “all” (Carlson 1977). However, it is not clear what the precise semantics
of this operator should be. While generics like “a cat has a tail” suggest that “most”
would be an appropriate understanding of the generic operator, a generic such as
“mosquitoes carry malaria” makes such analyses untenable (Krifka et al. 1995) since few
mosquitoes actually carry malaria.2 While our work makes use of a generic operator, we
do not make any claims about its semantics.

Probabilistic approaches handle some of the issues raised by a generic operator by
considering relative probabilities (Cohen 1996, 1999, 2004). For example, “mosquitoes
carry malaria” would be true because a mosquito is relatively more likely to carry
malaria than a randomly chosen insect. However, relative probabilities alone are not
sufficient. Consider the example “bees are sterile”, which is not an acceptable generic
even though a randomly chosen bee is more likely to be sterile than another randomly
chosen insect.3 Recently, improvements to such probabilistic analyses have been pro-
posed which make correct truth predictions for a larger number of generics. In partic-
ular, van Rooij and Schulz (2019) and Kochari, Van Rooij, and Schulz (2020) model a
causal link between the concept and property in a generic in order to predict a generic’s
truth; Tessler and Goodman (2019) propose a Bayesian model of belief updating for
interpreting generics that incorporates vagueness and context along with prevalence.

Additionally, studies from psychology have argued that generics are a default mode
of cognition (Leslie 2007, 2008). In particular, studies have shown that both children and
adults will often accept false quantified statements as true (i.e., “all cats have tails”) if

1 There is debate about whether generics should even have truth values (cf. Krifka et al. 1995) We do not
take a side in this debate and instead we use “true” for both the formal meaning (i.e., having a truth
value) and the less formal meaning (i.e., acceptable to people—“ducks lay eggs” is acceptable while
“ducks are female” is not).

2 Only 7%–9% of the females of the species Anopheles (only one of 3,500 mosquito species) transmit malaria
(CDC 2022).

3 The majority of bees in a colony are sterile worker bees (MAAREC 2011).
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they consider the corresponding generic true, a phenomenon known as the Generic
Overgeneralization Effect (Leslie, Khemlani, and Glucksberg 2011; Khemlani et al. 2007;
Meyer, Gelman, and Stilwell 2011). This behavior continues, though in an attenuated
form, even when people are presented with evidence that contradicts the quantified
statement (e.g., with EXCEPTIONS) (Leslie, Khemlani, and Glucksberg 2011; Karczewski,
Wajda, and Poniat 2020). For example, people who have recently judged that male ducks
do not lay eggs will nonetheless accept “all ducks lay eggs” on almost 20 percent of
trials. If they are not prompted to consider whether male ducks lay eggs, the universal
claim “all ducks lay eggs” is accepted on approximately 50 percent of trials (Leslie,
Khemlani, and Glucksberg 2011).

Ralethe and Buys (2022) recently investigated this tendency in LLMs, providing
preliminary evidence that LLMs also exhibit a Generic Overgeneralization Effect. How-
ever, they considered the use of existential quantifiers such as “some” to be evidence
of the effect, even though there is no overgeneralization involved in judging that some
ducks lay eggs (instead, this is just a straightforwardly true statement). In our work, we
use EXEMPLARS to document the overgeneralization effect in a large range of LLMs,
and do so in a way that stays faithful to the original psychology experiments by
only considering genuine cases of overgeneralization (that is, overgeneralizing from a
generic to a universal).

2.2 Identifying Generics

Studies in NLP on generics typically focus on identifying generics within text. In par-
ticular, models are trained to predict generic expressions using discrete features (Reiter
and Frank 2010; Friedrich et al. 2015; Friedrich and Pinkal 2015; Friedrich, Palmer, and
Pinkal 2016; Govindarajan, Durme, and White 2019) or rule-based approaches (Suh
2006; Bhakthavatsalam, Anastasiades, and Clark 2020). Early works annotated and
predicted whether an expression was a true generic at both the clause and NP level
(e.g., “cats” has a non-specific referent in “cats have tails”), often within corpora for
information extraction tasks, such as coreference resolution (Poesio 2004). While these
works follow linguistically based annotation guidelines to label generics, the resulting
corpora are relatively small (cf. Friedrich et al. 2015). On the other hand, more recent
large-scale corpora, extracted from real-world texts, aim to capture generalizations,
regardless of whether they are linguistically generics (Bhakthavatsalam, Anastasiades,
and Clark 2020; Bhagavatula et al. 2022). Our work makes use of the latter type of
corpora in order to generate a wide range of EXEMPLARS.

2.3 Generics EXEMPLARS

Although generics themselves have been studied extensively, there has been compar-
atively less work on EXEMPLARS. From a formal perspective, the main approach to
EXEMPLARS has been to aim to formalize how generics tolerate EXCEPTIONS (Kadmon
and Landman 1993; Greenberg 2007). Specifically, Greenberg (2007) proposed that EX-
CEPTIONS can be identified via a causal relationship implicit in many generics. For
example, according to this approach, “birds fly” implies that some aspect of birds causes
them to be able to fly (e.g., having functioning wings). When the causal relationship
is blocked in individuals (e.g., birds with broken wings, birds with disproportion-
ately small wings such as penguins) then they are EXCEPTIONS. Recent probabilis-
tic approaches lend support to this hypothesis since they include similar notions of
causality (Kochari, Van Rooij, and Schulz 2020; van Rooij and Schulz 2019). Although
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these mechanisms characterize EXCEPTIONS, they are primarily theoretical and not
readily operationalizable. In contrast, our work aims to provide a framework that is
computationally operationalized.

Recently, Allaway et al. (2023) proposed a theory-grounded computational ap-
proach to generating generics EXEMPLARS. Specifically, they used categories of generics
(Leslie 2007, 2008; Khemlani, Leslie, and Glucksberg 2009) to partition generics into
three sets, each with a distinct logical form. For example, categories include generics
that describe principled connections (Prasada and Dillingham 2006, 2009; Haward et al.
2018) or definitions (Krifka et al. 2012). They then defined EXEMPLARS as individuals
that satisfy the logical form (INSTANTIATIONS) or its negation (EXCEPTIONS) for each
category. The generation was done using a constrained decoding algorithm paired with
GPT-2 and information extracted from GPT-3.

Our work here instead uses ideas from pragmatics (§3.1) to both specify logical
forms for generics EXEMPLARS and define prompts to generate EXEMPLARS. Although
the constrained-decoding approach from Allaway et al. (2023) outperforms their base-
line, there are two difficulties with their approach and we remedy these in our current
work. First, assigning generics to categories requires specifying an interpretation for
each generic. Doing so is not only challenging (cf. Krifka et al. 1995), it limits the
scalability of the system, since all new generics must first be categorized. Therefore,
our current work assumes every generic has multiple interpretations. Secondly, the
logical forms proposed by Allaway et al. (2023) are too permissive in what is allowed
as an EXEMPLAR. For example, in the framework of Allaway et al. (2023), the generic
“birds can fly” has EXCEPTIONS that are either types of birds that cannot fly (e.g.,
penguins) or types of flight that birds cannot do (e.g., fly above 20,000 feet4). But the
latter EXCEPTIONS (i.e., types of flight) are not intuitively exceptions, given our natural
understanding of “birds can fly.” To remedy this, we define EXEMPLARS using linguistic
structures to more carefully constrain the generated output.

One usage of EXEMPLARS in NLP is countering social biases. Psychology studies
have shown that generics influence and transmit social biases (Leslie 2014; Rhodes,
Leslie, and Tworek 2012; Leshin, Leslie, and Rhodes 2021) and this can be particularly
harmful in the case of stereotypes, especially about dangerous qualities (Leslie 2017).
Drawing on these results, recent studies in NLP have investigated using EXEMPLARS to
generics as a means of countering social bias implications in hate-speech (Allaway et al.
2022; Mun et al. 2023). Rather than investigate the use of EXEMPLARS, our work con-
centrates on developing a linguistically founded framework to generate high-quality
EXEMPLARS.

3. GenerIX: A Framework for EXEMPLARS

The interpretation of a generic depends on whether and how elements in it may be
focused or stressed. Intuitively, if a speaker utters “birds can fly” with no particular
stress or emphasis, they are making a general claim about birds, to the effect that they
can fly. Compare, however, how the natural interpretation shifts if the word “birds”
is uttered with heavy emphasis: “BIRDS can fly”. Now the speaker may be naturally
understood as making a claim about things that can fly, namely that they are birds. (For

4 Most birds fly substantially lower than 20,000 feet except during migration (Ehrlich, Dobkin, and Wheye
1988).
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Table 1
Glossary of terminology and symbols used in §3.
Term Definition §
Concept K In a generic, usually a type or kind (e.g., “cats” in “cats are cute”).

3.1
Property P In a generic, usually a quality or ability (e.g., “cute” in “cats are cute”).
QUD Question under discussion – what a discourse is centered around.

3.1.1

Focus Highlights prominent elements of a sentence. Marked with capitals in
our work.

φF=y An assertion with focus on y (e.g., φ = “CATS are cute” would be
φF=CATS).

ALTF=y Focus-alternatives – alternatives to the focus-marked constituent y in a
sentence. Includes T itself.

Topic What a sentence is about, often the syntactic subject.
Tripartite structure Partitions the semantic material of a sentence into two parts, RESTRICTOR

and SCOPE, along with a quantifier. 3.1.2
RESTRICTOR Specifies the quantifier domain in a tripartite structure.
SCOPE Specifies the properties attributed to the domain in a tripartite structure.
Gen Generic operator, acts as an adverb of quantification in a tripartite structure.
Default Form Default interpretation of a generic which is without focus.

3.2.1
Concept/Property-

Focused Form
The interpretation of a generic where the focus is on the concept or property.

�T Exotype – contextually relevant alternatives to T that are not T itself
(i.e., �T = ALTF=T − T).

3.3.1

example, “BIRDS can fly” might be naturally uttered to, say, correct a child who has
incorrectly asserted that squirrels can fly.)

This above example illustrates how EXEMPLARS for a generic correspondingly de-
pend on how it is interpreted. For example, a type of bird that cannot fly (e.g., penguin)
is a valid EXCEPTION to the generic “birds can fly” but not to the generic “BIRDS can
fly”; for the latter, the speaker is asserting that birds in particular can fly, as compared
to other animals, and so EXCEPTIONS will be other animals that can fly (e.g., bats,
flying squirrels). Since generics can have diverse interpretations, we aim to generate
EXEMPLARS for multiple interpretations.5 Therefore, we develop our framework using
ideas from pragmatics that allow us to use a cohesive formalism to both represent
multiple interpretations of a generic and derive the corresponding EXEMPLARS.

Our work draws on analyses of generics that argue that the semantic material of
a generic can be partitioned into two pieces and that varying this partition allows us
to obtain different interpretations of the generic (Carlson 1989). These analyses are
formalized using two components: tripartite structures and focus. In our work, we use
tripartite structures as the mechanism for representing the logical forms for generics
and EXEMPLARS. Focus then maps a specific interpretation to a logical form and is also
used in the definitions of EXEMPLARS.

In the following, we will first briefly review the linguistic background on fo-
cus (§3.1.1) and tripartite structures (§3.1.2). Then, we will discuss our framework
GenerIX—Generics Reasoning with Instantiations and eXceptions. Specifically, we will
discuss how we construct logical forms for generics (§3.2) and how we then use these to
derive precise definitions and logical forms for generics EXEMPLARS (§3.3). A summary
of the definitions and terms used throughout this section is provided in Table 1.

5 Determining the interpretation of a generic is a central, and unresolved, question in the literature on
generics (cf. Krifka et al. 1995).
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3.1 Linguistic Background

Our framework uses two ideas from pragmatics (focus and tripartite structures), which
we review here. Both ideas are related to the notion of information structure (Roberts
1996)—how information is packaged in a sentence (for a review, see Krifka 2008). Focus
is a means of highlighting relevant meaning-bearing elements in a sentence (Kadmon
2001, originally from Jackendoff 1972); it marks the focus of attention within discourse
(Grosz 1977; Sidner 1979; Grosz, Joshi, and Weinstein 1983, 1995). For example, in
English, stress is often used to mark focus. The focus not only determines the question
under discussion (QUD) in a particular context, it also contributes to the partitioning of
semantic material within a sentence. Such partitioning can be formally represented us-
ing a tripartite structure. This tripartite structure represents the sentence as specifying
restricted quantification over a domain (Partee 1991). Since generics lack quantification,
work with tripartite structures in the generics literature proposes a special generic
operator, Gen, to fill the role of quantifier and which we use in our work. We review
details of these ideas below.

3.1.1 Focus and QUDs. Consider two speakers having a conversation. If speaker A says
“cats are cute” and speaker B says “dogs are cute”, there is no conflict between their
statements (i.e., both assertions can easily be true). But if speaker A says “CATS are cute”
and speaker B says “DOGS are cute”, they are disagreeing with each other over which
animals are cute. In the latter case, focus is used (i.e., through emphasis) to indicate an
implicit contrast. We note that while this contrasting interpretation is not necessitated by
focus, our discussion concentrates on it because this interpretation with generics gives
rise to EXCEPTIONS.

Notice, though, that speaker B only succeeds in disagreeing with speaker A if he
gives an example of something that is cute and relevant to the context of discussion. For
example, if speaker B asserts “HEADBANDS are cute” then, unless the context is very
unusual, he does not succeed in disagreeing with speaker A. Speaker A’s assertion was
to the effect that, of the relevant alternatives, cats are the ones that are cute. Here, the
relevant alternatives would be naturally understood as other animals.

More formally, focus on an element of a sentence leads the sentence to be inter-
preted against a backdrop of alternatives (Rooth 1992).6 This contextually determined
set contains the relevant alternatives to the focused item. The sentence with focus then
asserts that it is the focused element (here “cats”) that has the attributed property (being
cute) as opposed to the other members of the set of alternatives (other animals). We will
denote this set of focus-alternatives ALTF=y.7

The focus also indicates what a discourse is about. For example, “CATS are cute”
would be part of a discussion about which animals are cute. In fact, “DOGS are cute”
would be a natural “counterclaim” to the assertion that cats are the central cute animal.
The primary question that these assertions answer is the QUD and it can be derived
from the focus of an assertion.

6 Although focus is often indicated through prosodic features (e.g., intonation, stress), determining focus is
a complex problem and we therefore assume it is given.

7 Note that ALTF=y is not a set of propositions. The focus set (i.e., set of alternative propositions) for the
original statement φ with focus on constituent y can be obtained as D = {φ(x) : x ∈ ALTy}where φ(x) is
the original statement with constituent y replaced with the variable x. For example, the set of alternative
propositions for “CATS are cute” is D = {x are cute : x ∈ ALTCATS}.
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A question can be viewed formally as denoting as set of possible answers (i.e.,
the domain of answers) (Hamblin 1973; Roberts 1996). This answer domain can be
derived by replacing each wh-element8 in the question with a variable x and then filling
in each variable with its possible values. For example, the question “who is cute?”
corresponds to the answer domain containing the propositions “x is cute” where x is a
valid possible cute thing. From this, we observe that the answer domain for a question
can be constructed using the focus alternatives for an answer to the question. To see why
this is the case, note that the set of possible values for x is the set of focus alternatives for
any of the possible answers to the question (“CATS are cute”, “DOGS are cute”, etc.).
This is because each possible answer will have the focus on the constituent that answers
the question (i.e., replaces the wh-element) and so the focused constituent is the filled-in
value for x. The correspondence between QUD and focus means that, given the focus of
an assertion, we can obtain the QUD and vice versa.

In sentences without focus (e.g., “birds can fly”), the QUD can still be determined
from the sentence’s topic,9 which indicates what the sentence is about (Vallduvı́ and
Engdahl 1996; Partee 1991). We will assume the topic is the syntactic subject when
there is no focus,10 since in English this is often the case (Vallduvı́ and Engdahl 1996;
Von Fintel 1994). Intuitively, the QUD for an assertion φT=t with topic t will be “what
is true about t?”. For example, the sentence “cats are cute” has the topic “cats” and
therefore the QUD is “what is true about cats?”.

3.1.2 Tripartite Structures. One way of representing the partition of semantic material
as determined by focus (or topic) is a tripartite structure. Consider the sentence “all
birds are animals”, which has no focus but whose topic is “birds”. This sentence can
be partitioned into three parts: a quantifier (“all”), the topic (“birds”), and the rest of
the sentence (“are animals”). Tripartite structures are used to formally represent this
partition. In particular, a tripartite structure (Lewis 1975) has the form

Quantifier x [RESTRICTOR(x)] [SCOPE(x)] (1)

where the RESTRICTOR controls the domain of the quantifier and SCOPE11 specifies
the properties attributed to the quantified members of the domain. For example the
partition of “all birds are animals” would be represented as

All x [BIRD(x)] [ANIMAL(x)] ≈ “all birds are animals” (2)

Here the quantifier is “All”, the domain specified by the RESTRICTOR is “birds” and the
SCOPE specifies that “quantifier birds” (i.e., “all birds”) have the property “is an animal”.
A statement represented with a tripartite structure is true if and only if Quantifier
number of the members of the RESTRICTOR domain satisfy the SCOPE property (e.g.,
Equation (2) is true if and only if all birds are animals).

8 Roberts (1996) restricts her analysis to only “who” and “what” questions.
9 As has been frequently noted, terminology surrounding the notion of “topic” is chaotic. In particular, the

term has been used to mean both a sentence topic and a discourse topic. Here topic means the sentence
topic as related to information structure.

10 A sentence can have both focus and topic and the resulting sentence partitionings may not align. For
simplicity, we partition the sentence only using the focus, unless there is no focus (or the entire sentence
is in focus), in which case we use the topic. For a more detailed discussion on the relationship between
topic and focus, we refer the interested reader to Chapter 2.3.4 of Von Fintel (1994).

11 Also called “nuclear scope” and “matrix” in the literature (e.g., Von Fintel 1994).
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Figure 1
Overview of our GenerIX framework (§3).

Since generics do not have any explicit quantification, the generic quantifier Gen
has been proposed,12 which acts as an adverb of quantification on a tripartite structure
(Lewis 1975). For example, the generic “Birds can fly” can be represented as

Gen x [BIRD(x)] [CANFLY(x)] True iff Gen birds can fly (3)

The division of a generic into the RESTRICTOR and SCOPE is dependent on the focus
and topic. In particular, we saw that for a sentence with no focus, the topic is mapped to
the RESTRICTOR and the non-topic constituents to the SCOPE (e.g., as in Equation (3)).
If there is a focus, then the non-focused constituents map to the RESTRICTOR and the
focused element to the SCOPE.

