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Abstract

Complex Named Entity Recognition (NER)
is the task of detecting linguistically complex
named entities in low-context text. In this pa-
per, we present ACLM (Attention-map aware
keyword selection for Conditional Language
Model fine-tuning), a novel data augmenta-
tion approach, based on conditional generation,
to address the data scarcity problem in low-
resource complex NER. ACLM alleviates the
context-entity mismatch issue, a problem exist-
ing NER data augmentation techniques suffer
from and often generates incoherent augmenta-
tions by placing complex named entities in the
wrong context. ACLM builds on BART and is
optimized on a novel text reconstruction or de-
noising task - we use selective masking (aided
by attention maps) to retain the named entities
and certain keywords in the input sentence that
provide contextually relevant additional knowl-
edge or hints about the named entities. Com-
pared with other data augmentation strategies,
ACLM can generate more diverse and coherent
augmentations preserving the true word sense
of complex entities in the sentence. We demon-
strate the effectiveness of ACLM both qualita-
tively and quantitatively on monolingual, cross-
lingual, and multilingual complex NER across
various low-resource settings. ACLM outper-
forms all our neural baselines by a significant
margin (1%-36%). In addition, we demonstrate
the application of ACLM to other domains that
suffer from data scarcity (e.g., biomedical). In
practice, ACLM generates more effective and
factual augmentations for these domains than
prior methods.1

1 Introduction

Named Entity Recognition (NER) is a fundamen-
tal task in Natural Language Processing (NLP)
that aims to detect various types of named enti-
ties (NEs) from text. Recently, there has been

1Code: https://github.com/Sreyan88/ACLM
∗These authors contributed equally to this work.

considerable progress in NER using neural learn-
ing methods that achieve state-of-the-art (SOTA)
performance (Wang et al., 2021; Zhou and Chen,
2021) on well-known benchmark datasets, includ-
ing CoNLL 2003 (Tjong Kim Sang and De Meul-
der, 2003) and OntoNotes (Schwartz et al., 2012).
However, these datasets are designed to evaluate
the performance on detecting “relatively easy” NEs
like proper names (e.g., people such as “Barack
Obama,” locations such as “New York,” or orga-
nizations such as “IBM”) in well-formed, context-
rich text that comes from news articles (Augenstein
et al., 2017). On the other hand, complex NER
benchmarks like MultiCoNER (Malmasi et al.,
2022) present several contemporary challenges in
NER, including short low-context texts with emerg-
ing and semantically ambiguous complex entities
(e.g., movie names in online comments) that re-
duce the performance of SOTA methods previously
evaluated only on the existing NER benchmark
datasets. Our experiments reveal that the perfor-
mance of the current SOTA NER method (Zhou
and Chen, 2021) (previously evaluated only on the
CoNLL 2003 dataset) drops by 23% when evalu-
ated on MultiCoNER and 31.8% when evaluated
on a low-resource setting with just 500 training
samples (more details in Table 8). Thus, we em-
phasize that research on building systems that can
effectively detect complex NEs in the text is cur-
rently understudied in the field of NLP.

In the past, researchers have made several at-
tempts at building supervised approaches to de-
tect complex and compositional noun phrase enti-
ties in sentences (Doddington et al., 2004; Biggio
et al., 2010; Magnolini et al., 2019). However, the
scarcity of annotated training data for building ef-
fective systems has always been a challenge. Data
augmentation has been shown to be an effective
solution for low-resource NER (Ding et al., 2020;
Liu et al., 2021; Zhou et al., 2022). In practice,
though these systems perform well and generate

104



coherent augmentations on common NER bench-
mark datasets with easy proper noun NEs, they fail
to be effective for complex NER, often generating
incoherent augmentations. We first argue that cer-
tain types of complex NEs follow specific linguistic
patterns and appear only in specific contexts (exam-
ples in Appendix 4), and augmentations that do not
follow these patterns impede a NER model from
learning such patterns effectively. This sometimes
also leads to augmentations with context-entity mis-
match, further hurting the learning process. For
e.g., unlike proper names, substituting complex
NEs from other sentences in the corpus or replac-
ing them with synonyms (Dai and Adel, 2020a)
often leads to augmentations where the NE does
not fit into the new context (e.g., swapping proper
names across sentences might still keep the sen-
tence coherent but swapping the name of a book
with a movie (both creative work entity) or the
name of a football team with a political party (both
group entity) makes it incoherent). Fine-tuning pre-
trained language models (PLMs), similar to prior-
work (Ding et al., 2020; Liu et al., 2021; Zhou et al.,
2022), fail to generate new context around complex
NEs or completely new NEs with the desired lin-
guistic patterns due to low-context sentences and
the lack of existing knowledge of such linguisti-
cally complex NEs (examples in Fig. 3). This
leads to in-coherent augmentations and poses a se-
vere problem in knowledge-intensive tasks like bio-
medical NER, where non-factual augmentations
severely hurt learning. Our experiments also reveal
that introducing new context patterns around NEs
proves to be a more effective data augmentation
technique for complex NER than diversifying NEs
(ACLM vs. MELM in Table 1).

Main Results: To overcome the aforesaid prob-
lems, we formulate data augmentation as a condi-
tional generation task and propose ACLM, a con-
ditional text generation model that generates aug-
mentation samples by introducing new and diverse
context patterns around a NE. ACLM builds on
BART (Lewis et al., 2020) and is fine-tuned on a
modification of the text reconstruction from cor-
rupted text task, a common denoising-based PLM
pre-training objective. In contrast to other PLM pre-
training strategies, which randomly mask a portion
of the text for corruption, our modified objective is
based on selective masking, wherein we mask all
other words in the sentence except the NEs and a
small percentage of keywords related to the NEs.

We refer to this corrupted sentence as a template,
and it serves as input to the model for both the
training and generation phases. These keywords
are other non-NE tokens in the sentence that pro-
vide contextually relevant additional knowledge or
hints to BART about the complex NEs without the
need of retrieving knowledge from any external
sources. We select these keywords using attention
maps obtained from a transformer model fine-tuned
on the NER task, and they help the PLM overcome
the problem where it might not possess enough
knowledge about a semantically ambiguous com-
plex NE (example in Fig. 3). Training ACLM on
this modified objective allows us to generate di-
verse, coherent, factual, and high-quality augmen-
tations given templates. We also propose mixner,
a novel algorithm that mixes two templates during
the augmentation generation phase and boosts the
diversity of augmentations. Our primary contribu-
tions are as follows:

• We propose ACLM, a novel data augmenta-
tion framework specially designed for low-
resource complex NER. Compared with pre-
vious methods in the literature, ACLM effec-
tively alleviates the context-entity mismatch
problem by preserving the true sense of se-
mantically ambiguous NEs in augmentations.
Additionally, to accompany ACLM, we pro-
pose mixner, which boosts the diversity of
ACLM generations.

