Multi-Defendant Legal Judgment Prediction via Hierarchical Reasoning

Yougang Lyu, Jitai Hao, Zihan Wang, Kai Zhao, Shen Gao, Pengjie Ren, Zhumin Chen, Fang Wang, Zhaochun Ren


Abstract
Multiple defendants in a criminal fact description generally exhibit complex interactions, and cannot be well handled by existing Legal Judgment Prediction (LJP) methods which focus on predicting judgment results (e.g., law articles, charges, and terms of penalty) for single-defendant cases. To address this problem, we propose the task of multi-defendant LJP, which aims to automatically predict the judgment results for each defendant of multi-defendant cases. Two challenges arise with the task of multi-defendant LJP: (1) indistinguishable judgment results among various defendants; and (2) the lack of a real-world dataset for training and evaluation. To tackle the first challenge, we formalize the multi-defendant judgment process as hierarchical reasoning chains and introduce a multi-defendant LJP method, named Hierarchical Reasoning Network (HRN), which follows the hierarchical reasoning chains to determine criminal relationships, sentencing circumstances, law articles, charges, and terms of penalty for each defendant. To tackle the second challenge, we collect a real-world multi-defendant LJP dataset, namely MultiLJP, to accelerate the relevant research in the future. Extensive experiments on MultiLJP verify the effectiveness of our proposed HRN.
Anthology ID:
2023.findings-emnlp.145
Volume:
Findings of the Association for Computational Linguistics: EMNLP 2023
Month:
December
Year:
2023
Address:
Singapore
Editors:
Houda Bouamor, Juan Pino, Kalika Bali
Venue:
Findings
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
2198–2209
Language:
URL:
https://preview.aclanthology.org/icon-24-ingestion/2023.findings-emnlp.145/
DOI:
10.18653/v1/2023.findings-emnlp.145
Bibkey:
Cite (ACL):
Yougang Lyu, Jitai Hao, Zihan Wang, Kai Zhao, Shen Gao, Pengjie Ren, Zhumin Chen, Fang Wang, and Zhaochun Ren. 2023. Multi-Defendant Legal Judgment Prediction via Hierarchical Reasoning. In Findings of the Association for Computational Linguistics: EMNLP 2023, pages 2198–2209, Singapore. Association for Computational Linguistics.
Cite (Informal):
Multi-Defendant Legal Judgment Prediction via Hierarchical Reasoning (Lyu et al., Findings 2023)
Copy Citation:
PDF:
https://preview.aclanthology.org/icon-24-ingestion/2023.findings-emnlp.145.pdf