3.2 Logical Forms for Generics

We now specify logical forms for generics using tripartite structures (§3.1.2). As just
discussed, the tripartite structure for a generic is dependent on the focus. Therefore, we
specify logical forms for generics both with and without focus. We also discuss the QUD
that corresponds with each logical form (§3.2.2). The QUD provides contextualization
for interpreting generics and their EXEMPLARS. The logical forms are summarized in
Figure 1.

Generics Terminology. Throughout the following sections, we will use the following
terminology for generics. Recall that a generic statement (e.g., “birds can fly”) describes
a relation between a concept and a property. Usually, a concept KKK is a type or kind (e.g.,
bird) while a property PPP may be an ability (e.g., fly) or quality (e.g., feathered). Note
that statements with explicit quantification (e.g., “Most birds can fly”) are not considered

12 We will refer to Gen as a quantifier for the purposes of this paper, though there are technical reasons to
think it should perhaps not be classified as one (e.g., Leslie 2007). Since these considerations do not
impact anything in this paper, we keep terminology simple by referring to Gen as a quantifier.
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generics and are excluded from this study. Additionally, we assume that the concept K
occurs in the subject position and that the property P is part of the predicate.13

3.2.1 Tripartite Structures for Generics. We will consider three interpretations of generics.
First, we consider the default structure for a generic. Then we consider the interpreta-
tions of the generic with focus on the concept and property, respectively.14 Although it
is also possible for the focus to be on the relation r, this is uncommon and therefore we
will not consider these cases in our analysis.

Default Form. The default tripartite structure for a generic simply maps the syntactic
form directly into the tripartite structure.15 Specifically, we have

Gen x [K(x)] [r(x, P)] (Default Form)

where K is the concept and r(x, P) is true if the relation r holds between individual x and
property P. Notice that Equation (2) represents the default structure.

Focused Form. If a generic has a specific linguistic focus, the tripartite structure is deter-
mined by the location of the focus.

Consider the example discussed above (“CATS are cute”), with the focus on the
concept. Recall that the example world contains cats, dogs, and headbands but the
QUD is “which animals are cute”. In the corresponding tripartite structure, we know
that the focused element “CATS” will be mapped to the SCOPE while the non-focused
consituents are mapped to the RESTRICTOR (§3.1.2). So initially the tripartite structure
would seem to be

% Gen x [are(x, CUTE)] [CATS(X)]. (Incorrect Concept-Focused Form Example)

However, we also need to include in the RESTRICTOR the condition ALTCATS(x). This
condition lets us capture the fact that headbands are simply not relevant to the discourse
at hand. It is necessary because the relation itself (part of the non-focused constituents)
does not specify that x must be relevant; it is possible to say a headband is cute so
therefore x = headbands satisfies are(x, CUTE). The relevance of x is ensured by the
restriction that x is in the set of focus alternatives to “CATS” (i.e., “cats”, “dogs”).
Therefore, the correct tripartite structure is

X Gen x [ALTCATS(x) ∧ are(x, CUTE)] [CATS(x)] (Concept-Focused Form Example)

More generally, the tripartite structure for the concept-focused form is

Gen x [ALTK(x) ∧ r(x, P)] [K(x)] (Concept-Focused Form)

13 Note that we consider the verb “to be” as the relation are. So “are feathered” would be are(x, FEATHERED)
14 For simplicity, we assume the generic does not have multiple foci and that the focus does not span

multiple components of the generic (e.g., the entire predicate r + P).
15 Since the default form does not have focus, the topic determines the tripartite structure for the generic.

Since by default, we interpret the concept (e.g., “kittens”) as the topic, the tripartite structure for the
default form is as indicated.
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Analogously, if the focus is instead on the property, the tripartite structure is

Gen x [ALTP(x) ∧ r(K, x)] [P(x)] (Property-Focused Form)

For example, the generic with property-focus “Elephants eat TREES” has the form
Gen x [ALTTREE(x) ∧ eats(ELEPHANT, x)] [TREE(x)].16

3.2.2 QUDs for Generics. For a generic, the QUDs provide natural language formulations
of the multiple interpretations. Specifically, recall that a generic with some interpretation
is an answer to the corresponding QUD. For example, the interpretation of a concept-
focused generic can be expressed as “what is X such that the relation holds between
X and the property P?” (e.g., “what is X such that X eats fish?”, or more colloquially
“what eats fish?”, for the generic “CATS eat fish”). We discuss how to obtain the QUD
for each interpretation from the corresponding generic tripartite structure since these
are an important component of operationalizing the logical forms for generics.

First, for a general tripartite structure the QUD is

What is x such that RESTRICTOR? (QUD)

where “what” can be replaced by “who” if the element in focus is human. Therefore,
the QUD for a generic with concept focus is

What is x such that ALTK(x) and r(x, P)? (Concept-focused QUD)

For example, if the relevant alternatives under discussions were animals, the QUD for
the assertion “ELEPHANTS eat trees” would be “what animal eats trees?”. Similarly,
the QUD for a property-focused generic is

What is x such that ALTP(x) and r(K, x)? (Property-focused QUD)

For example, if the relevant alternatives are plants the QUD for “Elephants eat TREES”
would be “what plants do elephants eat?”.

Note that from the definition of QUD, for the default interpretation of a generic
the QUD will be “What is true about K(x)?” (from Default Form). While we use the
focused QUDs in defining focused INSTANTIATIONS and EXCEPTIONS, we do not use
the default QUD; it is too vague.

3.3 Logical Forms for EXEMPLARS

We use the tripartite structures for generics to derive precise logical forms for EXEM-
PLARS. As discussed, the INSTANTIATIONS are examples that demonstrate the truth of
the generic (e.g., “sparrows” for the generic “birds can fly”) and the EXCEPTIONS are

16 If the focus is on the relation, the tripartite structure is derived analogously as

Gen x [ALTR(x) ∧ x(K, P)] [R(x)] (Relation Focused)

where R is the type of the relation r and ALTR is the set of alternative relations to r. For example, the
generic with focus “Cats PLAY WITH mice” has the form Gen x [ALTPLAY (x) ∧ x(CAT, MOUSE)] [PLAY(x)].
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examples where the generic does not apply. Under the tripartite structure, the INSTAN-
TIATIONS are then instances x that satisfy both components of the tripartite structure and
EXCEPTIONS are x that satisfy the RESTRICTOR but not the SCOPE.

We will first define EXEMPLARS using a general tripartite structure (§3.3.1) and lay
out terminology necessary for more precise definitions (§3.3.2). Then we derive the pre-
cise logical forms for INSTANTIATIONS (§3.3.3) and for focused and default EXCEPTIONS
(§3.3.4).

3.3.1 Definitions

Instantiations. In order for INSTANTIATIONS to demonstrate the truth of a generic, they
must be examples x that make both parts of the corresponding tripartite structure true.
Specifically, x must satisfy both RESTRICTOR and SCOPE:

x : RESTRICTOR(x) ∧ SCOPE(x) (INSTANTIATIONS)

For example, the INSTANTIATIONS for “birds can fly”, which is represented by
Gen x [BIRD(x)] [can(x, FLY)] (Equation (3)), are types of birds or individual birds x that
can fly (e.g., puffins, eagles, my pet parrot).

Another way to view INSTANTIATIONS is in relation to the generics QUD. In partic-
ular, since a generic answers the QUD, the INSTANTIATIONS can be considered support
for the generic assertion. For example, consider the concept-focused generic “CATS are
cute”, which has the QUD “what animals are cute?”. Then, natural INSTANTIATIONS
would specify cats that are cute (e.g., kittens, Scottish Fold cats), which support the
generic’s answer to the QUD.

Exceptions. EXCEPTIONS are examples where the property in SCOPE for the generic
does not apply. In particular, they must satisfy the domain restriction of the generic (i.e.,
RESTRICTOR) but do not have the relevant property (i.e., do not satisfy SCOPE). That is,
EXCEPTIONS to a generic are

x : RESTRICTOR(x) ∧ ¬SCOPE(x) (EXCEPTIONS)

For example, in Equation (3), birds that can’t fly (e.g., penguins, young albatrosses)
satisfy the RESTRICTOR but not the SCOPE and so are legitimate EXCEPTIONS. Notice
that examples that satisfy the SCOPE but not the RESTRICTOR are not valid EXCEPTIONS.

We can also view EXCEPTIONS in relation to the generic and QUD. Specifically, the
EXCEPTIONS can be considered to counter the generic assertion. For example, with a
concept-focused generic “CATS are cute” (same QUD as above—“what animals are
cute”) the EXCEPTIONS would be other animals that are cute (e.g., puppies, hamsters);
here there is a disagreement between the assertion “CATS are cute” and some alterna-
tive (e.g., “PUPPIES are cute”).

3.3.2 Terminology. Before specifying the logical forms for EXEMPLARS, we must first lay
out some terminology.
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T(x) Satisfaction. For some type T, we say that T(x) is satisfied when T is some individ-
ual, or group of individuals, of type T (or one of its subtypes).17 For example, CAT(x)
is satisfied by an individual cat (e.g., my cat Mila) or a group of cats (e.g., house cats).
Similarly, a relation r(x, y) is satisfied by individuals x and y if it is true that x r’s y.
For example, likes(x, SLEEP) is satisfied if individual x likes sleep (e.g., if x is a cat). The
negation of a relation ¬r is “not r”. Namely, ¬r(x, y) specifies that it is not true that x r’s
y (e.g., ¬likes(x, SLEEP) is true if x does not like sleep). Similarly, ¬T(x) is true if x does
not satisfy T(x).

Exotype of T. Additionally, we define the exotype of type T, denoted �T�T�T to be the set of
contextually relevant alternatives to T that are not T itself. Therefore, we know that �T(x)
is true if ¬T(x) is true and x is in ALTT. For example, in the example world discussed
above (containing only cats, dogs, and headbands) the exotype �CAT = {dogs}.

3.3.3 Logical Forms for INSTANTIATIONS

Logical Form. Recall that INSTANTIATIONS must satisfy both the RESTRICTOR and SCOPE
for the generic (§3.3.1). By combining this with the tripartite structures for generics
we can derive the logical forms for INSTANTIATIONS. For the default interpretation of
a generic, we use the corresponding tripartite structure Gen x [K(x)] [r(x, P)] (Default
Form, §3.2.1) to derive the logical form for INSTANTIATIONS as

x : K(x) ∧ r(x, P) (Default Form INSTANTIATIONS)

For concept-focused INSTANTIATIONS we use the corresponding tripartite structure
for concept-focused generics Gen x [ALTK(x) ∧ r(x, P)] [K(x)] (Concept-Focused Form,
§3.2.1) to derive the logical form as

x : K(x) ∧ ALTK(x) ∧ r(x, P) = K(x) ∧ r(x, P) (Concept-Focused INSTANTIATIONS)

where the simplification is due to the fact that specifying an alternative to K that is
also K is equivalent to only specifying K. This means that the default INSTANTIATIONS
and concept-focused INSTANTIATIONS are the same. For simplicity, we will refer to the
concept- and default-focused INSTANTIATIONS as concept-focused. We can derive the
property-focused INSTANTIATIONS analogously as

x : r(K, x) ∧ ALTP(x) ∧ P(x) = r(K, x) ∧ P(x) (Property-Focused INSTANTIATIONS)

QUD. As noted above (§3.3.1), INSTANTIATIONS support the generic’s answer to the
interpretation-based QUD. The logical forms for INSTANTIATIONS supply two restric-
tions that make this relationship precise. For the concept-focused INSTANTIATIONS,
these are: that x should actually be a subtype of the concept and that the relation must
hold between x and the property. For example, specific types of cats that are cute, as
discussed above, for the generic “CATS are cute”.

17 Although the literature (e.g., Krifka et al. 1995) often makes a distinction between a group of individuals
and an established kind, we treat these equally in our work. For example, we treat “house cats” meaning
the group of individuals of the kind Felius catus as the same as reference to the taxonomic kind Felius
catus.
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Additionally, the INSTANTIATIONS can be directly related back to the QUD. This
relationship is crucial for operationalizing the definitions of INSTANTIATIONS in a com-
putational framework. Recall that the concept-focused interpretation of a generic is an
answer to the corresponding QUD; namely, it answers “What is x such that (i) x is in AltK

and (ii) the relation r holds between x and P?”(see Concept-focused QUD in §3.2.2). For ex-
ample, a concept-focused generic such as “CATS are cute” answers the question “what
is in the set of relevant alternatives to the concept (here perhaps the set of animals) and
is cute?”. So, the second condition, (ii), in the QUD is the same as the second condition
for concept-focused INSTANTIATIONS. However, the first condition for concept-focused
INSTANTIATIONS is more specific than in the QUD. Therefore, enforcing both conditions
we arrive at the following:

Concept-focused INSTANTIATIONS: Concept-focused INSTANTIATIONS are specific
examples of the concept that also answer the QUD.

Property-focused INSTANTIATIONS have an analogous relationship to the property-
focused QUD.

3.3.4 Logical Forms for EXCEPTIONS

Logical Form for Focused Exceptions. From EXCEPTIONS above (§3.3.1), EXCEPTIONS must
satisfy the RESTRICTOR but not the SCOPE. So for a concept-focused generic, this means
that EXCEPTIONS must satisfy ALTK(x) ∧ r(x, P) (RESTRICTOR) and not K(x) (SCOPE).
Specifically, concept-focused EXCEPTIONS are

x : ¬K(x) ∧ ALTK(x) ∧ r(x, P) = �K(x) ∧ r(x, P). (Concept-Focused EXCEPTIONS)

where �K is the exotype (i.e., the set of relevant alternatives to K that are not K itself;
§3.3.1). As with the INSTANTIATIONS, the logical form specifies two constraints: that x
is in the exotype of the concept and that the relation holds between x and the property
P. To continue with our example, the concept-focused EXCEPTIONS to “CATS are cute”
would be contextually relevant non-cats that are cute (e.g., adorable puppies).

QUD for Focused EXCEPTIONS. For focused EXCEPTIONS the relationship to the QUD
is again necessary for operationalizing the logical form. As with the INSTANTIATIONS
above, the QUD enforces the second condition. Furthermore, the first condition for
concept-focused EXCEPTIONS would be the same as that in the QUD if x is allowed
to be the concept itself. So

Concept-Focused EXCEPTIONS: Concept-focused EXCEPTIONS are alternative answers
to the concept-focused QUD for a generic that are not the concept itself.

In other words, for a concept-focused generic the EXCEPTIONS are contextually relevant
alternative concepts (not the generic’s concept) with the same property as in the generic
(e.g., other furry animals that are cute). Similarly, if the generic is property-focused
then the EXCEPTIONS are contextually relevant alternative properties (not the generic’s
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property), for the same concept as in the generic (e.g., other characteristics of cats such
as playful). The property-focused EXCEPTIONS are represented formally as

x : ¬P(x) ∧ ALTP(x) ∧ r(K, x) = �P(x) ∧ r(K, x) (Property-Focused EXCEPTIONS)

where �P is the exotype of the property (i.e., relevant alternative properties that are
not P).

Logical Form for Default Exceptions. Unlike with the focused interpretation, the EXCEP-
TIONS to the default interpretation of a generic are not alternative answers to the
corresponding QUD. So

Default EXCEPTIONS: Default EXCEPTIONS are individuals where the relation does not
hold between the concept and property.

Specifically, the logical form (combining EXCEPTIONS and Default Form) are

x : K(x) ∧ ¬r(x, P) (Default EXCEPTIONS)

For example, the default EXCEPTIONS to the unfocused generic “cats are cute” would be
cats that are not cute (e.g., hairless Sphynx cats, arguably).18

4. ExempliFI: A System to Generate INSTANTIATIONS and EXCEPTIONS

For a generic, we generate EXEMPLARS using a four step system ExempliFI—EXEMPLARS
wIth Focus Interpretations. First, we use our GenerIX framework for EXEMPLARS (§3) to
construct generation prompts for an LLM (§4.1). Specifically, we combine the QUDs for
a generic (for multiple interpretations, with and without focus) with logical forms for
EXEMPLARS to define prompts. After generating candidates from the LLM, we conduct
two stages of filtering to ensure that the generations meet EXEMPLARS constraints
and are truthful and valid (§4.2). Finally, we present our dataset for EXEMPLARS in
Section §4.3. The details and validation of our ExempliFI system are discussed in §6;
implementation details are included in Appendix A.2.

4.1 Prompt Construction for Generation

In order to generate EXEMPLARS that have a specific pragmatic relation to a generic
without requiring training, we prompt an LLM using instructions based on GenerIX.
In particular, we use the QUDs for generics and the logical forms for EXEMPLARS to
construct prompts for INSTANTIATIONS and EXCEPTIONS. In practice, determining focus
(and therefore the QUD) is a complex problem and beyond the scope of this work.
Therefore, we assume that each generic could be interpreted as having no focus, focus
on the concept, or focus on the property. We then generate EXEMPLARS for all these
interpretations (Figure 2).

18 In contrast, alternative answers to the default QUD (“what is true about [CONCEPT]?”) will be
properties of the concept as a whole. Although default EXCEPTIONS can be written this way (e.g.,
“Penguin’s can’t fly” “Birds that are penguins can’t fly”), the wording is unnatural.
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Figure 2
Overview of pipeline for our system ExempliFI that generates EXEMPLARS. This figure illustrates
the generation of default EXCEPTIONS for the generic “Birds can fly”.

Since we consider all interpretations of a generic, we construct six prompts for
generating INSTANTIATIONS and EXCEPTIONS. For the INSTANTIATIONS, we construct
two prompts, one each for the concept-focused and property-focused interpretations.
Note that the default INSTANTIATIONS are the same as the concept-focused INSTANTIA-
TIONS (§3.3). Therefore, we will only generate INSTANTIATIONS for the focused readings
explicitly. For the EXCEPTIONS, we construct four prompts, two prompts for the focused
EXCEPTIONS and two prompts for the default EXCEPTIONS. We discuss the details of the
prompt construction below and show example prompts in Table 3.

Instantiations. Recall that INSTANTIATIONS (i) are answers to the generic’s focused QUD
and (ii) are specific examples of the focused element in the generic (see Concept-Focused
INSTANTIATIONS and Property-Focused INSTANTIATIONS in §3.3). We combine these
two conditions into a prompt that we use for generation:

List types of [Focused-element] that [QUD-no-wh]: (Prompt-I)

where the QUD has the wh-word removed. For example, the prompt for “CATS are
cute” is “List types of cats that are cute:”. We construct two prompts for INSTANTIA-
TIONS: one for concept-focused and default readings (Prompt-IK) and another for the
property-focused reading (Prompt-IP). See examples in Table 3.