• We qualitatively and quantitively show the
benefits of ACLM for monolingual, cross-
lingual, and multilingual complex NER across
various low-resource settings on the Multi-
CoNER dataset. Our proposed ACLM out-
performs all other baselines in literature by a
significant margin (1%-36%) and generates
more diverse, coherent, and high-quality aug-
mentations compared to them.

• We perform extensive experiments to study
the application of ACLM in three other
domains, including science and medicine.
ACLM outperforms all our baselines in these
domains (absolute gains in the range of 1%-
11%) and generates more factual augmenta-
tions.

2 Background and Related Work

Complex NER Background: Complex NER is
a relatively understudied task in the field of NLP.
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Building on insights from Augenstein et al. (2017),
we discuss key reasons behind high performance
on common NER benchmark datasets and try to
understand why modern SOTA NER algorithms
do not work well on complex NER benchmarks:
(1) Context: Most of the common benchmark
datasets are curated from articles in the news do-
main. This gives them several advantages, includ-
ing rich context and surface features like proper
punctuation and capitalized nouns, all of which are
major drivers of success in these datasets (Mayhew
et al., 2019). In contrast, for entity recognition
beyond news text, like search queries or voice com-
mands, the context is less informative and lacks
surface features (Guo et al., 2009; Carmel et al.,
2014); (2) Entity Complexity: Data from news
articles contain proper names or “easy” entities
with simple syntactic structures, thus allowing pre-
trained models to perform well due to their existing
knowledge of such entities. On the other hand,
complex NEs like movie names are syntactically
ambiguous and linguistically complex and which
makes Complex NER a difficult task (Ashwini and
Choi, 2014). Examples of such entities include
noun phrases (e.g., Eternal Sunshine of the Spot-
less Mind), gerunds (e.g., Saving Private Ryan),
infinitives (e.g., To Kill a Mockingbird), or full
clauses (e.g., Mr. Smith Goes to Washington); (3)
Entity Overlap: Models trained on these common
benchmark datasets suffer from memorization ef-
fects due to the large overlap of entities between the
train and test sets. Unseen and emerging entities
pose a huge challenge to complex NER (Bernier-
Colborne and Langlais, 2020).

Complex NER: Prior work has mostly focused on
solving the entity complexity problem by learn-
ing to detect complex nominal entities in sen-
tences (Magnolini et al., 2019; Meng et al., 2021;
Fetahu et al., 2022; Chen et al., 2022). Researchers
have often explored integrating external knowledge
in the form of gazetteers for this task. Gazetteers
have also proven to be effective for low-resource
NER (Rijhwani et al., 2020). GemNet (Meng
et al., 2021), the current SOTA system for com-
plex NER, conditionally combines the contextual
and gazetteer features using a Mixture-of-Experts
(MoE) gating mechanism. However, gazetteers are
difficult to build and maintain and prove to be inef-
fective for complex NER due to their limited entity
coverage and the nature of unseen and emerging
entities in complex NER.

Data Augmentation for Low-Resource NER:
Data Augmentation to handle data scarcity for low-
resource NLP is a well-studied problem in the lit-
erature and is built on word-level modifications,
including simple synonym replacement strategies
(Wei and Zou, 2019), or more sophisticated learn-
ing techniques like LSTM-based language mod-
els (Kobayashi, 2018), Masked Language Mod-
eling (MLM) using PLMs (Kumar et al., 2020),
auto-regressive PLMs (Kumar et al., 2020), or
constituent-based tagging schemes (Zhou et al.,
2019). However, most of these methods, though
effective for classification tasks, suffer from token-
label misalignment when applied to token-level
tasks such as NER and might require complex pre-
processing steps (Bari et al., 2020; Zhong and Cam-
bria, 2021). One of the first works to explore effec-
tive data augmentation for NER replaces NEs with
existing NEs of the same type or replaces tokens in
the sentence with one of their synonyms retrieved
from WordNet (Dai and Adel, 2020b). Following
this, many neural learning systems were proposed
that either modify the Masked Language Modelling
(MLM) training objective using PLMs (Zhou et al.,
2022; Liu et al.) or use generative language model-
ing with LSTM LMs (Ding et al., 2020) or mBART
(Liu et al., 2021), to produce entirely new sentences
from scratch. However, all these systems were de-
signed for low-resource NER on common bench-
mark datasets and failed to generate effective aug-
mentations for low-resource complex NER with
semantically ambiguous and complex entities.

3 Methodology

In this section, we give an overview of our ap-
proach. Fig. 1 represents the entire workflow of
our ACLM data augmentation framework. A sen-
tence is first passed through a fine-tuned XLM-
RoBERTa fine-tuned on only gold data to generate
the attention map for each token in the sentence.
This attention map is then used to selectively mask
the sentence and create a template. This template is
then used as an input to optimize the model on the
text reconstruction objective for fine-tuning ACLM:
the model is asked to reconstruct the entire origi-
nal sentence from only the content in the template.
While generating augmentations, ACLM follows
the same template generation process in addition
to adding two templates through mixner, which we
discuss in detail in Section 3.3.
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Keyword Selection

 he advanced, attacked the enemy 's infantry with
the lance, and then retired while the enemy 
swarmed out of hidden ground where royal

artilleryGRP guns could attack them.

[M] enemy [M] infantry [M] retired [M] enemy
swarmed [M] hidden ground [M] ground [M] 

royal artillery guns [M] attack [M]

1

Selective Masking2

Labelled Sequence
Linearization3

Fine-tuned
NER Model

 Attention Map

Dynamic Masking4

[M] enemy [M] infantry [M] retired [M] enemy
swarmed [M] hidden ground [M] <b-grp> royal <b-

grp> <i-grp> artillery <i-grp> guns [M] attack [M]

[M] enemy [M] infantry [M] swarmed 
[M] hidden ground [M] <b-grp> royal <b-grp> 

<i-grp> artillery <i-grp> guns [M]

ashby was wounded in the right foot during one
of three raids into kentuckyLOC made by his

regiment during 1862 .

ashby [M] wounded [M] foot [M] raids [M] 
allegiance [M] rejoin <b-loc> kentucky <b-loc> [M]

 regiment [M]

Training Corpus

mixner

the enemy's infantry was attacked by royal
artilleryGRP guns.

