Multi-Level Feedback Generation with Large Language Models for Empowering Novice Peer Counselors

Alicja Chaszczewicz, Raj Shah, Ryan Louie, Bruce Arnow, Robert Kraut, Diyi Yang


Abstract
Realistic practice and tailored feedback are key processes for training peer counselors with clinical skills. However, existing mechanisms of providing feedback largely rely on human supervision. Peer counselors often lack mechanisms to receive detailed feedback from experienced mentors, making it difficult for them to support the large number of people with mental health issues who use peer counseling. Our work aims to leverage large language models to provide contextualized and multi-level feedback to empower peer counselors, especially novices, at scale. To achieve this, we co-design with a group of senior psychotherapy supervisors to develop a multi-level feedback taxonomy, and then construct a publicly available dataset with comprehensive feedback annotations of 400 emotional support conversations. We further design a self-improvement method on top of large language models to enhance the automatic generation of feedback. Via qualitative and quantitative evaluation with domain experts, we demonstrate that our method minimizes the risk of potentially harmful and low-quality feedback generation which is desirable in such high-stakes scenarios.
Anthology ID:
2024.acl-long.227
Volume:
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Month:
August
Year:
2024
Address:
Bangkok, Thailand
Editors:
Lun-Wei Ku, Andre Martins, Vivek Srikumar
Venue:
ACL
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
4130–4161
Language:
URL:
https://preview.aclanthology.org/icon-24-ingestion/2024.acl-long.227/
DOI:
10.18653/v1/2024.acl-long.227
Bibkey:
Cite (ACL):
Alicja Chaszczewicz, Raj Shah, Ryan Louie, Bruce Arnow, Robert Kraut, and Diyi Yang. 2024. Multi-Level Feedback Generation with Large Language Models for Empowering Novice Peer Counselors. In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 4130–4161, Bangkok, Thailand. Association for Computational Linguistics.
Cite (Informal):
Multi-Level Feedback Generation with Large Language Models for Empowering Novice Peer Counselors (Chaszczewicz et al., ACL 2024)
Copy Citation:
PDF:
https://preview.aclanthology.org/icon-24-ingestion/2024.acl-long.227.pdf