Focused Exceptions. As with INSTANTIATIONS, we use the QUD for a generic to generate
focused EXCEPTIONS. As discussed in §3.3, focused EXCEPTIONS are alternative answers
to the focused QUD that are in the exotype for the focused element (i.e., are not the
generic) (see Property-Focused EXCEPTIONS and Concept-Focused EXCEPTIONS). How-
ever, the QUD alone in the prompt does not enforce the constraint that the EXCEPTIONS
are in the exotype. Therefore, we supply the generic as the first answer to the QUD to
indicate that the generated responses should be alternatives to the focused constituent.
Specifically, given a generic, the corresponding prompt would be

List alternative answers to the question [QUD]:

- [GENERIC] (Prompt-E)

with the model expected to produce a bulleted list of EXCEPTIONS as alternative an-
swers. For example, concept-focused EXCEPTIONS to the generic “CATS are cute” might
include “puppies are cute” or “rabbits are cute”. For each generic, we have two prompts
for the focused EXCEPTIONS: one for concept-focused (Prompt-EK) and another for
property-focused EXCEPTIONS (Prompt-EP). See examples in Table 3.
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Table 2
Focus is indicated by bold underline. K is the concept (blue), P is the property (pink), r is the
relation, and � is the exotype (§3.3). Note that as with Concept-Focused INSTANTIATIONS, for
Property-Focused INSTANTIATIONS ALTP(x) ∧ P(x) = P(x).
Reading Generic INSTANTIATION EXCEPTION

Default “Birds can fly” “Owls can fly” “Penguins can’t fly”
K(x)∧ r(x, P) K(x)∧¬r(x, P)

Concept-focus “Peru has alpacas” “The Andes in Peru have alpacas” “Chile has alpacas”
K(x)∧ r(x, P) �K(x)∧ r(x, P)

Property-focus “Elephants eat trees” “Elephants eat Baobab trees” “Elephants eat grasses”
r(K, x)∧ P(x) r(K, x)∧�P(x)

Table 3
Example prompts for generating EXEMPLARS from an LLM for the generics in Table 2.
The concept is marked with blue and the property with pink italics.

Prompt Type Example Prompt
Prompt-IK List types of “birds” that can fly:
Prompt-IP List types of “trees” that elephants eat:
Prompt-EK List alternative answers to the question “where has alpacas”:

- Peru has alpacas.
Prompt-EP List alternative answers to the question “what elephants eat”:

- Elephants eat trees.
Prompt-D1 Generally, birds can fly. However, some birds cannot fly. These include:
Prompt-D2 Generally, birds can fly. However, sometimes birds cannot fly. For example when they:

Default Exceptions. The default EXCEPTIONS are individuals where the relation does not
hold between the concept and property (see Default EXCEPTIONS in §3.3) Therefore, for
default EXCEPTIONS we construct a prompt to generate such individuals. In particular,
given a generic, the prompt would be

Generally, [GENERIC]. (Prompt-D1)
However, some [CONCEPT] [RELATION-negated] [PROPERTY]. These include:

where negating the relation typically involves adding “not” with the verb.
While Prompt-D1 produces specific subtypes of the concept (e.g., “penguins” and

“ostriches” for the concept “birds”) many default exceptions arise from temporary
conditions. For example, “birds with a broken wing” cannot fly and are a valid
default EXCEPTION to the generic “birds can fly”, but this condition is temporary.
Therefore, we use a second prompt to generate default EXCEPTIONS arising from
temporary circumstances,

Generally, [GENERIC]. (Prompt-D2)
However, sometimes [CONCEPT] [RELATION-negated] [PROPERTY].

For example when they:

We use both prompts to construct default EXCEPTIONS. Additionally, notice that for
both prompts, we prefix the generic with the quantifying adverb “generally” (e.g.,
“generally, birds can fly”). This encourages the model to remember that the generic
does not apply to all members of the concept. All of our prompts are constructed fol-
lowing our pragmatics-based GenerIX framework. We use our prompts for generation
as described below.

1228



Allaway et al. Exceptions, Instantiations, and Overgeneralization

4.2 Generation and Output Filtering

We use the prompt templates to compose prompts for EXEMPLARS candidate generation
as described in §4.1. The prompts are used in a zero-shot open completion setting with
the GPT-3 (Brown et al. 2020) text-davinci-001 model (see A.2.1 for full details). We filter
the output generations through two stages of the filtering process.

4.2.1 Completeness and Constraints Filtering. We first process the generations so that all
the candidates are complete sentences and fit the constraints of the corresponding
EXEMPLAR’s logical form. Focus EXCEPTIONS are generated as complete sentences. To
ensure that they satisfy the constraints of the logical form, we remove candidates that do
not meet the following requirements. For concept-focused EXCEPTIONS, the candidates
must end with the generic’s property; for property-focused EXCEPTIONS, candidates
should begin with the generic’s concept.

In contrast to the focus EXCEPTIONS generations, we observe that prompts for
default EXCEPTIONS and INSTANTIATIONS produce either a list of subtypes (i.e., INST.
Prompt-I’s and default Prompt-D1) or a list of situations (default Prompt-D2). We
process the generated lists into complete sentences that abide by the specified logical
constraints. For each prompt and EXEMPLAR type, we craft a sentence template (see
Table 4) that we deterministically fill using the generated lists. Using the information
from the type of prompt and its corresponding EXEMPLAR type, we deterministically fill
in sentence templates crafted for each exemplar type and source prompt (see Table 4).
If a candidate doesn’t meet the requirements of the template, it is discarded. The details
of the template filling are available in Appendix A.2.2.

4.2.2 Filtering For Truthfulness. Next, we use an LLM to identify and remove false candi-
dates. Since pre-trained language models have a tendency to hallucinate facts (Rohrbach
et al. 2018) or produce non-specific output (e.g., “Birds can do things”), we apply a truth
filtering step to the ranked output generations. Recently, LLMs (e.g., ChatGPT) have
been successfully used to verify statements (Gilardi, Alizadeh, and Kubli 2023; Hoes,
Altay, and Bermeo 2023).19 So, we use an LLM (GPT-3.5-Turbo) to check the veracity of
generated candidate EXEMPLARS. To do this, we first convert each EXEMPLAR candidate
into the singular and then ask the LLM whether the singular form is true. If the singular
form of the EXEMPLAR is true, then we say the EXEMPLAR itself is true. The conversion
to singular is done because the generated EXEMPLARS are often themselves generics
with bare plurals. From initial explorations we found that the LLM struggles with
determining the truthfulness of generic statements with bare plurals (further details
in Appendix A.2.3).

To validate this filter, we evaluate GPT-3.5-Turbo on a set of 500 EXEMPLARS gen-
erated from AnimalG generics. The EXEMPLARS are human-annotated for truthfulness
(see §6.2). The average precision for instances labeled true is 0.89 and the recall for the
false instances is 0.79. This shows that most of the instances predicted as true by the
LLM are in fact true (precision of true) and that most of the false instances are identified
and predicted as false (recall of false).

19 We note that some researchers have found tasks where LLMs do not perform well as evaluators (e.g.,
faithfulness in summarizing short stories; Subbiah et al. 2024). However, we use LLMs to validate general
knowledge, which LLMs should be familiar with, and we find that the LLM filtering works well for our
task (see above). See §7.1 for more discussion of the limitations of this approach.
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Table 4
Templates for constructing INSTANTIATIONS and default EXCEPTIONS using the generated
components. K (blue) is the concept, r is the relation, and P (pink) is the property.

EXEMPLAR Type Source Prompt Template

(a) Concept-Focused INST. Prompt-IK [ ]SUBTYPE [r] [P]
(b) Property-Focused INST. Prompt-IP [K] [r] [ ]SUBTYPE

(c) Default EXCEP. Prompt-D1 [ ]SUBTYPE [¬r] [P]
(d) Prompt-D2 [K] that [ ]SITUATION [¬r] [P]

4.2.3 Validity Discrimination. The filtering process provides us with a list of true EXEM-
PLARS. For true default EXCEPTIONS, they are fully valid because of how they are con-
structed. In particular, the default EXCEPTIONS are constructed by combining generated
subtypes with the relation and property from the generic. Therefore, if they are true
then they meet the constraints to be valid default EXCEPTIONS. This does not hold true
for focused EXCEPTIONS and INSTANTIATIONS, where truthfulness does not necessarily
indicate validity. For these cases we run an additional filtering step to ensure validity.

In the case of focused EXCEPTIONS, invalid statements can occur when the gener-
ated alternative concept is simply irrelevant (Ex.1) to the focused element. It can also
occur in cases where the generated concept is a subset (or a superset) of the generic
concept, and therefore it cannot be a valid alternative (Ex.2–Ex.4; see discussion in §3.3.2).
Additionally, true statements may possess alternatives for the wrong component of the
generic (i.e., for some element other than the focused element; Ex.5). For example, given
the concept-focused generic “BIRDS can fly”, the following statements are all true but
invalid concept-focused EXCEPTIONS:

Ex.1 % “airplanes can fly” (irrelevant alternative),

Ex.2 % “winged creatures can fly” (a superset of birds, not a valid
alternative),

Ex.3 % “non-flightless birds can fly” (a subset of birds, not a valid
alternative),

Ex.4 % “sparrows and pigeons can fly” (specific types of birds, not a valid
alternative),

Ex.5 % “birds can sing” (alternative to “fly” instead of to “birds”).

Invalid cases for INSTANTIATIONS are less common, since they are constructed
similarly to the default EXCEPTIONS. However, we still find that LLMs can generate
invalid but true candidate INSTANTIATIONS and so benefit from an additional filtering
step. For example, the statement “binoculars are used to see things” is true but not a
valid property-focused INSTANTIATION for the generic “binoculars are used to VIEW
LOCATIONS” because it just paraphrases the generic.

To select the valid focus EXCEPTIONS, we train a discriminator to predict whether
a statement is a valid focus EXCEPTION for a particular generic. We train a separate
discriminator to predict whether a statement is a valid INSTANTIATION. Discriminator
details are provided in Appendix A.2.4.
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For the final output, focus EXCEPTIONS and INSTANTIATIONS are ranked using the
relevant trained discriminator. For the default EXCEPTIONS, we follow Allaway et al.
(2023) and rank generations by using the average of two ranks: perplexity and NLI.
The NLI rank is determined by the probability that the default EXCEPTION candidate
contradicts the generic. We keep all valid system generations in order to construct a
large-scale dataset.

4.3 Generated EXEMPLARS Dataset

Using ExempliFI, we generate EXEMPLARS for the generics in the three datasets GGSmall,
GGTest, and AnimalG, which we detail below.

• GGSmall is a set of 617 generics sourced from Gen-Atomic (Bhagavatula
et al. 2022). Gen-Atomic is a dataset of 14M generated generics. It
encompasses a wide range of diverse everyday generalizations (e.g.,
“Bicycles have two wheels”, “Hammers are used for construction”). For
GGSmall, we use the same subset of the human-verified Gen-Atomic as
used by Allaway et al. (2023). This subset excludes generics with human
referents as the concept (e.g., nationalities, professions) due to social bias
concerns.

• GGTest is sourced from Gen-Atomic’s test set and consists of 1,010
generics. We obtain this subset by excluding generics with a human
referent (as with GGSmall) and filtering using the discriminator published
with GGTest. Specifically, we use the discriminator to select only
statements that both humans and the model agree are generics.

• AnimalG is a set of 15,028 generics with animal referents. These generics
are sourced from the dataset of generics constructed by Ralethe and Buys
(2022) for probing generic processing in LLMs. The original dataset was
extracted from GenericsKB using a fixed list of animals (e.g., “reptiles”,
“fish”, “birds”).

In total we generate 369,835 EXEMPLARS across 16,655 generics (Table 5). In partic-
ular, we generate 230,817 EXCEPTIONS and 139,018 INSTANTIATIONS. Examples of the
generated data are shown in Table 6. We validate in §6 that ExempliFI generates high-
quality EXEMPLARS. Such a large and high quality dataset allows us to thoroughly probe
the capabilities of LLMs to reason about generics (§5).

Table 5
Statistics of the dataset of EXEMPLARS generated by our ExempliFI system.

# EXCEPTIONS # INSTANTIATIONS

#Gens Default ConceptF PropF Total ConceptF PropF Total Total
GGSmall 617 2,718 2,699 3,522 8,939 4,831 3,346 8,177 17,116
GGTest 1,010 3,392 6,003 4,864 14,259 7,999 4,826 12,825 27,084
AnimalG 15,028 38,614 93,587 75,418 207,619 61,873 56,143 118,016 325,635
All 16,655 44,724 102,289 83,804 230,817 74,703 64,315 139,018 369,835
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Figure 3
Using dataset generated by ExempliFI, we test LM’s capabilities to reason with generics.

In the analysis of our dataset, we observe that among the different types of EX-
EMPLARS, ExempliFI is strongest at generating default EXCEPTIONS that go beyond
knowledge-based counter-evidence. For example, “family chapels are not open to pub-
lic” is an acceptable knowledge-based EXCEPTION to generics like “chapels are open to
public” since it relies on general static properties about a known kind (i.e., properties of
family chapels). But ExempliFI is also able to generate reasoning-based EXCEPTIONS that
require access to non-static and counterfactual knowledge about the generic (Figure 3).
For example, for the same generic (“chapels are open to public”), ExempliFI generates
the default EXCEPTION “chapels that are closed for renovation are not open to the public
during regular hours”; this requires counterfactual reasoning about what might cause a
chapel to be temporarily closed.

These reasoning-based default EXCEPTIONS are often more compelling than
knowledge-based ones. This is because they do not simply enumerate factoids that may
or may not be relevant to a user. Instead, the reasoning-based EXCEPTIONS provide
additional relevant information that allows humans to contextualize and understand
the generic. For example, “cats that live in apartments or homes do not sleep in trees”
is a more useful EXCEPTION to the generic “cats sleep in trees” than “cheetahs do not
sleep in trees” is; the average person may not know whether or not cheetahs generally
sleep in trees.20

Additionally, the reasoning-based EXCEPTIONS allow ExempliFI to produce default
EXCEPTIONS for generics where the concept does not have any well-known subtypes
(i.e., it is not an established kind). For example, “scavenger hunt” does not have
well-known subtypes but ExempliFI can still generate default EXCEPTIONS using rea-
soning; it generates “a scavenger hunt that is too difficult is not a fun way to spend
an afternoon with friends” as an EXCEPTION to “a scavenger hunt is a fun way to
spend an afternoon with friends”. We see this increased coverage reflected in how often
the reasoning-based EXCEPTIONS are ranked highly. In particular, for the AnimalG data
∼63% of the top ten default EXCEPTIONS are reasoning based. For GGSmall and GGTest
the proportions of reasoning-based EXCEPTIONS in the top ten default EXCEPTIONS are
∼73% and ∼17%, respectively. The disparity between GGTest and the other two data
sources may be due to the fact that GGTest contains a large number of definitional or
tautological generics (e.g., “an outlet mall is a place”) for which it is difficult to come
up with reasoning-based default EXCEPTIONS. For example, while default EXCEPTIONS
to “hot chocolates taste like cocoa” are difficult to construct, since all hot chocolate will

20 Unlike many other large cats, cheetahs tend to sleep under, not in, trees. See
https://cheetah.org/learn/about-cheetahs.
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Table 6
Examples of EXEMPLARS generated by ExempliFI.

AnimalG Data
(a) Generic: Cats sleep in trees

Default EXCEPTIONS:
• Cats that live in apartments or homes

do not sleep in trees.
• Cheetahs do not sleep in trees.

INSTANTIATIONS:
• Pumas sleep in trees.
• A lynx sleeps in trees.
• Cats sleep in the branches of a tree.

(b) Generic: Birds fly.
Default EXCEPTIONS:
• Ostriches are not able to fly.
• Birds that have a broken wing

are not able to fly.
• Birds that have their wings clipped

are not able to fly.

INSTANTIATIONS:
• A peregrine falcon is able to fly.
• A hummingbird is able to fly.
• Birds are able to glide for long

periods of time.
• Birds are able to hover in the air.

(c) Generic: Moose have winter coats.
Concept-Focused EXCEPTIONS:
• Rabbits have winter coats.
• Bears have winter coats.

Property-Focused EXCEPTIONS:
• Moose have hooves.
• Moose have big antlers.

(d) Generic: Deer live in meadows.
Concept-Focused EXCEPTIONS:
• Antelopes live in meadows.
• Rabbits live in meadows.

Property-Focused EXCEPTIONS:
• Deer live in the forest.
• Deer live in the mountains.

GGTest Data
(e) Generic: a scavenger hunt is a fun way to spend an afternoon with friends.

Default EXCEPTIONS:
• A scavenger hunt that is too difficult

is not a fun way to spend an afternoon
with friends.

• A scavenger hunt that is in an unsafe
location is not a fun way to spend
an afternoon with friends.

INSTANTIATIONS:
• A food scavenger hunt is a fun

way to spend an afternoon
with friends.

• A historical scavenger hunt is a fun
way to spend an afternoon
with friends.

(f) Generic: Binoculars are used to view location.
Concept-Focused EXCEPTIONS:
• A telescope is used to view location.
• A satellite is used to view location.

Property-Focused EXCEPTIONS:
• Binoculars are used to view stars.
• Binoculars are used to magnify objects.

GGSmall Data
(g) Generic: A rose is placed in a container with water.

Default EXCEPTIONS:
• Dried roses are not placed in a container

with water.
• Roses that are used as part of a garland

are not placed in a container with water.

INSTANTIATIONS:
• A rose is placed in a vase.
• A rose is placed in a bowl.
• A cut roses are placed in a container

with water.
(h) Generic: Cakes are made with a mix.

Concept-Focused EXCEPTIONS:
• Pancakes are made with a mix.
• Waffles are made with a mix.
• Brownies are made with a mix.

Property-Focused EXCEPTIONS:
• Cakes are made with eggs.
• Cakes are made with a cake pan.
• Cakes are made with an oven.

taste like cocoa, valid EXCEPTIONS still exist (e.g., the property-focused EXCEPTION “hot
chocolates taste like vanilla”). In the following section, we will use the EXEMPLARS
generated by ExempliFI, especially the default EXCEPTIONS, to investigate how LLMs
reason about generics.
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5. Reasoning in Generics in LLMs

Theorists (Leslie 2008; Leslie, Khemlani, and Glucksberg 2011; Leslie and Gelman 2012;
Sutherland et al. 2015; Gelman, Tapia, and Leslie 2016) have proposed that generics
represent a default way of thinking for humans. That is, generics are more cognitively
fundamental than quantified statements. This generics-as-default hypothesis has been
supported by cognitive science studies with both children and adults (cf. §2.1). Our
generated EXEMPLARS allow us to investigate whether LLMs exhibit similar behaviors
by probing how they treat the semantic relationship between generics and EXEMPLARS.

Since LLMs have been trained on large quantities of human-written text, we hy-
pothesize they will seem to treat generics as defaults, similarly to humans. Specifically,
we investigate two behaviors: overgeneralizing from generic statements to universals (i.e.,
accepting false universal statements as true when the corresponding generic is true)
and treating generic statements as universals in property inheritance.