Semantically similar
sentence

the enemy's infantry was swarmed to the
ground with royal artilleryGRP guns.

ashby was wounded on the foot while a regiment
member of the kentuckyLOC regiment was

sent to the war.

ashby conducted raids across the line from
kentuckyLOC and the enemy were attacked and later
retired by hidden ground royal artilleryGRP guns. 

Generated Samples:

 he advanced, attacked the enemy's infantry with the
lance, and then retired while the enemy swarmed out

of hidden ground where <b-grp> royal <b-grp> <i-grp>
artillery <i-grp> guns could attack them.

Text Reconstruction:

4

1 2 3+ +

InferenceFinetuningBidirectional
Encoder

Autoregressive
Decoder

ACLM

Fine-tuning

Generation

Concat

he advanced , attacked the enemy 's
infantry with the lance , and then

retired while the enemy swarmed out
of hidden ground where royal artillery

guns could attack them .

Figure 1: Overview of ACLM: ACLM follows a 4-step template creation process, which serves as an input to the model during
fine-tuning and generation. 1⃝ Keyword Selection: The most important keywords (in red) associated with the NEs (in bold) in
the sentence is first extracted using attention maps obtained from a fine-tuned NER model. 2⃝ Selective Masking: All words
except the NEs and the keywords obtained from the previous step is replaced with mask tokens [M]. 3⃝ Labeled Sequence
Linearization: Label tokens are added before and after each entity in the sentence. 4⃝ Dynamic Masking: The template
goes through further masking where a small portion of the keywords are dynamically masked at each training iteration. While
generation we also apply mixner, which randomly joins two templates after 3⃝ and before 4⃝. Post generating augmentations
with ACLM, the generated augmentations are concatenated with the gold data and used to fine-tune our final NER model.

3.1 Template Creation

To corrupt a sentence and create a template, we
follow a 4-step process described below:

1. Keyword Selection: For each sentence in our
training corpus, we first obtain a set of non-NE
tokens in the sentence that are most attended to
by its NEs. We call these tokens keywords. For
our research, we consider a non-NE token as a
keyword if the NEs in the sentence contextually
depend on them the most. We measure contextual
dependency between NE and non-NE tokens us-
ing attention scores from attention maps extracted
from a transformer-based NER model fine-tuned
only on gold data. We hypothesize that attention
heads in a transformer when fine-tuned for NER,
formulated as a token-level tagging task, tend to
pay the highest attention to the most contextually
relevant tokens around it. Thus, formally put, con-
sider a sentence with a total of T tokens comprised
of tother non-NE and tentity NE tokens. Our pri-
mary aim is to find the top p% of tother tokens,
which we call keywords. To calculate the total
attention score that each token in the sentence as-
signs to each other token, we sum up the attention
scores across each of the heads in the transformer
network and across the last a layers (a = 4 in our
case). Different heads in different layers tend to
capture different properties of language, and tak-
ing the average attention scores across the last 4

layers ensures that diverse linguistic relations are
taken into account while choosing the keywords
(e.g., syntactic, semantic, etc.). This also makes
the keyword selection process more robust, as in
low-resource conditions the attention maps may
be noisy, and the NEs might not be focusing on
the right context always. Additionally, the choice
of just the last four layers is inspired by the fact
that the lower layers have very broad attention and
spend at most 10% of their attention mass on a sin-
gle token (Clark et al., 2019). Note tentity might be
comprised of (1) multiple contiguous tokens form-
ing an individual NE and (2) multiple such indi-
vidual NEs. To handle the first case, inspired from
Clark et al. (2019), we sum up the attention scores
over all the individual tokens in the NE. For the sec-
ond case, we find tattn for each individual NE and
take a set union of tokens in these tattn. Thus, as
an extra pre-processing step, to improve robustness,
we also ignore punctuations, stop words, and other
NEs from the top p% of tother tokens to obtain our
final keywords. We provide examples of templates
in Appendix C.

2. Selective Masking: After selecting the top p%
of tother tokens in the sentence as keywords, we
now have K non-NE keyword tokens and E entity
tokens. To create the template, we now substitute
each non-NE token not belonging to the K with the
mask token and remove contiguous mask tokens.
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3. Labeled Sequence Linearization: After we
have our initial template, inspired by Zhou et al.
(2022), we perform labeled sequence linearization
to explicitly take label information into consider-
ation during fine-tuning and augmentation gener-
ation. Similar to Zhou et al. (2022), as shown in
Figure 1, we add label tokens before and after each
entity token and treat them as the normal context
in the sentence. Additionally, these label tokens
before and after each NE provide boundary super-
vision for NEs with multiple tokens.

4. Dynamic Masking: Post labeled sequence lin-
earization, our template goes through further mask-
ing wherein we dynamically mask a small portion
of the K keywords during each iteration of training
and generation. To be precise, we first sample a
dynamic masking rate ε from a Gaussian distribu-
tion N (µ, σ2), where the Gaussian variance σ is
set to 1/K. Next, we randomly sample tokens from
the K keywords in the sentence according to the
masking rate ε and replace this with mask tokens,
followed by removing consecutive mask tokens. At
every round of generation, dynamic masking helps
boost 1) context diversity by conditioning ACLM
generation on different templates with a different
set of keywords and 2) length diversity by asking
ACLM to infill a different number of mask tokens.

3.2 Fine-tuning ACLM

As discussed earlier, ACLM is fine-tuned on a
novel text reconstruction from corrupted text task
wherein the created templates serve as our cor-
rupted text and ACLM learns to recover the original
text from the template. Text reconstruction from
the corrupted text is a common denoising objective
that PLMs like BART and BERT are pre-trained on.
For this work, we use it as our fine-tuning objective
and differ from other existing pre-training objec-
tives by our selective masking strategy for creating
templates.

3.3 Data Generation

Post fine-tuning on the text reconstruction task, we
utilize ACLM to generate synthetic data for data
augmentation. For each sentence in the training
dataset, we apply steps 1-4 in the Template Cre-
ation pipeline for R rounds to randomly corrupt the
sentence and obtain a template which is then passed
through the fine-tuned ACLM model to generate
a total of R× augmented training samples. Addi-
tionally, to boost diversity, during auto-regressive

the 1988 elections were also held on a
non party basis, although around 30

candidates sympathetic to the muslim
brotherhoodGRP were elected.

a nonpartisan candidate, george
washingtonPER , carried the state

twice ( in 1789 and 1792 ).

