Arizonans at SemEval-2023 Task 9: Multilingual Tweet Intimacy Analysis with XLM-T

Nimet Beyza Bozdag, Tugay Bilgis, Steven Bethard


Abstract
This paper presents the systems and approaches of the Arizonans team for the SemEval 2023 Task 9: Multilingual Tweet Intimacy Analysis. We finetune the Multilingual RoBERTa model trained with about 200M tweets, XLM-T. Our final model ranked 9th out of 45 overall, 13th in seen languages, and 8th in unseen languages.
Anthology ID:
2023.semeval-1.230
Volume:
Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)
Month:
July
Year:
2023
Address:
Toronto, Canada
Editors:
Atul Kr. Ojha, A. Seza Doğruöz, Giovanni Da San Martino, Harish Tayyar Madabushi, Ritesh Kumar, Elisa Sartori
Venue:
SemEval
SIG:
SIGLEX
Publisher:
Association for Computational Linguistics
Note:
Pages:
1656–1659
Language:
URL:
https://preview.aclanthology.org/icon-24-ingestion/2023.semeval-1.230/
DOI:
10.18653/v1/2023.semeval-1.230
Bibkey:
Cite (ACL):
Nimet Beyza Bozdag, Tugay Bilgis, and Steven Bethard. 2023. Arizonans at SemEval-2023 Task 9: Multilingual Tweet Intimacy Analysis with XLM-T. In Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023), pages 1656–1659, Toronto, Canada. Association for Computational Linguistics.
Cite (Informal):
Arizonans at SemEval-2023 Task 9: Multilingual Tweet Intimacy Analysis with XLM-T (Bozdag et al., SemEval 2023)
Copy Citation:
PDF:
https://preview.aclanthology.org/icon-24-ingestion/2023.semeval-1.230.pdf
Video:
 https://preview.aclanthology.org/icon-24-ingestion/2023.semeval-1.230.mp4