First, humans have a cross-culturally documented tendency to treat universally
quantified statements as generic (e.g., “all birds can fly” “birds can fly”) (Hollander,
Gelman, and Star 2002; Khemlani et al. 2007; Mannheim et al. 2010; Meyer, Gelman, and
Stilwell 2011; Tardif et al. 2012). That is, universally quantified statements are deemed
true despite the presence of known EXCEPTIONS. This has been termed the GOG ef-
fect and supports the generics-as-default hypothesis. In particular, if understanding
generics is more basic (i.e., default behavior) than understanding quantified statements,
humans should (and do) sometimes fall back on their interpretation of a generic when
confronted with a universal (Leslie, Khemlani, and Glucksberg 2011).

Second, when drawing inferences (e.g., in syllogistic reasoning), generics are often
treated as universally quantified (Khemlani, Leslie, and Glucksberg 2008, 2009). For
example, the generic “birds can fly” is often treated as the default rule “in general, if
X is a bird then X can fly” and so it can be inferred that a new bird, Y, can fly without
knowing anything about Y. Such plausible inferences have been documented in human
interactions (Collins and Michalski 1989) and support the hypothesis that generics are a
default way of generalizing information.

In order to analyze whether LLMs show evidence of generics-as-defaults behavior,
we first probe the GOG effect in LLMs (§5.1) and then investigate property inheritance
via generics (§5.2).

5.1 Generics and Quantification

In humans, the GOG effect has primarily been demonstrated by asking study partic-
ipants to agree or disagree with statements that are either quantified or generic (e.g.,
Leslie, Khemlani, and Glucksberg 2011). Specifically, in the first paper to investigate the
effect, Leslie, Khemlani, and Glucksberg (2011) asked human participants to respond
with either yes or no, indicating their agreement with various statements. Those state-
ments were presented universally quantified (e.g., “all ducks lay eggs”), in generic form
(e.g., “ducks lay eggs”), or existentially quantified (“some ducks lay eggs”). Multiple
participants responded to each statement. Of particular interest were generics that are
intuitively true, despite only ∼50% of the concept satisfying the property. For example,
“ducks lay eggs” is intuitively true, even though only mature, fertile, female ducks lay
eggs. For such generics, accepting a universally quantified version (e.g., “all ducks lay
eggs”) clearly constitutes an error that an educated adult human is in a position to spot
and avoid. Contrary to this, Leslie, Khemlani, and Glucksberg (2011) found evidence of
the GOG effect across multiple studies. That is, they found that educated adult humans
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have a tendency to treat universals as though they are generics and will accept such
universals a robust percentage of the time, despite being aware of the exceptions (e.g.,
male ducks).

To examine whether LLMs overgeneralize and exhibit a GOG effect, we probe
which quantifiers are generated by LLMs for generic statements. We assess the quan-
tifiers generated by the LLM and, if either of the universal quantifiers “all” or “every” is
generated, we count this as evidence of the GOG effect. Note that there are many choices
of quantifiers that do not constitute the GOG effect (e.g., “many”, “most”, “some”,
“few”), as well as adjectival modifiers, and so LLMs have many options other than
universal quantifiers. By supplying a universal quantifier to modify the generic, the
LLM provides evidence of a tendency to conflate universally quantified statements and
generics (i.e., evidence of a GOG effect).

Furthermore, we investigate whether a GOG effect in LLMs persists when counter
evidence to the generic is presented. To do this, we augment our probe to include
EXCEPTIONS. This aims to control for the possibility that any observed GOG effect is
due to missing knowledge about relevant exceptions in the LLM. Specifically, we follow
Karczewski, Wajda, and Poniat (2020) and include automatically generated default
EXCEPTIONS in the generic’s context. In humans, knowledge of EXCEPTIONS may reduce
the GOG effect (Leslie, Khemlani, and Glucksberg 2011) but it does not eliminate it; we
expect LLMs to exhibit similar behavior.

5.1.1 Methods

Probes. Our main probe (Top Quantifiers) asks LLMs to answer a fill-in-the-blank ques-
tion about how a generic statement should be quantified (see “Top Quantifiers Probe”
column in Table 7). The LLM is asked to respond with the top five options (quantifiers)
to fill in the blank. We do this to obtain variation in the models’ responses. While human
studies on the GOG effect can collect responses from multiple participants for each
generic (described above; cf. Leslie, Khemlani, and Glucksberg 2011), multiple gener-
ations from LLMs exhibit very little variation. Therefore, a ranked list of quantifiers
approximates multiple participant responses within the framework of a single LLM. To
measure the GOG effect from this probe, we compute the frequency of the universal
quantifiers “all” and “every” among the elicited quantifiers for each generic. For each
generic, we run this probe with and without EXCEPTIONS to investigate the impact of
EXCEPTIONS on the models’ behavior.

Additionally, we run a supplementary probe (Psychology-based Questions) that
directly follows psychology studies (e.g., Leslie, Khemlani, and Glucksberg 2011) on

Table 7
Prompts used to probe LMs for the GOG effect. The braces ({}) indicate slots filled by the generic
(teal G), an EXCEPTION (orange E), or one of three quantifiers (pink Q). The three possible
quantifiers are: “all”, “some”, or nothing (to obtain a generic statement).

Top Quantifiers Probe Psychology-based Questions Probe
Base [blank] {birds can fly.}G {All}Q {birds can fly.}G Yes or No?

What are the 5 best quantifiers to fill in the blank?
+ EXCEP. {Birds can fly.}G {Penguins cannot fly.}E Yes or No?

However, {penguins cannot fly.}E
Therefore, [blank] {birds can fly.}G
What are the 5 best quantifiers to fill in the blank?
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the GOG effect in humans. Specifically, this probe consists of four questions asked
to the LLM separately (see “Psychology-based Questions Probe” column in Table 7).
The model is asked to answer yes or no to each. The first two questions each contain
a quantified version of the generic. The quantifier is either the universal “all” or the
existential “some”. The third question contains the unquantified generic (i.e., the generic
as a generic). The fourth question asks whether the model endorses an EXCEPTION. We
then measure how often LLMs endorse both the universally quantified generic (e.g., “all
birds can fly”) and an EXCEPTION to the generic (e.g., “penguins cannot fly”).

Details. We run our probes on generics from the AnimalG dataset21 for which our system
generates valid default EXCEPTIONS. For our main Top Quantifiers probe we use all
10,488 generics with valid default EXCEPTIONS. For the supplementary Psychology-based
Questions probe we use a random sample of 1,000 of the 10,488 generics with valid
default EXCEPTIONS; this sample is chosen such that each generic has at least three
valid default EXCEPTIONS. For both probes we use the top three valid default EXCEP-
TIONS for each generic in the probe; we average the results across the EXCEPTIONS for
each generic.

We investigate four LLMs:22

• GPT-3: A decoder-only transformer-based language model with 175B
parameters and trained for causal language modeling (Brown et al. 2020).

• GPT-3.5-Turbo and GPT-4: Transformer-based language models that
substantially improve performance over GPT-3 (OpenAI 2023). Both
models are trained with reinforcement learning from human feedback
(RLHF) (Christiano et al. 2017) and are optimized for chat purposes.23

In RLHF, a reward function is learned from human preferences about
generated text. The resulting reward function is then used with
reinforcement learning to fine-tune the LLM.

• LLAMA-2: An open-source transformer-based language model trained
using RLHF (Touvron et al. 2023). We use the version with 7B parameters
optimized for dialogue use cases.

We choose these models to include both top-performing (GPT-4) and open-source
(LLAMA-2) models, along with the LLMs used in our ExempliFI system (GPT-3 and
GPT-3.5-Turbo).24

5.1.2 Analysis. To examine the main Top Quantifiers probe, we use as a metric the per-
centage of generics where a universal quantifier is generated by the LLM, both with and
without default EXCEPTIONS probe. For the Psychology-based Questions probe, we exam-
ine four slices of the models’ responses. These are the percentage of generics where:
(i) the LLM endorses both the universally quantified generic and an EXCEPTION (i.e., a

21 We use AnimalG data because it is the largest set of generics and because it consists of simple sentences
that most closely follow linguistic definitions of generics.

22 GPT-3—text-davinci-003; GPT-3.5-Turbo—gpt-3.5-turbo; GPT-4—gpt-4-0613;
LLAMA-2—meta-llama/Llama-2-7b-chat-hf.

23 https://platform.openai.com/docs/models.
24 We do not use GPT-3 for the Psychology-based Questions probe experiments because GPT-3 has been

deprecated by OpenAI.
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GOG response), (ii) the LLM does not endorse the universally quantified generic but does
endorse an EXCEPTION (i.e., responds “correctly” and in a way that indicates knowledge
of the generic’s EXCEPTIONS), (iii) the LLM does endorse the universally quantified
generic but does not endorse the EXCEPTIONS (i.e., the response may be attributable to
ignorance about the generic’s EXCEPTIONS), and (iv) neither the universally quantified
generic nor the EXCEPTIONS are endorsed by the LLM (i.e., the model may be generally
ignorant about the generic or it may be unable to respond to the prompt for some other
reason). Note that we include full results for the other questions in Psychology-based
Questions probe in Appendix B.1.2.

Our results from both probes show a non-zero GOG effect across all LLMs (Figure 4)
with the level ranging from fairly negligible (present on<10% of generics) to substantial
(present on over 90% of the generics). With the Top Quantifiers probe, overgeneralization
actually increases for half of the LLMs (GPT-3.5-Turbo and LLAMA-2) when EXCEP-
TIONS are added to the prompt (Figure 4a); for GPT-4 the effect does substantially
decrease in the presence of EXCEPTIONS. The results of the Psychology-based Questions
probe also show a GOG effect for all LLMs (Figure 4b). For the GPT models, only ∼7.5
of the universal statement endorsements (∼2 of the total generics) can potentially be
attributed to ignorance of the generic’s EXCEPTIONS; the remaining portion indicate
overgeneralization. Note that although the GOG response from LLAMA-2 is minimal,
this may be attributable to the model failing to adequately process the probes’ prompts.
Specifically, a large portion (40%) of LLAMA-2’s responses fall into the “Other” category

Figure 4
Results of the GOG effect probes across LLMs.
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(i.e., neither the universally quantified generic nor the EXCEPTIONS were endorsed
by the model) and LLAMA-2 exhibits a substantially lower rate of correct responses
than the GPT models (26% compared with 71% for the GPTs).25 Overall, regardless of
whether we probe by asking the model a generation (i.e., free response – Top Quantifiers)
or classification (i.e., yes or no – Psychology-based Questions) question, a GOG effect is
present across LLMs and the effect does not disappear in the presence of EXCEPTIONS.

When comparing the two probes, recall that the way in which EXCEPTIONS are
presented to the LLMs is distinct. Specifically, in the Top Quantifiers probe, the default
EXCEPTION is presented together with the generic itself in one prompt (see Table 7).
Hence the LLMs’ response is generated conditioned on the EXCEPTION. In contrast, for
the Psychology-based Questions probe, the universally quantified version of the generic
and the default EXCEPTION are presented in separate prompts. This means that in the
Psychology-based Questions probe the EXCEPTION does not explicitly impact the response
to the universal statement, and vice versa. This probe, which does not explicitly require
the model to reason about the relationship between the generic and EXCEPTION, serves
as a baseline indicator of GOG effect in LLMs. The observed increases in the GOG effect
with the Top Quantifiers probe may then be due in part to difficulties in reasoning for the LLMs.

To better understand the universal quantifiers elicited by the Top Quantifiers, we
examine the LLMs’ consistency across varying EXCEPTIONS. That is, for generics where
an LLM produces a universal quantifier in the presence of at least one of the correspond-
ing EXCEPTIONS, we compute the proportion where the LLM produces universals for all
EXCEPTIONS (i.e., where the LLM is consistent in its decision to universally quantify the
generic). We observe that the models for which the GOG effect increases with EXCEPTIONS
(i.e., GPT-3.5-Turbo and LLAMA-2) have substantially more consistency than the models
where the GOG effect decreases. That is, GPT-3.5-Turbo/LLAMA-2 are consistent for
60.3% of cases on average while GPT-3/GPT-4 are consistent for only 24.4% of cases
on average. The low consistency with GPT-3/GPT-4 is likely indicative of a further
decrease in GOG effect: The LLMs not only produce universals for less generics, they
are also less confident even when they do.

Since the Top Quantifiers probe is essentially a free response question for the LLMs, the
generated quantifiers may not actually be grammatical quantifiers. For example, the
LLMs may generate adjectival modifiers (e.g., “old”, “female”). When we compare
the modifiers produced by the GPT models, we observe that both GPT-3 and GPT-
4 produce nearly twice as many unique modifiers (3,633 and 4,077, respectively) as
GPT-3.5-Turbo and LLAMA-2 (1,351 and 1,589, respectively). That is, GPT-3/GPT-4
are better able to come up with complex modifiers that qualify the generic without
using a grammatical quantifier. In fact, GPT-4 produces 1,505 multi-word modifiers
(compared with only 617 from GPT-3.5-Turbo and 629 for LLAMA-226). For example,
GPT-4 produces 146 combinations of “only”+adjective (only matured, only female, only
domestic, only fertile, etc.), compared with less than 50 from GPT-3.5-Turbo/LLAMA-2.
Such varied and appropriate modifiers allow the model to qualify the generic assertion
while simultaneously accounting for the exceptions. Therefore, the observed differences in
GOG effect across LLMs may be partly attributable to differences in the LLMs’ ability to produce
appropriate, non-quantifier modifiers.

25 An additional 19% of LLAMA-2’s responses are not interpretable as a yes or no response (e.g., a string of
only newline characters).

26 We remove complete sentences that do not contain the concept from consideration as modifiers. For most
models the number of such instances is very small (16–22), although LLAMA-2 produces 475 instances.
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Overall, these results show that LLMs do exhibit a GOG effect. In particular, like,
humans, models conflate generics with universally quantified statements in multiple
probe settings. However, unlike in humans, this effect is sometimes increased in the
presence of default EXCEPTIONS. This could be due in part to difficulties for LLMs in
reasoning over EXCEPTIONS and generics together or to varying abilities of LLMs to
generate appropriate, non-quantifier modifiers for generics. We leave further discussion
for §5.3 and now investigate whether the conflation of generics and universals extends
to property inheritance in LLMs.

5.2 Generics and Inheritance

Human reasoning about property inheritance often confounds generics with univer-
sally quantified statements. For example, based on the generic “birds can fly” humans
tend to infer that if Polly is a bird then Polly can fly, unless they are provided with
evidence to the contrary. In other words, humans treat the generic “birds can fly” as
universally quantified (“all birds can fly”) and therefore applicable to all individual
birds. However, when presented with counterexamples (e.g., “Bob is a penguin and
Bob cannot fly”), humans sometimes deviate from applying the default rule (i.e., not
inferring that Polly can fly). In this work, we probe how LLMs reason about property
inheritance with generics and how EXCEPTIONS impact this reasoning.

Property inheritance with generics has primarily been studied in formal methods
for nonmonotonic reasoning.27 Early work in artificial intelligence investigated inheri-
tance from generalizations with exceptions (Hanks and McDermott 1986; Brewka 1987;
Horty and Thomason 1988) and a number of formal logics have been proposed to
facilitate reasoning with such sentences (McCarthy 1980, 1986; Reiter 1978, 1980; Poole
1988; Delgrande 1988; Veltman 1996; Collins and Michalski 1989). In an attempt to
benchmark the success of nonmonotonic reasoning systems, Lifschitz (1989) compiled
a set of challenge problems. We use the inheritance reasoning subset of these problems
as inspiration for constructing probe questions for LLMs.28

To investigate inheritance reasoning in LLMs, we construct a set of probe questions
that ask the model whether an assertion about property inheritance is valid. For exam-
ple, an LLM is asked whether the assertion “A Goq can fly” is valid given the premises
“birds can fly” (a generic) and “a Goq is a bird” (a statement that connects the queried
subtype, Goq, to the concept in the generic). By using generics rather than explicitly
quantified statements (e.g., “all birds can fly”), we probe whether LLMs treat generics
as default inference rules. Additionally, we probe how LLMs reason about inheritance
in the presence of EXCEPTIONS to the generic.

5.2.1 Methods

Setup. We construct two probe sets of inheritance questions using generics and
the EXEMPLARS generated by ExempliFI. Each question is centered around a property

27 In deductive logic, it would be invalid to conclude that the hypothesis below follows from the premises:

Premises: Polly is a bird. Birds can fly
Hypothesis: Polly can fly.

However, humans and machines tend to use more flexible reasoning and formal methods for
nonmonotonic reasoning attempt to capture some of this flexibility (cf. Ginsberg 1987). Following
nonmonotonic logics, it is valid to infer the hypothesis from the premises.

28 Specifically, problems B1 and B2.
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generalization (e.g., “sheep have horns”). The model is then asked to determine the
validity of a conclusion about property inheritance: whether the specified property
is inherited by a subtype (e.g., “a Yeb”). We use nonsense words for the subtype in
the conclusion in order to ensure that the model does not rely on prior knowledge
in determining validity. We construct questions with both positive (e.g., “A Yeb has
horns”) (Condition[+][+][+]) and negative (e.g., “A Yeb does not have horns”) (Condition[¬][¬][¬])
conclusions. In contrast to prior work, which compares the log-likelihood of sentence
pairs to measure LLM’s ability to do property inheritance reasoning (Misra, Ettinger,
and Rayz 2021), we use direct questions for evaluation. This formulation is better suited
to decoder-only LLMs (e.g., GPT series) which are trained to follow task instructions.

Our first probe set, BasicInherit, contains questions with two components. The first
is a generic (e.g., “sheep have horns”), which provides a generalization that a concept
(e.g., “sheep”) has a property (e.g., “have horns”); the second component is a set of
premises consisting of the relevant taxonomic relations between the subtype and the
concept (e.g., “A Yeb is a sheep”). In contrast to prior work (Talmor et al. 2020; Misra,
Ettinger, and Rayz 2021), we explicitly include both the property generalization (i.e.,
the generic) and taxonomic relations. First, by including the property generalization
in the question, we ensure that decisions by the LLM cannot be attributed to a lack of
knowledge (e.g., not knowing that sheep have horns). Secondly, the taxonomic relations
enable us to use nonsense words as the subtype in the conclusion. Furthermore, the
taxonomic relations also mean that the model is actually being evaluated on whether it
endorses a property inheritance assertion, and not on whether it can also connect the
nonsense word to the concept.

Our second probe set, ComplexInherit, probes property inheritance behavior in
the presence of potentially conflicting information. Namely, each question includes a
distractor—an example of the concept that does not have the property (e.g., “sheep that
have had their horns removed for safety reasons”). These questions additionally include
the same components as the questions in BasicInherit. The distractor is included as part
of the premises in the question, along with the taxonomic relations. As distractors, we
use generated default EXCEPTIONS to the generic in each question.