Semantically
similar sentence

1 2 3+ +

[M] party [M] 30 candidates sympathetic [M] <b-grp>
muslim <b-grp> <i-grp> brotherhood <i-grp> [M] elected [M]

<b-per> george <b-per> <i-per> washington <i-per> [M]
carried [M] 1789 [M] 1792 [M] 

the party of 30 members sympathetic to the muslim
brotherhoodGRP were elected and led by a former
candidate george washingtonPER who carried the

party in 1789 and 1792. 

Concat

ACLM

4

Figure 2: Overview of mixner: During the augmentation
generation process, for a particular sentence in the training
dataset, we retrieve another semantically similar sentence
and concatenate them before step 4⃝ of the template creation
process. This merged template is then passed through ACLM
to generate diverse augmentations that incorporate semantics
and NEs from both sentences.

generation, we randomly sample the next word
from the top-k most probable words and choose the
most probable sequence with beam search.

mixner: During the R rounds of augmentation
on our training dataset, we propose the use of
mixner, a novel template mixing algorithm that
helps ACLM generate diverse sentences with new
context and multiple NEs in the sentence. More
specifically, given the template for any arbitrary
sentence a in the training set in step 3 of the tem-
plate creation process, we retrieve the template for
another sentence b that is semantically similar to a
and join both the templates before passing on the
template to step 4. We show examples of sentences
generated with mixner in Fig. 3 and Section D.1.
Note that we apply mixner only in the generation
step and not during fine-tuning.

As mentioned earlier, to retrieve b from the train-
ing set, we randomly sample a sentence from the
top-k sentences with the highest semantic similarity
to a. To calculate semantic similarity between each
sentence in the training set, we first take the em-
bedding e for each sentence from a multi-lingual
Sentence-BERT (Reimers and Gurevych, 2019)
and then calculate semantic similarity by:

sim(ei, ej) = ei ⋅ ej∥ei∥∥ej∥ (1)

where sim(. ) is the cosine similarity between
two embeddings , and i, j ∈ N where i ≠ j, and N
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is the size if the training set. Additionally, we don’t
apply mixner on all rounds R but sample a prob-
ability γ from a Gaussian distribution N (µ, σ2)
and only apply mixner if γ crosses a set threshold
β.

3.3.1 Post-Processing

As a post-processing step, we remove augmenta-
tions similar to the original sentence and also the
extra label tokens added in the labeled sequence
linearization step. Finally, we concatenate the aug-
mented data with the original data to fine-tune our
NER model.

4 Experiments and Results

4.1 Dataset

All our experiments were conducted on the Multi-
CoNER dataset (Malmasi et al., 2022), a large mul-
tilingual dataset for complex NER. MultiCoNER
covers 3 domains, including Wiki sentences, ques-
tions, and search queries, across 11 distinct lan-
guages. The dataset represents contemporary chal-
lenges in NER discussed in Section 2 and is labeled
with six distinct types of entities: person, loca-
tion, corporation, groups (political party names
such as indian national congress), product (con-
sumer products such as apple iPhone 6), and cre-
ative work (movie/song/book titles such as on the
beach). We conduct experiments on a set of 10 lan-
guages L where L = {English (En), Bengali (Bn,
Hindi (Hi), German (De), Spanish (Es), Korean
(Ko), Dutch (Nl), Russian (Ru), Turkish (Tr), Chi-
nese (Zh)}. Language-wise dataset statistics can
be found in Table 12. We would also like to high-
light that the number of sentences in MultiCoNER
test sets ranges from 133,119 - 217,887, which is
much higher than test sets of other existing NER
datasets. For more details on the dataset, we refer
our readers to Malmasi et al. (2022). For monolin-
gual and cross-lingual low-resource experiments,
we perform iterative stratified sampling over all the
sentences by using the entity classes in a sample
as its target label across four low-resource settings
(100, 200, 500, and 1000). We downsample the
development set accordingly. For multi-lingual ex-
periments, we combine all the data sampled for
our monolingual settings. We evaluate all our sys-
tems and baselines on the original MultiCoNER
test sets. We report micro-averaged F1 scores aver-
aged across 3 runs for 3 different random seeds.

Algorithm 1 ACLM: Our proposed augmentation framework
Given training set Dtrain, and PLM L
Dmasked ← ∅,Daug ← ∅
for {X,Y } ∈ Dtrain do ▷ Training Loop

tother, tentity ← X
K ← Top p% ofATTNMAP(tother) ▷ Keyword Selection
X̃ ← GENTEMPLATE(X, {tother} − {K}) ▷ Selective Masking
X̃ ← LINEARIZE(X̃, Y ) ▷ Labeled Sequence Linearization
Dmasked ← Dmasked ∪ {X̃}

end for
for {X,Y } ∈ Dmasked do

X̃ ← DYNAMICMASK(X,η) ▷ Dynamic Masking
Lfinetune ← FINETUNE(L, X̃) ▷ Fine-tune ACLM

end for
for {X,Y } ∈ Dtrain do ▷ Generation Loop

repeat R times:
X̃ ← GENTEMPLATE(X, {tother} − {K}) ▷ Selective masking
X̃ ← LINEARIZE(X̃, Y ) ▷ Labeled Sequence Linearization
X̃ ← DYNAMICMASK(X̃, µ) ▷ Dynamic Masking
Xaug ← GENAUG(Lfinetune(X̃)), if γ < β

Xaugmix ← MIXNER(Lfinetune(X̃)), if γ > β
Daug ← Daug ∪ {Xaug} ∪ {Xaugmix}

end for
Daug ← POSTPROCESS(Daug) ▷ Post-processing
return Dtrain ∪ Daug

4.2 Experimental Setup
ACLM. We use mBart-50-large (Tang et al., 2020)
with a condition generation head to fine-tune
ACLM. We fine-tune ACLM for 10 epochs using
Adam optimizer (Kingma and Ba, 2014) with a
learning rate of 1e−5 and a batch size of 32.
NER. We use XLM-RoBERTa-large with a linear
head as our NER model. Though the field of NER
has grown enormously, in this paper, we adhere
to the simplest formulation and treat the task as a
token-level classification task with a BIO tagging
scheme. We use the Adam optimizer to optimize
our model, set the learning rate to 1e

−2, and train
with a batch size of 16. The NER model is trained
for 100 epochs, and the model with the best perfor-
mance on the dev set is used for testing.
Hyper-parameter Tuning. For template creation
during fine-tuning and generation, we set the selec-
tion rate p and the Gaussian µ to be 0.3 and 0.5,
respectively. The number of augmentation rounds
R is set as 5. For mixner we set Gaussian µ and β to
be 0.5 and 0.7, respectively. All hyper-parameters
are tuned on the development set with grid search.
More details can be found in Appendix A.

