Abstract
In this paper, we describe our approach to Task 4 in SemEval 2023. Our pipeline tries to solve the problem of multi-label text classification of human values in English-written arguments. We propose a label-aware system where we reframe the multi-label task into a binary task resembling an NLI task. We propose to include the semantic description of the human values by comparing each description to each argument and ask whether there is entailment or not.- Anthology ID:
- 2023.semeval-1.258
- Volume:
- Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)
- Month:
- July
- Year:
- 2023
- Address:
- Toronto, Canada
- Editors:
- Atul Kr. Ojha, A. Seza Doğruöz, Giovanni Da San Martino, Harish Tayyar Madabushi, Ritesh Kumar, Elisa Sartori
- Venue:
- SemEval
- SIG:
- SIGLEX
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 1871–1877
- Language:
- URL:
- https://preview.aclanthology.org/icon-24-ingestion/2023.semeval-1.258/
- DOI:
- 10.18653/v1/2023.semeval-1.258
- Cite (ACL):
- Ignacio Talavera Cepeda, Amalie Pauli, and Ira Assent. 2023. Sren Kierkegaard at SemEval-2023 Task 4: Label-aware text classification using Natural Language Inference. In Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023), pages 1871–1877, Toronto, Canada. Association for Computational Linguistics.
- Cite (Informal):
- Sren Kierkegaard at SemEval-2023 Task 4: Label-aware text classification using Natural Language Inference (Talavera Cepeda et al., SemEval 2023)
- PDF:
- https://preview.aclanthology.org/icon-24-ingestion/2023.semeval-1.258.pdf