For both probe sets, we construct both single and 2-step inheritance questions. The
single-step inheritance questions probe inheritance to a direct subtype of the concept.
For example, given “sheep have horns” and “a Yeb is a sheep”, the model is asked
to determine whether “a Yeb has horns” is valid (in Condition[+]). In the 2-step inheri-
tance questions, an intermediate subtype is introduced between the conclusion and the
concept. For example, for the Condition[+] conclusion “a Yeb has horns”, the premises
“sheep have horns”, “bighorn sheep are sheep”, and “a Yeb is a bighorn sheep” illustrate
2-step inheritance (i.e., sheep→ bighorn sheep→ Yeb). We use generated INSTANTIA-
TIONS to a question’s generic as the intermediate subtypes.

Details. We use a subset of 1,000 randomly selected generics from the AnimalG dataset29

to construct our evaluation questions. Each question has the following format:

Premises:
[premises]

29 We use AnimalG because it was created to contain only generics about animals. So it is well-suited for
investigating property inheritance to subtypes. In contrast, the generics in GGSmall and GGTest describe
concepts that do not necessarily have subtypes and would not make sense in an inheritance setting.
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Table 8
Prompts for both property inheritance probe sets. Premises are shown in the top portion and the
conclusions for both conditions are provided in the bottom portion of the table. 2-Step indicates
the prompt question involves 2-step inheritance, Distractor indicates the prompt question
contains an EXCEPTION. The braces ({}) indicate slots filled by the generic (teal G), an
EXCEPTION distractor (orange E), or an INSTANTIATION’s subtype (magenta S).
Subsets 2-Step? Distractor? Premises

BasicInherit {Sheep have horns.}G A Yeb is a sheep.
X

{Sheep have horns.}G A Yeb is {a bighorn sheep}S.
{A bighorn sheep}S is a sheep.

ComplexInherit X
{Sheep have horns.}G A Yeb is a sheep. Sheep that
have their horns removed for safety reasons are
sheep. {Sheep that have their horns removed for
safety reasons do not have horns. }E

X X
{Sheep have horns.}G A Yeb is {a bighorn sheep}S
{A bighorn sheep}S is a sheep. Sheep that have
their horns removed for safety reasons are sheep.
{Sheep that have their horns removed for safety
reasons do not have horns. }E

Conclusions
Condition[+]: A Yeb has horns.
Condition[¬]: A Yeb does not have horns.

Conclusion: Therefore, [conclusion].
Does the conclusion logically follow from the premises? (yes/no)

The premises consist of the property generalization (the generic), relevant taxonomic
relations, and potentially a distractor (an EXCEPTION) as discussed above (see examples
in Table 8). We use the wording “logically follow” to instruct the model to do deductive
inference.30 As a result, if the model endorses property inheritance (e.g., responding
“yes” to the Condition[+] conclusion in Table 8), we know that it has treated the generic
in the premises (e.g., “sheep have horns”) as if it were universally quantified (e.g., “all
sheep have horns”), since that is the only way for such a conclusion to be deductively
valid.

Given a generic, we construct premises for both BasicInherit and ComplexInherit.
In particular, we first construct single and 2-step inheritance premises for BasicInherit,
using the top ranked concept-focused INSTANTIATION as the intermediate subtype in
2-step inheritance. Then, we add a distractor and connecting taxonomic information
to each set of premises in BasicInherit, making the premises for ComplexInherit. We use
the top ranked default EXCEPTION as the distractor. This results in four sets of premises.
Note that the nonsense subtypes are randomly chosen from a set of five nonsense words
and the same nonsense word is used across all premises for a generic.

The probe questions for a generic are constructed by combining each set of premises
with the conclusions for both conditions. Namely, each set of premises produces two

30 We validate that the models behave correctly in response to this wording with a manually constructed set
of sample questions. See Appendix B.2 for details.
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Table 9
Percentage of property inheritance probe questions where the model did or did not endorse the
property inheritance conclusion. In Condition[+], “yes” indicates endorsement while in
Condition[¬] “no” indicates endorsement.

Condition[+] Condition[¬] All
Inherits Doesn’t Inherits Doesn’t Inherits Doesn’t

GPT-3.5 0.885 0.115 0.889 0.107 0.887 0.113
GPT-3 0.944 0.057 0.969 0.032 0.956 0.044
GPT-4 0.985 0.016 0.999 0.001 0.992 0.008

(a) Results on the BasicInherit probe questions.

Condition[+] Condition[¬] All
Inherits Doesn’t Inherits Doesn’t Inherits Doesn’t

GPT-3.5 0.116 0.884 0.417 0.582 0.267 0.733
GPT-3 0.164 0.837 0.554 0.447 0.359 0.642
GPT-4 0.727 0.274 0.964 0.037 0.845 0.155

(b) Results on the ComplexInherit probe questions.

questions, one for Condition[+] and one for Condition[¬]. Therefore, for each generic we
have eight questions and so our final probe sets consist of 4,000 questions each.

We probe property inheritance in three LLMs:31 GPT-3, GPT-3.5-Turbo, and GPT-4
(see §5.1.1 for descriptions of the models).

5.2.2 Results and Analysis. As a metric, we measure the percentage of questions on which
each LLM endorses property inheritance (Table 9).

First, we observe that with BasicInherit, all three LLMs endorse property inheritance
with very high frequency (94.8% on average, see Table 9a). Furthermore, we observe
minimal variation between Condition[+] and Condition[¬]. This indicates that the models
do tend to treat generics as default inference rules for straightforward property inheritance,
and that negation does not impact the models’ behavior. Since endorsing property in-
heritance here means judging that the argument is valid, we take this as further evidence
that LLMs, like humans, treat generics as akin to universally quantified statements in a
reasoning context.

In contrast, on the ComplexInherit probe questions, endorsement of the property
inheritance is substantially lower. In other words, the presence of distractors (EXCEPTIONS)
has a substantial impact on how often models support property inheritance. For example, an
LLM would likely assert that some bird X cannot fly because an example is provided of
a bird that cannot fly (e.g., penguins). Unlike with BasicInherit, there is a clear difference
between the two conditions. In particular, property endorsement is more frequent with
ComplexInherit in Condition[¬] across all models. By responding “no” to the conclusion
in Condition[¬] (e.g., “a Yeb does not have horns”), one interpretation is that the model
is implicitly endorsing the opposite (i.e., that a Yeb does have horns). This means the
models are more likely to implicitly endorse property inheritance, rather than explicitly.

31 We do not include LLAMA-2 in this analysis because the model generates almost exclusively a single
response (“no” for 91.5% of the instances) and so its behavior corresponds to randomly assigning yes or
no.
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An alternative interpretation is that the models do a better job in this condition of
recognizing that, in fact, neither conclusion follows deductively from the premises.

Looking more closely at ComplexInherit, we observe that GPT-4 endorses property
inheritance substantially more than GPT-3.5-Turbo and GPT-3; in Condition[+] the lat-
ter two models support property inheritance in only ∼300 instances. This difference
may be due in part to substantial increases in GPT-4’s reasoning performance (e.g., as
demonstrated by large improvements on academic exams; OpenAI 2023), which may
allow the LLM to better reason about the semantic relationship between generics and
their EXCEPTIONS.

If we set aside questions of deductive validity and focus on non-monotonic patterns
of inference, in human discourse, considering EXCEPTIONS relevant to possible property
inheritance is not unreasonable. Following Gricean maxims (Grice 1975), if a speaker
asserts something, then other participants may assume that that thing is relevant. So
in this case, the model might reasonably assume that the default EXCEPTION is relevant
to whether the property is inherited to the subtype; the assertion of an EXCEPTION may
imply the final subtype is also an EXCEPTION. Although this contrasts with patterns
of formal nonmonotonic reasoning (Lifschitz 1989), it is supported by studies with
humans. In particular, human studies on default reasoning have found evidence that
factors such as the choice of EXCEPTION and the number of EXCEPTIONS influence
whether humans deem that a property is inherited from a generic to a subtype (Elio
and Pelletier 1996; Pelletier and Elio 2005). Given that LLMs are trained from vast
quantities of human language, we hypothesize that, as with quantification (cf. §5.1.2),
certain LLMs (e.g., GPT-3.5 Turbo) may have adopted some of the pyschologism that
Pelletier and Elio (2005) argue impacts human inheritance reasoning. Our large gener-
ated dataset of generic’s EXCEPTIONS facilitates further investigations into this question.

Overall, our results show that the LLMs do treat generics as default inference rules
in simple property inheritance scenarios. LLMs also seem to exhibit similar inference
patterns as humans in complex inheritance reasoning. In particular, when EXCEPTIONS
are present, LLMs may consider them relevant to potential inheritance.

5.3 Discussion

Based on our results, we offer the following insights into how LLMs reason about
generics.

Do LLMs show evidence of overgeneralization with generics? Our analyses using
generics and EXEMPLARS show that LLMs do exhibit evidence of the GOG effect.
First, we find that across LLMs, universal quantifiers are generated to modify generic
statements, even when EXCEPTIONS to the generic are present. This indicates that quan-
tified statements and generics are conflated by LLMs (§5.1.2). Additionally, LLMs treat
generic statements as default rules about property inheritance (§5.2.2). That is, LLMs
treat generics as universally quantified by reasoning that, as a matter of deductive logic,
properties are inherited from them.

What differences do we observe between how LLMs and humans reason about generics?
Unlike humans, some LLMs demonstrate a greater degree of conflation between gener-
ics and universally quantified statements when EXCEPTIONS are presented (§5.1.2). That
is, some LLMs (GPT-3.5-Turbo and LLAMA-2) produce more universal quantifiers for
generics that are presented along with their EXCEPTIONS.

1243



Computational Linguistics Volume 50, Number 4

On the one hand, the GOG effect (see above) is evidence that LLMs do not process
the universal quantifier “all” in a strictly logical sense, and therefore are not expected
to always adjust the quantifiers in their response (e.g., no longer generate “all”) when
EXCEPTIONS are presented. On the other hand, the increase in GOG effect with some
models suggests that factors other than quantifier treatment (i.e., non-logical handling
of “all”) are impacting the models’ responses to EXCEPTIONS. One such factor may
be that EXCEPTIONS require more complex reasoning from the LLMs. Specifically, EX-
CEPTIONS require LLMs to relate multiple sentences (the generic and the EXCEPTION)
and further require that the internal semantic representations of concepts account for
EXCEPTIONS. Determining whether this is indeed the case in LLMs is beyond the scope
of this work. Therefore, further investigations are needed to better understand the
source of LLMs’ behavior in response to generic EXCEPTIONS.

Additionally, LLM behavior may differ from humans’ reasoning due to non-human-
like errors. For one, LLMs are known to be sensitive to the contents of their prompts and
so differences in length between prompts with and without EXCEPTIONS may impact
how the LLMs respond. Additionally, humans typically understand the type of response
required of them when answering a prompt. In contrast, LLM responses do not always
adhere to basic syntactic or commonsense constraints. For example, LLMs may generate
an entire sentence with a new concept as a modifier for a generic (see discussion §5.1).
Finally, synthetic data may result in a small number of malformed inputs (e.g., with
incorrectly conjugated verbs). While humans would likely be able to understand what
the input should have been and then respond accordingly, LLM behavior in response to
such inputs is unpredictable.

What are our insights into how LLMs reason about generics? Our investigations with
generics and EXEMPLARS show that LLMs exhibit patterns of non-logical (i.e., non-
deductive) reasoning with similarities to how humans actually reason. Specifically,
LLMs show evidence of conflating generics and universally quantified statements. This
behavior aligns with the human tendency to treat generic statements as a default mech-
anism for generalization, a behavior that is argued to be cognitively fundamental (Leslie
2007). Although LLMs are not humans, they are trained on massive corpora of human
language. Therefore, it remains to be seen how GOG-effect-influenced behavior benefits
(or harms) LLM performance in various downstream tasks (e.g., question-answering).
The implications for bias and stereotyping are particularly important. That is, the GOG
effect may be indicative of a bias towards associating a property with all members of a
particular group, which could potentially be harmful.

It should be noted that LLM behavior does not entirely align with humans. Specif-
ically, LLMs do not consistently adjust their responses when presented with contradic-
tory evidence (i.e., obvious counterexamples) and further studies are needed to identify
the source of this behavior. For example, we observe discrepancies between models
trained with (e.g., GPT-4) and without (GPT-3) RLHF but further investigations are
needed to determine the specific impact of RLHF. Such investigations are important
because EXCEPTIONS are crucial for many applications that reason with generics (e.g.,
robot object retrieval using generic rules about where objects are normally located;
Sridharan et al. 2015). Studies from philosophy and psychology on how humans ac-
tually use and acquire generics, and their EXCEPTIONS, may help in identifying ways to
improve LLM reasoning about EXCEPTIONS. Finally, different approaches to prompting
(e.g., chain-of-thought; Wei et al. 2022) may help clarify LLM’s responses when reason-
ing about generics and EXEMPLARS.
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6. Validation and Details of the ExempliFI System

In this section we discuss details of our ExempliFI system and validation experiments:
the data sources (§6.1), annotation procedures (§6.2), and baselines used for comparison
(§6.3). We also present the results of a human evaluation of the data generated by
ExempliFI (§6.4). We show that ExempliFI generates high-quality EXEMPLARS.

6.1 Data

We source generics from three datasets in our experiments, as described in §4.3. Addi-
tionally, we use the EXEMPLARS annotated by Allaway et al. (2023), GGSmall-Exemplars,
as additional training data for our discriminators (§4.2.3). Full details of the datasets
used and their processing can be found in Appendix A.1.

6.2 Annotations

We collect annotations for: (i) training and evaluating the quality of our validity discrim-
inators used in §4.2.3, (ii) evaluating the truthfulness filter in §4.2, and (iii) conducting
human evaluation. All annotations are done using Amazon Mechanical Turk with three
annotators per HIT (paid at $15/hour on average). For each annotation task, annotators
must first pass a corresponding qualification task consisting of five questions. We report
the full agreement measures across all tasks in Appendix A.3.

6.2.1 Validity Annotations. We use three separate annotation tasks to annotate the valid-
ity of candidate EXEMPLARS, one each for the INSTANTIATIONS, the default, and the
focused EXCEPTIONS. All three tasks are framed as a debate between two students,
where one student (Student A) asserts the generic and the other (Student B) replies
with an EXEMPLAR. We use this framing since, as discussed in §3.3, EXEMPLARS provide
alternative answers to the same QUD that the generic answers. Concretely, in the
INSTANTIATION task, the annotators are asked to assess whether the responses are
valid corroborating evidence for the corresponding generic. For the EXCEPTIONS task,
the annotators are asked to assess whether the responses are countering evidence for
the corresponding generic, taking into account the focus. Full details, instructions, and
examples are provided in Appendix A.3.1.

We use this annotation process for gathering data for discriminator training and
evaluation (§4.2.3), and for evaluating ExempliFI generations (§6.4). For discriminator
use, we have annotators label 4,100 randomly selected INSTANTIATIONS and focused
EXCEPTIONS across 613 generics selected from both the GGTest and AnimalG datasets.
The average Fleiss’ κ is 0.2903.

For conducting a human evaluation of system generations (§6.4), we collect anno-
tations for EXEMPLARS from 96 generics from GGSmall for which our system and both
baseline systems (i.e., the system proposed by Allaway et al. [2023] and the correspond-
ing GPT-3 baseline; see §6.3 for more details) each produce five EXCEPTIONS and five
INSTANTIATIONS. That is, we have annotators label a total of 1,440 EXCEPTIONS and
1,440 INSTANTIATIONS. The average Fleiss’ κ is 0.3056.

We note that while all the validity annotation tasks achieve moderate inter-
annotator agreement, these tasks are difficult for annotators. Firstly, annotators must
determine the validity of an EXEMPLAR in relation to a specific QUD. This requires
detailed and complex instructions (see Appendix A.3). Additionally, determining EX-
EMPLARS validity requires nuanced judgments about object category boundaries. In
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particular, for the focused EXCEPTIONS annotators are asked two questions: whether
a candidate answers a specific QUD, and whether it includes a relevant alternative
(i.e., whether the concept or property is in the exotype; §3.3.2). The second question
(determining relevance of alternatives) is substantially more difficult than the first
question with an average Fleiss’ κ of 0.259, compared with 0.405 for the first question. As
an example, consider whether “a phone” is a valid alternative to the concept “cameras”
for the generic “cameras are used to take pictures”; since many phones have cameras
the two categories overlap, which makes the validity of the alternative ambiguous.
Our annotation procedures are a substantial improvement compared to prior work (see
Appendix B.3 for analysis), but the continuing challenges of annotating EXEMPLARS
highlight the importance of future work in this area.

6.2.2 Truthfulness Annotations. To evaluate the truthfulness filter (§4.2), we collect an-
notations on the truthfulness of generated EXEMPLARS. We use one annotation task, in
which annotators are provided with four sentences (EXEMPLARS) and asked to judge
whether each is either “generally true” or “generally false”. Annotators are asked to
mark nonsensical statements as false. Full instructions and examples are provided in
Appendix A.3.2.

We have annotators label a set of 500 EXEMPLARS for generics from the AnimalG
dataset: 100 randomly selected from each type (concept- and property-focused EX-
CEPTIONS, default EXCEPTIONS, concept- and property-focused INSTANTIATIONS). The
Fleiss’ κ is 0.4407.

6.3 Generation Baselines

As generation baselines, we use the constrained decoding system (ConstraintDec) and a
prompt-based GPT-3 baseline from Allaway et al. (2023). Both systems assign generics
to categories based on their semantic behavior (e.g., “birds can fly” is categorized as
principled because there is a strong association between “birds” and “fly”) and use
templates to control the output form and content. In order to evaluate the baseline
generations using our proposed annotation setup (§6.2.1), we deterministically map
(see Table 10) baseline templates to our five types of EXEMPLARS (default EXCEP-
TIONS, concept- and property-focused EXCEPTIONS, and concept- and property-focused
INSTANTIATIONS). Note that the baselines systems do not generate concept-focused
EXCEPTIONS. Full details of the systems are given in Appendix A.4.

6.4 Human Evaluation

To quantitatively evaluate ExempliFI, we conduct a human evaluation by collecting va-
lidity annotations on a subset of generated EXEMPLARS (§6.2) and computing precision
at k (for k = 1 and k = 5).

ExempliFI substantially outperforms both baselines by a large gap (average of 20.63
points) for EXCEPTIONS (Table 11). For the INSTANTIATIONS, ExempliFI performs the
same as ConstraintDec while outperforming the GPT-3 baseline by an average of 12.93
points. Comparing the three systems, we observe that the INSTANTIATIONS are less
difficult to generate than the EXCEPTIONS; the baseline performance is 17.08 points
higher on average for the INSTANTIATIONS than the EXCEPTIONS. Therefore, the large
improvement on EXCEPTIONS highlights the quality and usefulness of our system.
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Table 10
Templates used for generation by the baseline systems. The Input Template is used to construct
the prompt and the Output Template is used to control the output. K is the concept, P is the
property, r is the relation, and � indicates the exotype.Xindicates ExempliFI uses an analogous
template for generation while%indicates it does not. Mapped Type is the mapping used for
evaluating the baseline generations under our annotation setup.

