Sren Kierkegaard at SemEval-2023 Task 4: Label-aware text classification using Natural Language Inference

Ignacio Talavera Cepeda, Amalie Pauli, Ira Assent


Abstract
In this paper, we describe our approach to Task 4 in SemEval 2023. Our pipeline tries to solve the problem of multi-label text classification of human values in English-written arguments. We propose a label-aware system where we reframe the multi-label task into a binary task resembling an NLI task. We propose to include the semantic description of the human values by comparing each description to each argument and ask whether there is entailment or not.
Anthology ID:
2023.semeval-1.258
Volume:
Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)
Month:
July
Year:
2023
Address:
Toronto, Canada
Editors:
Atul Kr. Ojha, A. Seza Doğruöz, Giovanni Da San Martino, Harish Tayyar Madabushi, Ritesh Kumar, Elisa Sartori
Venue:
SemEval
SIG:
SIGLEX
Publisher:
Association for Computational Linguistics
Note:
Pages:
1871–1877
Language:
URL:
https://preview.aclanthology.org/icon-24-ingestion/2023.semeval-1.258/
DOI:
10.18653/v1/2023.semeval-1.258
Bibkey:
Cite (ACL):
Ignacio Talavera Cepeda, Amalie Pauli, and Ira Assent. 2023. Sren Kierkegaard at SemEval-2023 Task 4: Label-aware text classification using Natural Language Inference. In Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023), pages 1871–1877, Toronto, Canada. Association for Computational Linguistics.
Cite (Informal):
Sren Kierkegaard at SemEval-2023 Task 4: Label-aware text classification using Natural Language Inference (Talavera Cepeda et al., SemEval 2023)
Copy Citation:
PDF:
https://preview.aclanthology.org/icon-24-ingestion/2023.semeval-1.258.pdf