4.3 Baselines
To prove the effectiveness of our proposed ACLM,
we compare it with several strong NER augmenta-
tion baselines in the literature. In this sub-section,
we briefly describe each of these baselines. All
baselines were run for R rounds.
Gold-Only. The NER model is trained using only
gold data from the MultiCoNER dataset without
any augmentation.
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MONOLINGUAL CROSS-LINGUAL

#Gold Method En Bn Hi De Es Ko Nl Ru Tr Zh Avg En → Hi En → Bn En → De En → Zh Avg
Gold-only 29.36 14.49 18.80 37.04 36.30 12.76 38.78 23.89 24.13 14.18 24.97 16.36 12.15 29.71 0.31 14.63
LwTR 48.60 20.25 29.95 48.38 44.08 35.09 43.00 39.22 30.58 27.70 36.68 32.36 24.59 46.05 2.11 26.28
DAGA 16.24 5.87 10.40 32.44 27.78 19.28 15.44 11.14 16.17 10.33 16.51 4.54 3.28 14.21 0.13 5.54

100 MELM 40.12 6.22 27.84 43.94 37.45 34.10 37.82 32.38 20.13 25.11 30.51 26.37 20.33 34.32 2.71 20.93
ACLM only entity 14.06 17.55 19.60 29.72 38.10 31.57 38.47 27.40 35.62 26.34 27.84 21.72 16.55 30.93 1.58 17.69
ACLM random 43.59 20.13 28.04 45.83 42.27 33.64 41.82 38.20 36.79 25.99 35.63 29.68 21.64 45.27 3.05 24.91
ACLM (ours) 48.76 23.09 33.53 48.80 44.14 38.35 46.22 39.48 37.20 35.12 39.47 32.52 23.91 46.48 3.58 26.62
Gold-only 51.83 19.31 33.68 49.62 45.16 42.51 47.83 31.55 26.76 32.34 38.06 36.90 27.44 48.70 3.76 29.20
LwTR 52.88 23.85 34.27 50.31 47.01 42.77 52.01 40.18 35.92 30.57 40.98 40.07 32.36 48.95 6.04 31.85
DAGA 33.30 17.12 19.58 35.10 33.56 26.50 38.04 29.83 23.35 25.66 28.20 18.92 14.37 29.32 1.79 16.10

200 MELM 47.83 5.47 29.67 45.85 42.08 36.62 49.47 41.84 31.25 32.27 36.24 27.55 18.80 41.10 6.21 23.41
ACLM only entity 50.06 25.58 37.78 50.95 48.21 43.39 48.46 34.87 34.92 28.20 40.24 30.76 22.53 44.17 6.50 25.99
ACLM random 52.69 35.26 39.83 51.14 48.70 42.19 48.71 39.68 37.26 34.22 42.96 36.52 27.19 47.73 7.12 29.64
ACLM (ours) 54.99 38.39 40.55 53.36 49.57 44.32 53.19 43.97 39.71 39.31 45.74 45.22 36.64 54.51 8.55 36.23
Gold-only 55.51 34.6 38.66 55.95 51.52 48.57 50.97 45.14 38.83 38.84 45.86 35.93 25.64 50.13 7.23 29.73
LwTR 56.97 35.42 37.83 55.91 54.74 49.36 56.10 46.82 39.00 38.55 47.07 43.14 34.60 51.61 11.40 35.19
DAGA 44.62 22.36 24.30 43.02 42.77 36.23 47.11 30.94 30.84 33.79 35.60 26.50 21.52 37.89 4.82 22.68

500 MELM 52.57 9.46 31.57 53.57 46.40 45.01 51.90 46.73 38.26 39.64 41.51 34.97 27.17 44.31 7.31 28.44
ACLM only entity 57.55 35.69 35.82 56.15 53.64 50.20 53.07 46.40 41.58 38.65 46.87 35.48 29.37 49.10 7.99 30.48
ACLM random 57.92 38.24 39.33 57.14 53.24 49.81 55.06 48.27 42.22 40.55 48.18 41.72 32.16 52.27 13.63 34.95
ACLM (ours) 58.31 40.26 41.48 59.35 55.69 51.56 56.31 49.40 43.57 41.23 49.72 44.36 35.59 54.04 16.27 37.57
Gold-only 57.22 30.20 39.55 60.18 55.86 53.39 60.91 49.93 43.67 43.05 44.40 43.44 33.27 54.61 5.34 34.17
LwTR 59.10 39.65 43.90 61.28 57.29 51.37 59.25 52.04 44.33 43.71 51.19 43.32 33.74 53.32 7.38 34.44
DAGA 50.24 32.09 35.02 51.45 49.47 42.41 51.88 41.56 33.18 39.51 42.68 33.12 26.22 42.13 5.15 26.65

1000 MELM 53.48 6.88 37.02 58.69 52.43 50.50 56.25 48.99 36.83 38.88 44.00 35.23 25.64 46.50 8.22 28.90
ACLM only entity 55.46 38.13 41.84 60.05 56.99 53.32 58.22 50.17 45.11 39.62 49.89 37.38 29.77 41.10 6.49 28.69
ACLM random 58.87 41.00 46.27 61.19 57.29 53.61 59.52 52.77 45.01 43.60 51.91 43.96 34.14 53.37 7.25 34.68
ACLM (ours) 60.14 42.42 48.20 63.80 58.33 55.55 61.22 54.31 48.23 45.19 53.74 44.59 35.70 56.74 8.94 36.49

Table 1: Results of monolingual (Left) and cross-lingual (Right) low-resource complex NER. For cross-lingual experiments, we
take English as the source language. ACLM obtains absolute average gains in the range of 1% - 22% over our baselines.

Label-wise token replacement (LwTR).(Dai and
Adel, 2020b) A token in a sentence is replaced
with another token with the same label; the token
is randomly selected from the training set.

DAGA.(Ding et al., 2020) Data Augmentation with
a Generation Approach (DAGA) proposes to train
a one-layer LSTM-based recurrent neural network
language model (RNNLM) by maximizing the
probability for the next token prediction with lin-
earized sentences. During generation, they use ran-
dom sampling to generate entirely new sentences
with only the [BOS] token fed to the model.