EXEMPLAR Type Input Template Output Template In Ours? Mapped Type

INST.
[KSUBTYPE + r] [ ]P X ConceptF (i)
[K + r] [ ]SUBTYPEP

X PropertyF (ii)
[KSUBTYPE + r] [ ]SUBTYPEP

% PropertyF (iii)

EXCEP.

[KSUBTYPE + ¬r] [ ]P X Default (iv)
[K + ¬r] [ ]SUBTYPEP

% Default (v)
[K + r] [ ]�P X PropertyF (vi)
[KSUBTYPE + r] [ ]�P % PropertyF (vii)

Table 11
Precision at k (P@k) results from human evaluation.

EXCEPTIONS INSTANTIATIONS

P@1 P@5 P@1 P@5
GPT-3-baseline 0.6250 0.6437 0.7812 0.7437
ConstraintDec 0.6667 0.7062 0.9271 0.8729
ExempliFI 0.8750 0.8583 0.9167 0.8667

Table 12
Precision of generated EXEMPLARS by type.

EXCEPTIONS INSTANTIATIONS

ConceptF PropertyF Default ConceptF PropertyF

GPT-3-baseline 0.6389288 0.6584442 0.491559 0.7678211 0.7249269
ConstraintDec – 0.7325456 0.208324 0.8922232 0.8548248

ExempliFI 0.8701254 0.8190326 0.9416154 0.8845251 0.8472249

We further examine precision by EXEMPLAR type. Note that ConstraintDec does
not generate concept-focused EXCEPTIONS (see Table 10 for a summary of the baseline
generation patterns). For all types of EXCEPTIONS, ExempliFI outperforms the baselines
(Table 12). This improvement is particularly large for the default EXCEPTIONS. Not only
does ExempliFI increase the precision of default EXCEPTIONS by an average of 59.15
points, it also generates around 4.5 times as many valid default EXCEPTIONS. Since
these EXCEPTIONS address the default interpretation of the generic they are particularly
important to generate.

The ability of ExempliFI to produce reasoning-based default EXCEPTIONS (§4.3) also
means that it produces default EXCEPTIONS for a wider range of generics than the
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baselines. For example, consider the output generations from our system and from
ConstraintDec:

Generic: Chapels are open to the public during regular hours. ConstraintDec
candidates:

• {wedding chapels, a wedding chapel, funeral chapels, chapels} are open to
members of the clergy.

ExempliFI candidates:

• Chapels are open to the public by appointment.

• Chapels that are closed for renovation are not open to the public during regular
hours.

• Chapels that are closed for repairs are not open to the public during regular hours.

• Chapels that are being used for a funeral are not open to the public during regular
hours.

• Chapels are open to the public by special arrangement.

While all of the top generations from ConstraintDec are property-focused EXCEPTIONS,
ExempliFI produces three valid default EXCEPTIONS in the top five generations.

When examining the property-focused EXCEPTIONS, we observe that ExempliFI is
able to produce better alternatives than the baselines. Consider the following example

Generic: a coyote should be considered a wild animal.

ConstraintDec candidates:

• a coyote pup should be kept in a cage.

• a coyote pup should be kept in a home.

ExempliFI candidates:

• a coyote is considered a member of the dog family.

• a coyote is considered a danger to people and pets.

Here, the alternatives generated by ConstraintDec (“kept in a cage” and “kept in
a home”) are not relevant to the generic. They are physical rather than abstract
considerations about coyotes. In contrast, ExempliFI generates alternative thoughts to
have about coyotes, better addressing the original generic. This is likely due to the way
the focused EXCEPTIONS are generated in ExempliFI. Specifically, the LLM is prompted
to not only address the QUD arising from the generic (here, “what coyotes should be
considered”) but also to provide an alternative to the property given in the generic. The
alternative is encouraged by providing the actual generic as the first answer to the QUD.
The example illustrates the strength of this approach.

Overall, our results show that ExempliFI generates high-quality EXEMPLARS. When
evaluated by humans, ExempliFI substantially outperforms baselines from prior work.
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The improvement is particularly large for default EXCEPTIONS. Not only are default
EXCEPTIONS the most natural EXCEPTIONS to a generic, they are also challenging for
LLMs to reason about.

7. Conclusion

In this work, we investigate how LLMs process and reason about generics by automat-
ically generating EXEMPLARS and using them to probe specific capabilities in LLMs.
To generate EXEMPLARS, we propose a computational framework GenerIX that uses the
pragmatic phenomenon of focus to capture a range of interpretations for a generic across
contexts of use. Our GenerIX framework provides precise logical-form based definitions
for EXEMPLARS that we operationalize in a generation system ExempliFI.

We use ExempliFI to automatically generate a dataset of ∼370k EXEMPLARS across
∼17k generics. Human validation of our dataset shows that, in comparison to prior
work, ExempliFI generates substantially higher quality EXCEPTIONS (with an average
improvement of 20.6 precision points). While the INSTANTIATIONS generated by Exem-
pliFI are comparable to prior work, it should be noted that generating EXCEPTIONS is
more difficult than generating INSTANTIATIONS. Despite this, ExempliFI improves the
generation of EXCEPTIONS such that they are of comparable quality to the INSTANTIA-
TIONS. Additionally, ExempliFI generates more diverse EXCEPTIONS than in prior work
by including not only knowledge-based examples but also examples based on reasoning
about temporary situations. Our large, high-quality dataset of generated EXEMPLARS
allows us to effectively probe how LLMs reason about generics.

We use our validated dataset to probe how LLMs process and reason about generics.
Specifically, we investigate the GOG effect (i.e., Generic Overgeneralization; cf. §5) in
relation to LLMs. In humans, the GOG effect supports the generics-as-default hypothesis:
that generics are a default way of thinking (e.g., Leslie, Khemlani, and Glucksberg
2011; Khemlani, Leslie, and Glucksberg 2008). By probing LLMs for the GOG effect, we
examine how LLM reasoning is similar to human reasoning when processing a simple
but fundamental type of statement (generics). We find that LLMs do show evidence
of a GOG effect when reasoning about both quantifiers and property inheritance. This
behavior is similar to how humans exhibit the GOG effect. For example, LLMs have
similar patterns of non-logical reasoning as humans when considering property in-
heritance. However, we also find that LLMs struggle to reason about the relationship
between generics and EXEMPLARS. This indicates the challenges and importance of
further studies into reasoning about generics and EXEMPLARS.

7.1 Limitations

GenerIX Framework. Our GenerIX framework makes simplifying assumptions about
generics. First, our framework operates only with generics in the active voice.
Secondly, we assume that all three interpretations (default, concept-focused, and
property-focused) have valid EXEMPLARS for each generic. However, for certain gener-
ics this may not hold but our system will still attempt to generate all types of EXEM-
PLARS. For example, the generic “squares have four sides” has no default EXCEPTIONS
since there are no squares without four sides. Third, GenerIX relies on a restricted set of
potential foci within a generic. In particular, the focus is either on the entire subject
of the sentence (i.e., the concept) or the entire predicate without the verb (i.e., the
property). Finally, we assume that the focus is given. Future work should investigate
how to determine the focus from the generic’s context.
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Data. In this work, we source generics from three existing datasets, all exclusively in
English. Therefore, our approach may not be suited to all generics in all languages. For
example, our system requires that generics do not have a complex syntactic structure
(e.g., as in nested generics). Additionally, the generic statements we use are not guar-
anteed to be linguistically generics (e.g., “young gazelle break vertebrae” is in AnimalG
but is questionably a generic).

As in Allaway et al. (2023), we do not generate EXEMPLARS for generics involving
human referents (e.g., professions, nationalities). While our ExempliFI system could be
used with generics involving human referents, additional care should be taken in such
cases to check that stereotypes or social biased statements are not deemed valid output.
Checking for this is beyond the scope of this work but is an important future step.

ExempliFI System. Our ExempliFI system uses an LLM to evaluate the truthfulness of
the system generated candidates (§4.2). Although LLMs have been successfully used
to verify statements in recent studies (e.g., Gilardi, Alizadeh, and Kubli 2023; Hoes,
Altay, and Bermeo 2023), they have also been shown to hallucinate (Rohrbach et al.
2018). Therefore, using an LLM to check for veracity may result in errors. Additionally,
the LLM may only be able to determine the veracity of statements that appeared in
(or are similar to) their training data. As a result, the generated data that passes the
truthfulness filter may be limited in coverage, with true but unseen statements being
deemed false. We discuss the implications of potential overlap between LLMs’ training
data and generated data below.

We also note that both our ExempliFI system itself and our system validation exper-
iments rely on human annotations of EXEMPLARS validity (§6.2). While all the validity
annotation tasks achieve moderate inter-annotator agreement, these tasks are difficult
for annotators and we discuss reasons for the difficulty in §6.2. The difficulty of the an-
notation tasks, and resulting moderate inter-annotator agreement, means that noise may
be introduced. Specifically, the precision of both our system and the baselines (§6.4) may
be inflated by noise in the annotations. For example, if annotators are biased towards
marking default EXCEPTIONS as valid, this would inflate the precision of ExempliFI for
generating EXCEPTIONS, since our system generates nearly three times as many default
EXCEPTIONS as the baselines. Work using our system to generate additional data could
consider applying additional filters (e.g., NLI as in Allaway et al. 2023) to ensure data
quality. Additionally, future work should investigate improvements to the annotation
procedures for validating EXEMPLARS.

Experiments. In our probing experiments into how LLMs reason about generics (§5), we
do not do extensive prompt tuning. In particular, we use only two prompts for our
main probes on the GOG effect (§5.1) and a single prompt for our probes on property
inheritance (§5.2). However, recent works have shown that LLMs can be sensitive
to features of the prompts, including formatting (Sclar et al. 2023), how the task is
presented (Hu and Levy 2023), and the provided context for the model (Kassner and
Schütze 2020; Lampinen 2023; Misra, Ettinger, and Mahowald 2024). Changes to the
prompts used for probing may impact the scale of the results we observe. However,
we note that the goal of our probing experiments is to determine whether any GOG
effect is ever exhibited by LLMs. While measuring the scale of the GOG effect (as
opposed to whether or not it is present) is interesting, constructing such prompts would
require careful interdisciplinary crafting of prompts (e.g., incorporating both cognitive
psychology and linguistics) and is a compelling direction for future investigations.
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Additionally, our probing experiments all use only zero-shot evaluation. We choose
to do this so as not to bias the models’ outputs. In particular, we do not want to
inadvertently prime the models, through few-shot examples, to generate specific quan-
tifiers (e.g., “all”) or to exhibit certain inheritance reasoning behavior. However, we
acknowledge that the LLMs may behave differently under few-shot evaluation, com-
pared to zero-shot evaluation. We think that few-shot overgeneralization analysis is a
promising future direction. Furthermore, differences in how models behave in the two
settings may help clarify what kinds of generalization information models learn from
text.

As mentioned above, we use automatically generated EXEMPLARS for our probing
experiments in §5. This data is generated using generics sourced in part from Concept-
Net (Speer, Chin, and Havasi 2017) and GenericsKB (Bhakthavatsalam, Anastasiades,
and Clark 2020). Since the LLMs used in our experiments were trained on data scraped
from the Internet through at least 2021,32 it is likely that many of our generics appeared
in some way in the LLMs’ pre-training data. Consequently, our probing experiments
use examples that the model has seen in some capacity. This could result in noise in
the results we observe. In particular, we may observe an artificially lower GOG effect
with probes that contain only a generic (i.e., only examples the model has already
seen), compared with the probes containing EXCEPTIONS. Furthermore, the model may
be biased towards a particular response (e.g., only generating “most” as a quantifier
for a particular generic) depending on what data was present in pre-training. Further
experiments should be done to understand what data the LLMs have seen, especially
which EXEMPLARS, and how this impacts their responses.

Finally, our probe experiments only examine generics in isolation. In particular, they
do not evaluate how LLMs reason about generics within real texts. Although this aligns
closely with human studies on the GOG effect (e.g., Leslie, Khemlani, and Glucksberg
2011), the observable impacts of how LLMs treat generics will likely be in downstream
tasks (i.e., texts with contextualized generics). Therefore, future work should explore
additional methods to probe LLMs’ reasoning with generics within texts.

A. Experimental Details

A.1 Data

GGSmall and GGTest. We use two sets of generics sourced from Gen-Atomic
(Bhagavatula et al. 2022). The set GGSmall contains 617 generics that are human-
verified. These generics are the generics used by Allaway et al. (2023) for which their
system generates both valid INSTANTIATIONS and EXCEPTIONS.

The set GGTest contains 1,010 generics sourced from Gen-Atomic’s test set. The full
Gen-Atomic test set consists of 2,254 generics deemed true by humans. From these,
we remove temporal generics (i.e., beginning with “before”, “after”, “while”), generics
relating to necessity (i.e., beginning with “in order to”), and generics with verbs of con-
sideration (i.e., consider, posit, suppose, suspect, think). We then run the discriminator
published with Gen-Atomic and keep only generics that the discriminator predicts as
true with confidence at least 0.7. Finally, we removed generics with human referents
(e.g., professions, nationalities) using a manually compiled list.

32 See https://platform.openai.com/docs/models.

1251

https://platform.openai.com/docs/models


Computational Linguistics Volume 50, Number 4

We preprocess both GGSmall and GGTest by removing adverbs of quantification (i.e.,
usually, typically, generally). We also convert hedging statements to more explicit forms
(e.g., “may have to be” to “must be”).

AnimalG Data. These generics are sourced from GenericsKB by Ralethe and Buys (2022)
for a fixed list of animals. The generics are separated into two categories: majority char-
acteristic generics (i.e., true about the majority of the kind) and minority characteristic
generics (i.e., true for only a minority of the kind). We combine and use both categories.

We preprocess these generics by removing modifier clauses (e.g., “frogs are active
at night, which is when the air is more humid” → “frogs are active at night”). This
removes unnecessary information from the generics, including potential EXCEPTIONS
(e.g., “lizards have legs, but some are legless”→ “lizards have legs”).

A.2 ExempliFI System Details

We describe here the implementation details of our ExempliFI system and the tools used.
We first use a spacy dependency parser to identify text spans for the concept, relation,
and property in a generic. We use inflect to obtain plural and singular word forms and
mlconjug333 to conjugate verbs.34

A.2.1 Generation. To construct the QUDs used in the generation prompts (§4) we follow
§3.2.2. Specifically, we use three templates to construct the QUDs, one each for concept-
focused, property-focused, and default. The templates are

[wh-word] [relation] [PROPERTY] (Concept-Focused QUD Template)
[wh-word] [CONCEPT] [relation] (Property-Focused QUD Template)
What is true about [CONCEPT] (Default QUD Template)

For the concept-focused QUDs, we use “what” as the wh-word for all generics, since
the replacement for the wh-word (i.e., the focused element) is a kind. For example,
for the generic “cats are cute” the concept-focused QUD is “what is cute”. However,
in the property-focused QUDs, the replacement for the wh-word can be a location
(e.g., “tigers live in the jungle”). Therefore, we use Wordnet (Fellbaum 2000) to identify
location-related (i.e., needing “where”) properties. In particular, we check for specific
keywords in the set of hypernyms35 for each property, which we obtain with nltk.36

Since properties my be multiple words, we extract hypernyms for the root word of
the property.

We generate EXEMPLARS using GPT-3 (Brown et al. 2020). Specifically, we use the
text-davinci-001 model with temperature 0.9 and a max length of 100 tokens in the
output. We use the best of 5 sequences for all generations.

A.2.2 Output Processing. While the prompts for focused EXCEPTIONS are designed to
produce full sentences (i.e., complete EXEMPLARS), the prompts for default EXCEPTIONS

33 Additional conjugations were added to increase coverage and fix errors. These will be available with the
data.

34 https://spacy.io/; https://pypi.org/project/inflect/; https://pypi.org/project/mlconjug3/.
35 The hypernym set consists of the hypernyms for the primary synset of the target word and for three

levels up. Keywords for location-related properties: “building”, “geographical region”.
36 https://www.nltk.org/.
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and INSTANTIATIONS produce either a list of subtypes (i.e., INST. Prompt-I’s and default
Prompt-D1) or a list of situations (default Prompt-D2). Therefore, to obtain the complete
set of generated candidate EXEMPLARS we use the generations from the INSTANTIATION
and default EXCEPTION prompts to fill templates.

For the INSTANTIATIONS, we have two INSTANTIATION templates. The first uses
the generated subtypes from Prompt-IK to construct concept-focused and default IN-
STANTIATIONS (Table 4(a)) while the second uses generations from Prompt-IP to con-
struct property-focused INSTANTIATIONS (Table 4(b)). For the default EXCEPTIONS we
also have two templates, one that directly uses subtypes generated from Prompt-D1
(Table 4(c)) and another that converts generated situations from Prompt-D2 into sub-
types (Table 4(d)).

Since the focus EXCEPTIONS are generated as complete sentences, we need to en-
sure separately that they satisfy the constraints of the logical form. This means that
for concept-focused EXCEPTIONS, the candidates end with the generic’s property; for
property-focused EXCEPTIONS, candidates should begin with the generic’s concept. We
remove any candidate EXCEPTIONS that do not fit these requirements.

A.2.3 Filtering for Truthfulness. We use GPT-3.5-Turbo (Ouyang et al. 2022) to predict
whether each candidate generation is true or false. To do this, we first convert each
EXEMPLAR into the singular, using the following prompt,

Put the following sentence into the singular: [exemplar].

We then ask the LLM whether the singular form is true with the following prompt

True or false: [exemplar-singular]?

For converting candidates to singular, we take only 1 generation from the LLM. For
determining the truth of the singular candidates we take the majority vote of 5 re-
sponses. A response indicates the input is true if the text “true” is in the first non-empty,
lowercased string of the response. Otherwise, the input candidate is predicted to be
false.

A.2.4 Validity Filtering. After removing false candidate EXEMPLARS, we conduct a final
filtering step to obtain a final set of valid EXEMPLARS. To filter the focused EXCEPTIONS,
we train a discriminator to predict whether a statement is a valid focused EXCEPTION;
we train an analogous discriminator for the INSTANTIATIONS. For each discriminator we
fine-tune a RoBERTa-large model using training data annotated using the procedures
described below (§A.3). The training data consists of EXEMPLARS generated for each of
the three sources of generics used in our work (see §6.1 and §A.1). Dataset statistics are
shown in Table 13.