MulDA.(Liu et al., 2021) Multilingual Data Aug-
mentation Framework (MulDA) builds on DAGA
and trains a pre-trained mBART model on next
token prediction with linearized sentences for
generation-based multilingual data augmentation.
For a fair comparison, we replace mBART in
MulDA with mBART-50.

MELM.(Zhou et al., 2022) Masked Entity Lan-
guage Modeling (MELM) proposes fine-tuning a
transformer-encoder-based PLM on linearized la-
beled sequences using masked language modeling.
MELM outperforms all other baselines and prior-
art on low-resource settings on the CoNLL 2003
NER dataset across four languages in mono-lingual,
cross-lingual, and multi-lingual settings.

ACLM random. We train and infer ACLM with
templates created with randomly sampled keywords
instead of taking keywords with high attention
scores. This baseline proves the effectiveness of
our keyword selection algorithm which provides
NEs in the template with rich context.
ACLM only entity. We train and infer ACLM with
templates created with only linearized entities and
no keywords. This baseline proves the effectiveness
of additional context in our templates.

4.4 Experimental Results

Monolingual Complex NER. Table 1 compares
the performance of all our baselines with ACLM
on the MultiCoNER test sets under various low-
resource settings for 10 languages. As clearly evi-
dent, ACLM outperforms all our baselines in all set-
tings by consistently achieving the best results in all
individual languages. Moreover, ACLM improves
over our neural baselines (MELM and DAGA) by
a significant margin (absolute gains in the range
of 1.5% - 22% across individual languages). Al-
though LwTR performs better than ACLM in rare
instances, we emphasize that (1) LwTR generates
nonsensical, incoherent augmentations, (discussed
further in Section D.1) and (2) Based on a learning-
based paradigm, ACLM shows bigger margins to
LwTR at slightly higher gold training samples (200
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#Gold Method En Bn Hi De Es Ko Nl Ru Tr Zh Avg

100 ×10

Gold-Only 56.21 35.66 42.16 55.71 54.98 45.14 57.48 46.13 44.40 30.72 46.86
LwTR 55.65 38.47 43.44 54.71 53.95 44.78 56.50 46.93 45.41 31.56 47.14
MulDA 46.87 29.25 34.52 45.92 45.55 33.91 48.21 38.65 35.56 27.33 38.58
MELM 53.27 23.43 41.55 48.17 51.28 39.23 51.37 45.73 41.97 30.67 42.67
ACLM (ours) 58.74 41.00 46.22 59.13 56.93 51.22 60.30 50.26 49.32 40.93 51.40

200 ×10

Gold-Only 58.67 39.84 46.34 59.65 58.50 50.70 60.79 51.66 47.12 40.98 51.42
LwTR 51.78 35.93 38.87 52.73 51.59 42.55 54.49 43.99 41.23 35.19 44.83
MulDA 48.89 31.45 36.76 48.41 48.30 39.78 51.09 42.01 35.98 31.65 41.43
MELM 52.53 24.27 40.10 49.69 52.42 43.56 47.28 44.35 40.62 34.28 47.45
ACLM (ours) 59.75 42.61 48.52 61.49 59.05 53.46 61.59 53.34 49.96 44.72 53.45

500 ×10

Gold-Only 61.10 40.94 48.20 61.67 59.84 54.56 62.36 53.33 48.77 45.82 53.66
LwTR 59.09 38.37 43.80 59.37 57.76 50.38 60.42 51.00 46.53 42.87 50.96
MulDA 51.79 30.67 35.79 51.87 50.92 43.08 53.95 44.61 38.86 36.72 43.83
MELM 58.67 26.17 41.88 53.05 57.26 51.97 61.49 43.73 40.22 40.12 47.66
ACLM (ours) 62.32 43.79 50.32 63.94 62.05 56.82 64.41 55.09 51.83 48.44 55.90

1000 ×10

Gold-Only 64.14 43.28 50.11 66.18 63.17 57.31 65.75 56.94 51.17 49.77 57.78
LwTR 61.67 39.90 45.28 63.13 60.21 53.43 63.37 54.07 48.38 45.36 53.48
MulDA 56.35 33.73 40.71 56.90 55.35 48.42 58.39 49.25 42.06 40.19 48.14
MELM 61.55 30.27 42.61 61.05 61.87 55.71 63.17 53.00 48.48 44.71 52.24
ACLM (ours) 64.50 46.59 52.14 67.65 64.02 59.09 67.03 57.82 53.25 50.60 58.27

Table 2: Results of multi-lingual low-resource complex NER.
ACLM obtains absolute gains in the range of 1% - 21%.

and 500) which we acknowledge is a reasonable
size in real-world conditions.

Cross-lingual Complex NER. We also study
the cross-lingual transferability of a NER model
trained on a combination of gold and generated aug-
mentations. Thus, we evaluated a model, trained
on En, on 4 other languages, including Hi, Bn, De,
and Zh in a zero-shot setting. ACLM outperforms
our neural baselines by a significant margin (abso-
lute gains in the range of 1% - 21%). None of these
systems perform well in cross-lingual transfer to
Zh which was also observed by (Hu et al., 2021).

Multi-lingual Complex NER. Table 2 compares
the performance of all our baselines with ACLM
on the MultiCoNER test sets under various multi-
lingual low-resource settings. As clearly evident,
ACLM outperforms all our baselines by a signifi-
cant margin (absolute gains in the range of 1%-21%
across individual languages). All our baselines,
including our Gold-Only baseline, also perform
better than their monolingual counterparts which
demonstrates the effectiveness of multi-lingual fine-
tuning for low-resource complex NER.