Table 13
Statistics for the data used to train the validity discriminators.

GGSmall GGTest AnimalG
Train Dev Test Train Dev Test Train Dev Test

Focus EXCEPTIONS 485 57 51 916 123 129 172 113 128
INSTANTIATIONS 840 76 62 1,258 123 182 162 113 122
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Table 14
Hyperparameters and evaluation results on the development and test sets for the validity
discriminators.

Hyperp. GGSmall GGTest AnimalG
B LR Acc. Prec(1) Acc. Prec(1) Acc. Prec(1)

Focus EXCEP. Dev 24 1e–5 0.5614 0.5208 0.8374 0.8446 0.8407 0.8710
Test 0.6667 0.7180 0.8372 0.8571 0.7890 0.8119

INST. Dev 32 3e–5 0.7895 0.8438 0.7840 0.8167 0.8350 0.8866
Test 0.7419 0.7097 0.7857 0.8099 0.7623 0.8046

For each discriminator, we conduct a hyperparameter search to obtain the best
performing model. The selected hyperparameters, along with the respective model’s
accuracy and precision, are shown in Table 14. Since the discriminators are used as
filters, we prioritize minimizing the number of statements that are incorrectly predicted
as valid when they are not (i.e., the precision of the “valid” class).

We remove all focused EXCEPTION and INSTANTIATION candidates predicted in-
valid by their respective discriminators. Finally, we rank the valid candidates. For the
focused EXCEPTIONS and INSTANTIATIONS we use the trained discriminators to rank
candidates. For the default EXCEPTIONS, we use a combination of perplexity and NLI
contradiction probability to rank the candidates. We use GPT2-XL (Radford et al. 2019)
to obtain perplexity ranking and a RoBERTa (Liu et al. 2019) model fine-tuned on
MNLI37 to obtain the NLI ranking.

A.3 Annotations
A.3.1 Validity Annotation

Annotation Task. We use three separate annotation tasks to annotate the validity of
candidate EXEMPLARS, one each for the INSTANTIATIONS (Figure 5) and for the default
(Figure 6) and the focused (Figure 7) EXCEPTIONS. All three tasks are framed as a debate
between two students, where one student (Student A) asserts the generic and the other
(Student B) replies with an EXEMPLAR.

For the INSTANTIATION task, the two students are on the same side of the debate
and the annotator’s task is to determine whether Student B, in asserting the EXEM-
PLARS, provides an example that supports Student A’s assertion (i.e., an example
where the generic applies). Full instructions and examples are shown in Figure 5a and
Figure 5b, respectively.

In contrast, when annotating EXCEPTIONS the two students are on opposing sides
of the debate. The debate question provided as context to annotators is the QUD for the
corresponding generic. For default EXCEPTIONS, annotators must decide if Student B
provides an example that conflicts with fellow Student A’s assertion (i.e., the generic).
See Figure 6a and Figure 6b for full instructions and examples. For the focused EX-
CEPTIONS, we check that the alternative provided is actually in the exotype (see §3.3)
of the generic’s focused element. In particular, as discussed in §4.2.3, for a concept-
focused generic the alternative is valid if it is neither irrelevant nor a supertype or
subtype of the corresponding generic’s concept. Furthermore, the alternative must be
for the focused element (e.g., the concept) of the generic. Therefore, annotators are asked

37 https://huggingface.co/roberta-large-mnli.
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Figure 5
Annotation task for INSTANTIATIONS.

Figure 6
Annotation task for default EXCEPTIONS.
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Figure 7
Annotation task for focused EXCEPTIONS.

to determine whether (1) the statement by Student B is actually related to the debate
question (i.e., whether it answers the same QUD as the generic) and (2) the alternative
is valid (see Figure 7a and Figure 7b for full instructions and examples). Annotators
must answer “yes” to both questions for the candidate to be deemed a valid focused
EXCEPTION. The same procedure can be applied analogously for annotating property-
focused EXCEPTIONS.

Collected Data. For training the INSTANTIATION and focused EXCEPTION discriminators
we collect annotations using the validity tasks for a sample of our system’s generated
outputs. In particular, we have annotators label 3, 0553, 0553, 055 generated EXEMPLARS for 207
generics from the GGTest data, as well as 1, 0451, 0451, 045 generated EXEMPLARS for 406 generics
from the AnimalG data. The Fleiss’ κ and percentage agreement for each dataset and
task are shown in Table 16.

For conducting a human evaluation of system generations (§6.4), we collect an-
notations for EXEMPLARS from 96 generics from GGSmall for which our system and
both baseline systems (i.e., the system proposed by Allaway et al. [2023] and the cor-
responding GPT-3 baseline; see §6.3 for more details) each produce five EXCEPTIONS
and five INSTANTIATIONS. That is, we have annotators label 1, 4401, 4401, 440 EXCEPTIONS and
1, 4401, 4401, 440 INSTANTIATIONS using the annotation tasks described in §A.3. The Fleiss’ κ and
percentage agreement for each dataset and task are shown in the first row of Table 15.

A.3.2 Truthfulness Annotation. To annotate generated candidate EXEMPLARS for truthful-
ness, we ask annotators to determine whether a candidate is generally true or generally
false. Annotators are instructed to consider nonsensical statements as false. Full instruc-
tions are given in Figure 8.
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Table 15
Inter-annotator agreement for the annotations used in human evaluation. Our Setup indicates
evaluation from the main portion of the paper (§6), PenguinsSetup indicates annotations used for
the comparison of annotation procedures (see §A.3).

Default EXCEPTIONS Focus EXCEPTIONS INSTANTIATIONS
#Ex κ % Agr. #Ex κ % Agr. #Ex κ % Agr.

Our Setup 237 0.3238 0.7300 1,224 0.3465 0.7685 1,440 0.2464 0.7296
PenguinsSetup 532 0.3367 0.7392 2,912 0.3001 0.6758 2,946 0.1863 0.6650

Table 16
Inter-annotator agreement for the validity annotations used to train and evaluate the
discriminators.

Default EXCEPTIONS Focus EXCEPTIONS INSTANTIATIONS
#Ex κ % Agr. #Ex κ % Agr. #Ex κ % Agr.

GGTest 294 0.3584 0.7120 1,168 0.2935 0.7146 1,593 0.2836 0.6874
AnimalG 221 0.0812 0.6561 413 0.3019 0.8309 411 0.4231 0.7568

Figure 8
Annotation task for truthfulness of generated EXEMPLAR candidates.

We collect truthfulness annotation in order to validate the quality of the truthful-
ness filter used in ExempliFI (i.e., GPT-3.5-Turbo). Specifically, we collect annotations
for a set of 500 randomly sampled EXEMPLARS generated from AnimalG generics, 100
EXEMPLARS of each type (default EXCEPTIONS, concept- and property-focused EXCEP-
TIONS, concept- and property-focused INSTANTIATIONS). The Fleiss’ κ is 0.4407 and the
percent agreement is 0.7507.
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Figure 9
Annotation task for PenguinsSetup (§A.3.3) from Allaway et al. (2023).

A.3.3 Penguins Annotation. We validate the quality of generations from our ExempliFI
system by using the annotation tasks from Allaway et al. (2023) (henceforth called
PenguinsSetup). In particular, we use the PenguinsSetup to collect validity annotations
for our generated EXEMPLARS, as well as for the EXEMPLARS from both the baseline
systems. This is to check that our system outperforms the baselines in the setting they
were designed for.

In PenguinsSetup, INSTANTIATIONS are annotated by asking annotators whether an
INSTANTIATION contradicts the original generic; valid INSTANTIATIONS will agree with
the generic. In contrast, for EXCEPTIONS annotators are asked whether an EXCEPTION
contradicts two modified forms of the generic. Specifically, whether the EXCEPTION
contradicts (i) the generic prefixed with “all” or (ii) the generic with “only” added
as a modifier on the property. For example, the two modified forms of the generic
“birds can fly” are (i) “all birds can fly” and (ii) “birds can fly only”. Allaway et al.
(2023) posit that default EXCEPTIONS will contradict form (i) and property-focused
EXCEPTIONS will contradict form (ii). Note that because they do not generate concept-
focused EXCEPTIONS there is no condition to check the validity of such EXCEPTIONS.
Full annotation instructions and examples are shown in Figure 9.

Using PenguinsSetup, for a random subset of 200 generics from GGSmall, we collect
annotations on the validity of the top five INSTANTIATIONS and top five EXCEPTIONS
generated by our system and both baseline systems. Agreement measures are shown in
the second row of Table 15.

A.4 Generation Baselines

To generate EXEMPLARS, both baseline systems use seven templates, four for EXCEP-
TIONS and three for INSTANTIATIONS (see Table 10). Of the three INSTANTIATION
templates used by the baselines, (i) and (ii) are the same as the templates we use
to construct INSTANTIATIONS (see Table 4 (a) and (b)). Similarly, template (iv) is the
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same as the template (c) in our system (Table 4) for generating default EXCEPTIONS.
Additionally, template (vi) follows the logical form for property-focused EXCEPTIONS
used in our system (Table 2).

In order to evaluate the baseline generations using our proposed annotation setup
(§A.3) we treat generations from templates (iv) and (v) as default EXCEPTIONS and
the generations from (vi) and (vii) as property-focused EXCEPTIONS. Additionally, we
treat generations from template (i) as concept-focused INSTANTIATIONS and generations
from templates (ii) and (iii) as property-focused INSTANTIATIONS.38

Constrained Decoding (ConstraintDec). The system proposed by Allaway et al. (2023)
(ConstraintDec) uses the NeuroLogic A?esque (NeuroLogic?) (Lu et al. 2022) con-
strained decoding algorithm to generate EXEMPLARS from GPT2-XL. Following the tem-
plates in Table 10, this system constructs a generation prompt (from the input template)
and a set of lexical constraints (from the output template) that should be satisfied during
decoding. The lexical constraints specify n-grams that should be included in or excluded
from the generated output (e.g., exclude “fly”, “flying”, “flew”, etc.). The NeuroLogic?

algorithm outputs a sequence that has both high likelihood and high satisfaction of the
specified constraints. The generated candidates are then filtered for truthfulness and
validity using trained discriminators.

GPT-3 Baseline. The GPT-3 baseline used by Allaway et al. (2023) uses few-shot prompt-
ing to illustrate the desired template for generation. Each prompt consists of three in-
context examples (see Table 17). Note that we add an additional prompt to generate
concept-focused EXCEPTIONS (see (viii) Table 17). This baseline uses the davinci model
with top-p sampling 1.0, temperature 0.8, maximum length 50 tokens, and top 5 se-
quences. As with the constrained decoding system, the generated candidates are filtered
for truthfulness.

A.5 LLMs and Generics Probe Details

For the quantification probe, we slightly modify the decoder-only prompts from Table 7
for LLAMA-2. Specifically, we use the following prompts with LLAMA-2. For the probe
without default EXCEPTIONS we use

What are the 5 best quantifiers to fill in the [blank] in the sentence?
Sentence: [blank] {birds can fly}G.
Answer (list 5 quantifiers):
1.

and for the probe with default EXCEPTIONS we use

What are the 5 best quantifiers to fill in the [blank] in the sentence?
Sentence: {birds can fly}G. However, {penguins cannot fly}E. Therefore, [blank] {birds
can fly}G.
Answer (list 5 quantifiers):
1.

where G indicates the generic and E the default EXCEPTION.

38 Since template (iii) contains subtypes of both the concept and the property, these generations could be
considered either property or concept-focused INSTANTIATIONS. We arbitrarily choose to consider them
property-focused.
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Table 17
Prompts for GPT-3 Baseline from Allaway et al. (2023). Note that (viii) is added in this work to
adapt the GPT-3 baseline to generate concept-focused EXCEPTIONS.

Baseline Template Prompt In-Context Examples
(i) [KSUBTYPE] [r] [P] Birds can fly. For example, seagulls can fly.

Dogs protect buildings from intruders. For example, pitbulls protect
buildings from intruders.

Ducks lay eggs. For example, female ducks lay eggs.
(ii) [K] [r] [PSUBTYPE] Viruses are spread through body fluids. For example, viruses are spread

through saliva.
Dogs protect buildings from intruders. For example, dogs protect some

private homes from intruders.
Cowsheds are found on farms. For example, cowsheds are found on

dairy farms.
(iii) [KSUBTYPE] [r] [PSUBTYPE] Birds can fly. For example, Canadian geese fly long distances to migrate.

Ostriches lay eggs. For example, female ostriches lay large spotted eggs.
Elephants are found in zoos. For example, African elephants are found

in most large zoos.
(iv) [KSUBTYPE] [¬r] [P] Birds can fly. But also penguins cannot fly.

Ducks lay eggs. But also male ducks do not lay eggs.
Dogs protect buildings from intruders. But also very small dogs do not

protect buildings from intruders.
(v) [K] [¬r] [PSUBTYPE] Dogs protect buildings from intruders. But also dogs do not protect

apartment buildings from intruders.
Cowsheds are found on farms. But also cowsheds are not found in

orchards.
The sun produces radiation. But also the sun does not produce x-rays.

(vi) [K] [r] [�P] Elephants are found in zoos. But also elephants are found in the wild in
Africa.

Viruses are spread through body fluids. But also viruses are spread in
the air.

A hair dryer is used to dry hair. But a hair dryer can also be used
to dry clothes.

(vii) [KSUBTYPE] [r] [�P] Elephants are found in zoos. But also African elephants are found in the
wild in Africa.

Viruses are spread through body fluids. But also coronaviruses are
spread in the air.

A hair dryer is used to dry hair. But also an electric hair dryer can be
used to dry clothes.

(viii) [�K] [r] [P] Elephants are found in zoos. But also giraffes are found in zoos.
Dogs protect buildings from intruders. But also security cameras protect

buildings from intruders.
A hair dryer is used to dry hair. But also a towel can be used to dry hair.

For the generations from LLAMA-2, we use a maximum token length of 120. For
both the quantification and inheritance the generations from GPT-3, GPT-3.5-Turbo, and
GPT-4, we use: a maximum token length of 100, temperature 0.9, presence penalty 0.0,
frequency penalty 0.0, and top-p of 1.0.

B. Supplementary Results

In this section we discuss supplementary analyses and results. Specifically, we discuss
the results of our quantifier probe using metrics from prior work (§B.1) and the vali-
dation experiments for the wording used in our property inheritance probes (§B.2). We
also include analyses comparing the annotation procedures proposed in this work to
those from prior work (§B.3).
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B.1 GOG Effect and Quantifiers

We include here additional results, including exploration of an alternative prompt
strategy for examining the GOG effect through quantifiers.

B.1.1 Top Quantifiers Probe. Following prior work (Ralethe and Buys 2022), we include
here analysis of the GOG effect in multiple encoder-only LMs. Specifically, we use mask
infilling to determine the associations between quantifiers and generics. That is, we
insert a mask token before the generic and then take the top five tokens predicted
to replace the mask. For example, for the generic “birds can fly” the input would be
“<mask> birds can fly”, where <mask> is a special token of the LM. As in §5.1, we
run this probe with and without default EXCEPTIONS (e.g., “Birds can fly. However,

penguins cannot fly. Therefore, <mask> birds can fly”). Similarly, as with our
main Top Quantifiers probe in §5.1, we measure the frequency of the universal quantifiers
“all” and “every” among the elicited quantifiers.

The encoder-only models we use are:39

• BERT: A bidirectional transformer-based language model trained with
two objectives: MLM and next sentence prediction (Devlin et al. 2018).

• RoBERTa: A BERT model trained without the next-sentence prediction
task as well as longer sequences and more data (Liu et al. 2019).

• ALBERT: A BERT model trained with parameter reduction techniques
and an additional loss component to increase inter-sentence coherence
(Lan et al. 2019). The model has 11M parameters, compared to BERT’s
340M.

• ELECTRA: A bidirectional transformer-based language model trained
with an alternative to MLM (Clark et al. 2020). In particular, the input is
corrupted by replacing random tokens with a sampled alternative (rather
than a mask). Then during training, the objective is to predict whether or
not a token has been replaced.

These models are chosen to cover a sample of popularly used bidirectional LMs.
We report our results for these models in Figure 10. We observe a GOG effect

across all the LMs. That is, universal quantifiers are supplied in the top five infilling
tokens for a non-negligible percentage of generics for all models. Furthermore, we also
observe that the GOG effect increases when EXCEPTIONS are included in the prompt.
Recall that we also observe an increased GOG effect with GPT-3.5-Turbo and LLAMA-2
(see §5.1.2), which we posit is in part due to the substantially lower variety in unique
modifiers, particularly multi-word modifiers, generated by GPT-3.5-Turbo/LLAMA-2
LLMs. Since mask infilling does not allow the bidirectional models to produce multi-
word modifiers (e.g., it cannot produce “not all”), a similar explanation may apply here.

Note that, in prior work, Ralethe and Buys (2022) measure the GOG effect with a
similar infilling probe to our Top Quantifiers probe. As metrics they compute precision

39 BERT—bert-large-uncased; RoBERTa—roberta-large; ALBERT—albert-large-v2;
ELECTRA—google/electra-large-generator.
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Figure 10
Results of the Top Quantifiers probe from §5.1 adapted to bidirectional LMs with infilling.
Percentage of generics where a GOG quantifier (i.e., one of the universals “all” or “every”) is in
the top 5 tokens supplied by the LM to quantify the generic. With Exceptions indicates the
prompts include default EXCEPTIONS. Higher values indicate a larger amount of
overgeneralization by the LM.

at 5 (P@5) and Mean Reciprocal Rank (MRR). P@5 measures the proportion of universal
quantifiers that occur in the quantifiers returned by the probe. In contrast, MRR mea-
sures how highly ranked the universal quantifiers are, if they occur. We report the results
from our investigations using these metrics in Figure 11a and Figure 11b.

Across the LLMs for which the GOG effect increases in the presence of EXCEPTIONS,
we see that the increases in MRR are generally greater than in P@5. Therefore, universal
quantifiers are not only being produced more frequently, they are also being ranked
higher in the generated modifiers.

B.1.2 Psychology-based Questions Probe. We present here (Figure 12) the results for state-
ments in their generic form statements and in their existential form from the Psychology-
based Questions probe in §5.1. We observe with both GPT-3.5-Turbo and GPT-4 a
relatively high level of endorsement of both the generic and the existentially quantified
statements. For LLAMA-2, we observe that only a small portion of responses fall into
each slice, suggesting that the model is simply unable to respond appropriately, similar
to what we find with other probes.

B.1.3 Alternative Prompting Strategy. To explore the impact of prompt choice on observed
GOG effect in LMs, we experiment with an additional prompt for a sample of generics.
Specifically, we reformulate the generic as a question and then ask the models to answer
it. As with the Leslie Questions probe in §5.1 we experiment with three versions of the
generic: the generic in its base form, a universally quantified version of the generic
(i.e., quantified with “all”), and an existentially quantified version of the generic (i.e.,
with “some”). Additionally, we provide the (potentially quantified) question form of
the generic to the model with and without default EXCEPTIONS. For example, for the
generic “birds can fly”, without EXCEPTIONS we query the model with three sepa-
rate prompts of the form “Can [quantifier] birds fly?”, where [quantifier] is
either nothing (for the generic itself), or one of “all” and “some” (e.g., “Can all birds

fly?”); including EXCEPTIONS we again have three prompts of the form “[exception].
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Figure 11
Results of the Top Quantifiers probe evaluated using the metrics from Ralethe and Buys (2022).
GOG quantifiers are the universals “all” and “every”. With Exceptions indicates the prompts
include default EXCEPTIONS. Higher values indicate a larger amount of overgeneralization by
the LM.

Can [quantifier] birds fly?”, where [exception] is a default EXCEPTION to the
generic (e.g., “penguins cannot fly”) and [quantifier] is again one of the three
quantification options.

As with the Psychology-based Questions probe, we run this prompting strategy on a
sample of 1,000 generics from the AnimalG dataset for which each has at least three valid
default EXCEPTIONS. Specifically, we use the same 1,000 generics and accompanying
EXCEPTIONS as with the Psychology-based Questions probe. Note that querying with the
generic as a generic does not probe the GOG effect, even if EXCEPTIONS are included.
This is because, if the generic is felicitous, the answer should be “yes” regardless of
whether EXCEPTIONS are provided. If the LM responds “no” to the generic, then it is
possible that the generic is not felicitous (assuming a perfectly correct LM); more likely,
the model is either ignorant of the generic or simply unable to respond appropriately to
the input stimulus.

We present the results of the probe in Figure 13. We observe a GOG effect across
models (Figure 13a). For GPT-3.5-Turbo and GPT-4 we observe a decrease when EX-
CEPTIONS are included in the prompt, while for LLAMA-2 we observe an increase in
the effect. Note however that LLAMA-2’s behavior in response to the prompt is far
from sensible (Figure 13b). In particular, LLAMA-2 responds “yes” to only 10% of the
generics when presented in their generic form (compared to 62% and 72% for GPT-3.5-
Turbo and GPT-4) and only 40% of the generics when they are existentially quantified
(compared to 83% and 91% for GPT-3.5-Turbo/GPT-4). This suggests that LLAMA-2’s
behavior is likely indicative of a broad failure by the model to respond appropriately to
the prompt, regardless of the generic it contains.
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Figure 12
Supplementary results from the Leslie Questions probe. Percentage of generics with a particular
response to the generic in some form and to the default EXCEPTIONS.

We note that this prompting strategy measures the GOG effect differently from
the main Top Quantifiers probe in §5.1. In particular, our Top Quantifiers probe aims to
capture potential variation in the LMs’ responses by asking them to generate multiple
quantifiers. This can be seen as evaluating how the GOG effect might impact models
when used for generation tasks. In contrast, this prompt captures instead how the model
might behave in a classification-like scenario, akin to the supplementary Psychology-
based Questions probe. Regardless, as with our other probes we observe that LMs do in
fact exhibit a GOG effect.

B.2 Property Inheritance Validation

To validate the wording used in our property inheritance probe, we manually construct
a set of questions to test the LLMs. Specifically, the questions evaluate whether the
models recognize that the wording of the prompt asks them to consider deductive
reasoning (see templates in Table 18). We use the following five nonsense words in all
property inheritance evaluations: “Dofik”, “Yeb”, “Wumox”, “Bafu”, “Goq”. For the
validation questions we use the following five properties: “has three sides”, “is red”,
“eats oranges”, “lives in New Zealand”, and “swims quickly”.
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Figure 13
Responses to the alternative prompt formulating generics as questions. With Exceptions indicates
the prompt included a default EXCEPTION. Higher values indicate larger amounts of
overgeneralization.

The overall accuracy of the models LLMs evaluated on these questions is 0.820
(GPT-3.5-Turbo), 0.932 (GPT-4), and 0.864 (GPT-3).

B.3 Comparison of Annotation Procedures

We note that the precision scores obtained by our collected human annotations for
GPT3-baseline and ConstraintDec are around 10 points higher than those reported by
Allaway et al. (2023). These annotations were collected using the new annotation setup
we developed (§6.2) that better aligns with the logical forms for the EXEMPLARS. There-
fore, we also conduct a human evaluation using the annotation setup from Allaway
et al. (2023) (All-Only Setup). As before, we compute precision at k.

We observe first that the precision across systems decreases substantially in the
All-Only Setup. However, across both EXCEPTIONS and INSTANTIATIONS our system
outperforms both baselines. This further highlights the strength of our system.
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Table 18
Templates for constructing the questions to validate the wording of the property inheritance
probe. t1 and t2 are placeholders for nonce types, [property] is a placeholder for a property to be
inherited, and [not-property] is the negation of that property.

Question Label

(1) Premises: All t1 [property]. A t2 is a t1.
Conclusion: Therefore, all t2 [property].

Yes

(2) Premises: All t1 [property]. A t2 is not a t1.
Conclusion: Therefore, all t2 [property]

No

(3) Premises: All t1 [property]. A t2 is a t1.
Conclusion: Therefore, all t2 [not-property].

No

(4) Premises: All t1 [property]. A t2 is not a t1.
Conclusion: Therefore, all t2 [not-property].

No

(5) Premises: Some t1 property. A t2 is a t1.
Conclusion: Therefore, all t2 property.

No

(6) Premises: Some t1 [property]. A t2 is a t1.
Conclusion: Therefore, some t2 [property].

Yes

(7) Premises: Some t1 [property]. A t2 is a t1.
Conclusion: Therefore, all t2 [not-property].

No

(8) Premises: Some t1 [property]. A t2 is not a t1.
Conclusion: Therefore, all t2 [property].

No

(9) Premises: Some t1 [property]. A t2 is not a t1.
Conclusion: Therefore, some t2 [property].

No

(10) Premises: Some t1 [property]. A t2 is not a t1.
Conclusion: Therefore, all t2 [not-property].

No

Table 19
Precision at k (P@k) results for human evaluation using the annotation procedure from Allaway
et al. (2023).

EXCEPTIONS INSTANTIATIONS
P@1 P@5 P@1 P@5

GPT-3-baseline 0.6610 0.5814 0.5329 0.4695
ConstraintDec 0.5847 0.6237 0.5449 0.5246
ExempliFI 0.6695 0.6763 0.6168 0.6072

Are the procedures comparable?. We note that for EXCEPTIONS, the precision we find in
the All-Only Setup is similar to that reported in Allaway et al. (2023); they report ∼0.624
for ConstraintDec, 0.54 for GPT-3-baseline (Table 19). However, for INSTANTIATIONS the
precision is substantially lower (∼0.897 for ConstraintDec and∼0.724 for GPT-3-baseline).
We hypothesize that this is due to the difficulty of the annotation task. Even after
removing annotators with low competence, the Fleiss’ κ for agreement is only 0.1863 for
INSTANTIATIONS in the All-Only Setup. In contrast, the κ is approximately 0.32 for the
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EXCEPTIONS in the same annotation setup. Despite the increased annotation difficulty,
our system still outperforms both baselines.

How are incorrectly formatted candidates handled?. Our new annotation setup enforces
that generations fit the desired template in order to be valid, while the All-Only Setup
does not. As noted by Allaway et al. (2023), the GPT-3-baseline generations often do
not adhere to the required template. Therefore, generations deemed invalid in our
annotation setup due to having the incorrect format could be marked valid in the
All-Only Setup, thereby increasing precision. This is likely why the precision of GPT-
3-baseline for EXCEPTIONS actually increases under the All-Only Setup.

To see why this is the case, consider the following default EXCEPTION generated by
GPT-3-baseline:

Generic: a jungle gym can be a great place to work out.
GPT-3-baseline candidate: a jungle gym could be a great place to get hurt.

In our setup, the format is enforced by having separate annotation tasks (with different
instructions and examples) for the default and focused EXCEPTIONS (§6.2). Therefore,
this example would be marked invalid because it does not provide a counterexample
to the generic (i.e., does not provide a type of jungle gym that is not good for working
out; see annotation instructions in Figure 6). In contrast, the All-Only Setup uses two
questions, asked together, for the default and focused EXCEPTIONS. In particular, the
All-Only Setup asks whether the EXEMPLAR contradicts: (1) the generic prefixed with
“all” (i.e., “All jungle gyms are a great place to work out”) and (2) the generic with
“only” (e.g., “jungle gyms can only be a great place to work out”). Therefore, in the
All-Only Setup, the example candidate would be marked valid because it contradicts
question (2). This occurs despite the example not contradicting question (1), which was
intended to identify valid default EXCEPTIONS.40

How successfully are alternatives identified?. In addition to allowing incorrectly format-
ted EXCEPTIONS to be valid, the All-Only Setup places less restrictions on the focused
generics. Consider the following example from ConstraintDec:

Generic: hockey is a game.
ConstraintDec candidate: hockey can be a lot more than that.

This was annotated as a valid EXCEPTION in the All-Only Setup because it contradicts
“hockey is only a game” (i.e., annotation question (2)). However, this candidate does
not actually contain a valid alternative to “game”. In other words, it does not answer the
property-focused QUD for the generic (i.e., “what hockey is”) and is therefore an invalid
EXCEPTION. Since our annotation setup directly queries the relationship between the
candidate and the QUD, it produces the correct label (invalid).

Even in cases where an alternative property is included, the All-Only Setup can fail
to catch irrelevant alternatives. For example, consider the candidate from ConstraintDec
and our system:

40 Recall that the generations from templates (iv) and (v) in Table 10 are considered default EXCEPTIONS,
while the generations from templates (vi) and (vii) are considered property-focused EXCEPTIONS.
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Generic: drummers are taught to play with their hands.
ConstraintDec candidate: a drumming instructor is taught to work with the
student.
Our system candidate: drummers are taught to use a combination of their hands
and feet.

Both candidates would be marked valid in the All-Only Setup because they contradict
“drummers are only taught to play with their hands”. However, the ConstraintDec
candidate is invalid because “work with the student” is not an alternative to “play
with their hands”. While it is something drummers are taught, the generic is about
how drummers are taught to play and so the alternatives should be other ways of
playing (e.g., with their feet). Although the candidate from our system does include
an alternative way of playing (“a combination of their hands and feet”), this is still not
a valid alternative; “hands and feet” overlaps with “hands” and so is not fully different.
Both candidates are correctly marked as invalid EXCEPTIONS in our annotation setup.

B.4 Additional Comparison Baseline for ExempliFI

We include here a proof-of-concept for using GPT-3.5-Turbo as a baseline for evaluating
our ExempliFI system in §6.4. For this baseline, we use gpt-3.5-turbo with a temperature
of 0.9 and max length of 100 tokens. We use the prompts from the GPT-3 baseline
(Table 17) that align with the EXEMPLARS in this work. In particular, we use the
following prompt-EXEMPLAR type pairs: (i) for concept-focused INSTANTIATIONS, (ii)
for property-focused INSTANTIATIONS, (iv) for default EXCEPTIONS, (vi) for property-
focused EXCEPTIONS, and (viii) for concept-focused EXCEPTIONS.

We evaluate this baseline on the sample of eight generics shown in §4.3. Note that
because “Birds fly” is one of these generics, we must adjust two of the prompts to not
include this example. In particular, we replace “Birds can fly. For example seagulls can
fly” in (i) with “Bats can fly. For example, fruit bats can fly”; in (iv) we replace the
relevant example with “Tigers are orange and black. But also albino tigers are not orange
and black”.

Sample outputs for each of the five types of EXEMPLARS are shown in Table 20 for
AnimalG generics and Table 21 for generics from GGTest and GGSmall. We observe that
while this baseline is substantially more controllable than the GPT-3 baseline, it is still
less controllable than our ExempliFI system. For one thing, in cases where only a portion
of the generic should change (e.g., the concept in concept-focused EXCEPTIONS) this
is not consistently the case. For example, for the generic “binoculars are used to view
location” the concept-focused EXCEPTIONS include “telescopes are used to view celestial
bodies” (see (f) in Table 21); here both the concept and property have been changed.

Additionally, this baseline fails to generate default EXCEPTIONS in most cases (more
details below). Instead it generates candidates that are either focused EXCEPTIONS (e.g.,
(d) in Table 20 and (f) in Table 21) or alternatives for the generic as a whole (e.g., “some
people may not find scavenger hunts enjoyable” for the generic “a scavenger hunt is
a fun way to spend an afternoon with friends”; (e) Table 21). While these latter cases
are interesting and worth investigating in future work, they are not valid EXCEPTIONS
under our framework. Note that even when the model successfully generates default
EXCEPTIONS (e.g., “penguins are birds that cannot fly”) the EXCEPTIONS are primarily
knowledge-based, not reasoning-based. Further exploration of the prompts used for the
baseline may improve the default EXCEPTIONS. Overall, GPT-3.5-Turbo appears to be a
reasonable baseline and should be further explored in future work.
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Table 20
Examples of EXEMPLARS generated by the proof-of-concept baseline using GPT-3.5-Turbo (§B.4)
for generics from AnimalG.

AnimalG Data
(a) Generic: Cats sleep in trees

Concept-Focused INSTANTIATIONS:
• Serval cats sleep in trees.
• Tabby cats sleep in trees.
• Persian cats sleep in trees.

Default EXCEPTIONS:
• Cats prefer to sleep indoors.
• Some cats do not like climbing trees

and prefer to sleep on the ground.

Property-Focused INSTANTIATIONS:
• Cats sleep in branches of tall trees.
• Cats sleep in tall trees in the forest.

Property-Focused EXCEPTIONS:
• Cats sleep in cozy beds indoors.
• Cats sleep in sunny spots by the

window.

Concept-Focused EXCEPTIONS:
• Birds sleep in trees.
• Squirrels also sleep in trees.

(b) Generic: Birds fly.
Concept-Focused INSTANTIATIONS:
• Eagles can fly.
• Hawks can fly.

Property-Focused INSTANTIATIONS:
• Birds fly south for the winter.

Concept-Focused EXCEPTIONS:
• Bats are able to fly.
• Airplanes are able to fly.

Property-Focused EXCEPTIONS:
• Birds are able to swim.
• Birds are able to migrate thousands

of miles across continents.

Default EXCEPTIONS:
• Penguins are birds that cannot fly.
• Some birds, such as ostriches and

emus, are flightless.

(c) Generic: Moose have winter coats.
Concept-Focused INSTANTIATIONS:
• Moose have thick winter coats to keep

them warm in winter.

Property-Focused INSTANTIATIONS:
• Moose have thick fur coats to keep

them warm in cold climates.
• Moose have thick, insulated fur that keeps

them warm during the cold winter months.

Property-Focused EXCEPTIONS:
• Moose have summer coats.

Default EXCEPTIONS:
• Moose shed their winter coats in the

summer.
• Some moose living in warmer climates may

not develop a thick winter coat.

Concept-Focused EXCEPTIONS:
• Bears have thick fur to keep them warm

in winter.
• Reindeer have thick fur to keep them warm

in winter.

(d) Generic: Deer live in meadows.
Concept-Focused INSTANTIATIONS:
• White-tailed deer live in meadows.

Property-Focused INSTANTIATIONS:
• Deer live in forests and grasslands.
• Deer can often be seen grazing in meadows.

Default EXCEPTIONS:
• Some deer can live in forests or mountains

instead of meadows.

Concept-Focused EXCEPTIONS:
• Rabbits live in meadows.
• Foxes live in meadows.
• Horses live in meadows.

Property-Focused EXCEPTIONS:
• Deer can be found in forests and

other types of habitats.
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Table 21
Examples of EXEMPLARS generated by the proof-of-concept baseline using GPT-3.5-Turbo (§B.4)
for generics from GGTest and GGSmall.

GGTest Data
(e) Generic: a scavenger hunt is a fun way to spend an afternoon with friends.

Concept-Focused INSTANTIATIONS:
• A scavenger hunt is a fun way to spend

an afternoon with friends in a park.

Property-Focused INSTANTIATIONS:
• A scavenger hunt is a fun way to spend

a birthday party with children.
• A scavenger hunt is a fun way to

celebrate a birthday with friends.

Default EXCEPTIONS:
• Scavenger hunts can be done alone

for a solo adventure.
• Some people may not find scavenger

hunts enjoyable.

Concept-Focused EXCEPTIONS:
• A movie marathon is a fun way to spend

an afternoon with friends.
• A picnic in the park is a fun way to spend

an afternoon with friends.
• Playing board games is a fund way to spend

an afternoon with friends.

Property-Focused EXCEPTIONS:
• A scavenger hunt can be a creative

educational activity for students to learn
about their surroundings.

• A scavenger hunt can be a team-building
exercise for corporate events.

(f) Generic: Binoculars are used to view location.
Concept-Focused INSTANTIATIONS:
• Birdwatchers use binoculars to view

distant birds.

Property-Focused INSTANTIATIONS:
• Binoculars are used to view wildlife

in national parks.
• Binoculars are used to view wildlife

in their natural habitat.

Default EXCEPTIONS:
• Binoculars are used for stargazing.
• Binoculars are used for surveillance,

wildlife observation, or marine activities.

Concept-Focused EXCEPTIONS:
• Telescopes are used to view celestial bodies.
• Microscopes are used to view tiny objects.

Property-Focused EXCEPTIONS:
• Binoculars can be use for stargazing

or birdwatching.
GGSmall Data

(g) Generic: A rose is placed in a container with water.
Concept-Focused INSTANTIATIONS:
• A red rose is placed in a vase with water.
• A yellow rose is placed in a glass jar

with water.

Property-Focused INSTANTIATIONS:
• A rose is placed in a vase with water.

Default EXCEPTIONS:
• A dried rose cannot be placed in a

container with water.
• A fake rose made of plastic or silk

cannot be placed in a container
with water.

Concept-Focused EXCEPTIONS:
• A bouquet of flowers can be placed in a vase

with water.
• A single flower can be placed in a bud vase

with water.

Property-Focused EXCEPTIONS:
• A rose can be planted in soil to grow into

a bush or a tree.
• A rose can be dried and preserved for

decorative purposes.

(h) Generic: Cakes are made with a mix.
Concept-Focused INSTANTIATIONS:
• Birthday cakes are made with a mix.
• Pancakes are made with a mix.
• Chocolate cakes are made with a mix.

Property-Focused INSTANTIATIONS:
• Cakes are made with a mix of flour,

sugar, eggs, and other ingredients.

Default EXCEPTIONS:
• Some cakes are made from scratch.

Property-Focused EXCEPTIONS:
• Cakes can be made from scratch

using individual ingredients.

Concept-Focused EXCEPTIONS:
• They can be made by professional bakers

or homemade using recipes and various
ingredients.
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