5 Further Analysis

5.1 Generation Quality

Quantitative Analysis. Table 3 compares augmen-
tations from various systems on the quantitative
measures of perplexity and diversity. Perplexity
(Jelinek et al., 1977) is a common measure of text
fluency, and we measure it using GPT2 (Radford
et al., 2019). We calculate 3 types of diversity met-
rics: for Diversity-E and Diversity-N, we calculate
the average percentage of new NE and non-NE
words in the generated samples compared with the
original samples, respectively. For Diversity-L, we

#Gold Method Perplexity(↓) Diversity-E(↑) Diversity-N(↑) Diversity-L(↑)

200
LwTR 137.01 30.72 16.46 0.0
MELM 83.21 94.85 0.0 0.0
ACLM (ours) 80.77 35.64 22.48 5.67

500
LwTR 129.349 30.07 16.22 0.0
MELM 82.31 94.37 0.0 0.0
ACLM (ours) 57.68 44.12 41.16 5.82

1000
LwTR 131.20 29.85 16.55 0.0
MELM 82.64 95.13 0.0 0.0
ACLM (ours) 62.00 50.10 34.84 5.40

Table 3: Quantitative evaluation of generation quality from
various systems on the measures of perplexity and diversity.
Diversity-E, N, and L stand for Entity, Non-Entity, and Length,
respectively.

calculate the average absolute difference between
the number of tokens in generated samples and the
original samples. ACLM achieves the lowest per-
plexity and highest non-NE and length diversity
compared with other baselines. NE diversity in
ACLM is achieved with mixner where ACLM fairs
well compared to MELM which just replaces NEs.
LwTR achieves the highest perplexity, thereby reaf-
firming that it generates incoherent augmentations.
Qualtitative Analysis. Fig. 3 illustrates the superi-
ority of augmentations generated by ACLM when
compared with our other baselines. As clearly evi-
dent, while MELM generates just minor changes
in NEs, augmentations produced by LwTR often
tend to be nonsensical and incoherent. On the other
hand, ACLM generates meaningful and diverse sen-
tences around NEs, which is further boosted with
mixner. We provide examples in Appendix D.1.

5.2 Application to other domains

To evaluate the transferability of ACLM to other
domains, we evaluate ACLM on 4 more datasets be-
yond MultiCoNER. These datasets include CoNLL
2003 (Tjong Kim Sang and De Meulder, 2003)
(news), BC2GM (Smith et al., 2008) (bio-medical),
NCBI Disease (Doğan et al., 2014) (bio-medical)
and TDMSci (Hou et al., 2021) (science). Table 4
compares our baselines with ACLM across 2 low-
resource settings on all 4 datasets. ACLM outper-
forms all our baselines on all settings except LwTR
on CoNLL 2003. This occurs because LwTR gen-
erates a large variety of effective augmentations
with NE replacement on easy entities in CoNLL
2003. The results demonstrate the effectiveness of
ACLM over diverse domains, including domains
with an acute scarcity of data (bio-medical). Addi-
tionally, we also emphasize that ACLM produces
more factual augmentations and, unlike our other
baselines, avoids context-entity mismatch, which
makes the NER model store wrong knowledge in
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Original
it was developed by a team led by former [blizzard entertainment]CORP 

employees, some of whom had overseen the creation of the [diablo]CW  series.
 The original sentence describes the employees of an organization and provides 
details about them.

LwTR
it was developed by a makers led by, [blizzard entertainment]CORP ., some of 
whom had elevation the serving of the [diablo]CW  12th.

❌ LwTR replaces random words in the sentence, which makes it incoherent.

MELM
it was developed by a team led by former [blizzago games]CORP  employees, some 
of whom had overseen the creation of the [hablo]CW  series.

❌ MELM keeps the sentence coherent but generates new NEs that do not 
correspond to real-world entities.

ACLM w/o  mixner
[blizzard entertainment]CORP  employees have overseen the production of the 
animated films, including the production of the [diablo]CW  series.

 ACLM generates new context patterns around the NE, keeping the sentence 
coherent and avoiding context-entity mismatch.

ACLM  w/ mixner
the team of the [blizzard entertainment]CORP  had overseen the creation of the 
game [diablo]CW  and many of its workers founded [pyro studios]CORP  in the 
early 1960s.

 mixner boosts ACLM diversity and still keeps the sentence coherent. It adds a NE 
in the sentence and augments the sentence with extra details about the employees of 
the organization.

Original
The control group consisted of 40 consecutive [FMF]DISEASE  patients, who arrived 
at the [FMF]DISEASE  clinic for their regular follow-up visit and were 40 years of 
age or older at the time of the examination.

 The original sentence describes an occasion where a group of 40 patients 
diagnosed with a certain kind of disease visited a clinic, and the sentence provides us 
with information on the age statistics of the patients.

LwTR
The control, consisted of 40 consecutive [fragile]DISEASE  patients, who arrived at 
the [FMF]DISEASE  status for their regular follow - up and were 40 years of age or 
older at the time of the examination analyzed 

❌ LwTR replaces "FMF" in the sentence with "fragile" and the phrase "fragile 
patients" does not make sense. It also adds an extra word, "analyzed", at the end of 
the sentence.

MELM
The control group consisted of 40 consecutive [FMR]DISEASE  patients, who 
arrived at the [PDA]DISEASE  clinic for their regular follow-up visit and were 40 
years of age or older at the time of the examination.

❌ MELM replaces the 1st occurrence of "FMF" in the sentence with "FMR" and the 
second occurrence with "PDA". "FMR" is not the name of a disease and is closest to 
"FMR1", which is the name of a gene. "PDA" stands for "Patent ductus arteriosus." 
Thus, the entire sentence does not make much sense.

ACLM w/o  mixner
The sample consisted of four consecutive [FMF]DISEASE  patients who arrived at 
the [FMF]DISEASE  clinic for a visit of examination. Only one of the 4 remaining 
patients had [FMF]DISEASE . 

 ACLM introduces a new context pattern around the sentence. The entire sentence 
is coherent.

ACLM  w/ mixner
Of 4000 (40%) patients with onset [FMF]DISEASE , patients with [FRDA]DISEASE 

had no tendon reflexes at all. 

 mixner boosts ACLM diversity and still keeps the sentence coherent. "FRDA" 
(Friedreich's ataxia) is a genetic disease that causes difficulty in walking and a loss of 
sensation in the arms and legs.

Figure 3: Examples of augmentations generated with different methods (Left) and explanation (Right). Words in red are Named
Entities, and words underlined in the Original sentence are identified ACLM keywords. ACLM generates much more diverse,
detailed, and coherent augmentations, which maintain factuality and also prove to be more effective. Generation diversity is
further amplified with mixner.

#Gold Method CoNLL BC2GM NCBI TDMSci Avg

200

Gold-Only 79.11 50.01 72.92 47.20 62.31
LwTR 82.33 52.78 72.15 51.65 64.73
DAGA 76.23 47.67 71.14 48.03 60.77
MELM 77.10 54.05 70.12 46.07 61.83
ACLM (ours) 82.14 58.48 74.27 56.83 67.93

500

Gold-Only 84.82 55.56 75.75 47.04 65.79
LwTR 85.08 60.46 78.97 60.74 71.31
DAGA 81.82 51.23 78.09 57.66 67.20
MELM 83.51 56.83 75.11 57.80 68.31
ACLM (ours) 84.26 62.37 80.57 61.77 72.24

Table 4: Comparison of NER results on datasets from various
different domains including news, science, and bio-medical.

data-sensitive domains. We show samples of gen-
erated augmentations in Fig. 3 and Appendix D.1.

6 Conclusion

In this paper, we propose ACLM, a novel data
augmentation framework for low-resource com-
plex NER. ACLM is fine-tuned on a novel text re-
construction task and is able to generate diverse
augmentations while preserving the NEs in the
sentence and their original word sense. ACLM
effectively alleviates the context-entity mismatch
problem and generates diverse, coherent, and high-
quality augmentations that prove to be extremely
effective for low-resource complex NER. Addi-
tionally, we also show that ACLM can be used
as an effective data augmentation technique for
low-resource NER in the domains of medicine and
science due to its ability to generate extremely reli-
able augmentations.

Limitations

We list down some potential limitations of ACLM:
1) PLMs are restricted by their knowledge to gener-
ate entirely new complex entities due to their syn-
tactically ambiguous nature. Adding to this, sub-
stituting complex NEs in existing sentences leads
to context-entity mismatch. Thus, as part of fu-
ture work, we would like to explore if integrating
external knowledge into ACLM can help generate
sentences with new complex entities in diverse con-
texts. 2) We do not conduct experiments in the
language Farsi from the MultiCoNER dataset as
neither mBart-50-large nor XLM-RoBERTa-large
was pre-trained on this language. 3) The use of
mBart-50-large for generation also restricts ACLM
from being transferred to code-switched settings,
and we would like to explore this as part of future
work.
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A Hyperparameter Tuning

All hyperparameters were originally tuned with
grid search on the development set. In this sec-
tion, we show performance on the test set for better
analysis.
Keyword Selection rate p: The keywords in our
template provide the model with contextually rel-
evant additional knowledge about the NEs during
training and generation. However, we are faced
with the question: How much context is good con-
text?. Too less context, like our ACLM only entity
baseline with only linearized NEs in the template,
might make it difficult for the model to know the
appropriate context of the syntactically ambiguous
complex NE and thus might lead to sentences gen-
erated with a context-entity mismatch (for e.g. sam
is reading on the Beach where on the beach might
be a name of a movie). On the contrary, retaining
too many words from the original sentence in our
template might lead to a drop in the diversity of gen-
erated sentences as the model needs to infill only
a small portion of the words. To determine the op-
timal value of p we experiment on 2 low-resource
settings on the English sub-set of MultiCoNER and
report the micro F1 results on the test-set for p ∈
{0, 0.1, 0.2, 0.3. 0.4, 0.5, 0.6, 0.7}. All other hyper-
parameters are kept constant. As shown in Table 5,
p = 0.3 gives us the best test-set performance, and
the performance decreases after 0.4.

#Gold 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
200 50.06 51.82 53.99 54.99 51.05 54.28 52.16 54.34
500 57.55 56.12 57.93 58.31 57.55 56.88 56.60 58.10

Table 5: Test set F1 for various Keyword Selection rates.

Augmentation rounds R: Augmenting the train-
ing dataset with several augmentation rounds R
proves effective until a saturation point is reached.
Continuing to add more augmented data to the
gold dataset starts introducing noise to the com-
bined data. Additionally, with an increase in R, the
chances of auto-regressive generation with top-k
sampling generating similar sentences increase. To
determine the optimal value of R, we experiment
on 2 low-resource settings on the English sub-set
of MultCoNER and report the micro F1 results on
the test-set for R ranging from 1 to 7. All other
hyperparameters are kept constant. As shown in Ta-
ble 5, R = 5 gives us the best test-set performance,
and the performance decreases after 5 rounds.
Attention layers a for Keyword Selection: Se-
lecting the right keywords for creating a template

#Gold 1 2 3 4 5 6 7
200 52.37 53.96 52.40 50.05 54.99 53.46 53.75
500 58.24 58.17 57.90 58.11 58.31 57.20 57.40

Table 6: Test set F1 for the number of augmentation
rounds.

is integral to the success of ACLM. A clear exam-
ple of this can be seen in Table 1, where ACLM
outperforms ACLM random (which chooses ran-
dom tokens as keywords for template creation) by
a significant margin. Transformer encoders con-
sist of multiple layers, and each layer consists of
multiple attention heads. While all heads in the
same layer tend to behave similarly, different lay-
ers generally encode different semantic and syn-
tactic information (Clark et al., 2019). Thus we
experiment with different values of α, or different
combinations of transformer encoder layers which
are used for calculating the attention scores for key-
word selection. As mentioned in Section 3.1, by
default, we average attention scores across all to-
kens, all heads, and the last α layers. For all our
low-resource experiments, we use attention maps
from a 24-layer XLMRoBERTa-large fine-tuned
on the low-resource gold dataset for that particular
setting. Table 7 compares the performance of 3
settings of α on 2 low-resource settings on the En-
glish sub-set of MultCoNER: 1. Only last layer 2.
Last 4 layers. 3. All 24 layers. As clearly evident,
though setting 2 achieves the best performance, the
difference in performance among different values
of α is not too high. As part of future work, we
would like to explore better ways to search for the
optimal α.

#Gold 1 2 3
200 52.43 54.99 54.13
500 58.09 58.31 58.15

Table 7: Test set F1 for various settings of α

B Additional Results

Current state of state-of-the-art: Most current
state-of-the-art systems are built and evaluated on
common NER benchmarks like CoNLL 2003 and
OntoNotes v5.0. As discussed in Section 2, these
benchmarks do not represent contemporary chal-
lenges in NER and contain sentences with easy
entities and rich context. Table 8 compares the
performance of a simple XLM-R (Conneau et al.,
2019), and Co-regularized LUKE (Zhou and Chen,
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2021) (SOTA NER system) on 2 common NER
and 1 complex NER benchmarks in both low- and
high-resource settings. As we can clearly see, both
systems achieve remarkable performance on both
CoNLL 2003 and OntoNotes v5.0 but struggle on
MultiCoNER. Additionally, the gap widens in low-
resource settings.

#Gold Method XLM-R Co-regularized LUKE
CoNLL 2003 84.82 86.92

500 OntoNotes 65.48 64.92
MultiCoNER 55.51 55.12
CoNLL 2003 92.21 92.56

All OntoNotes 85.07 87.57
MultiCoNER 70.31 69.58

Table 8: Performance comparison of XLM-RoBERTa (Con-
neau et al., 2019) and Co-regularized LUKE (Zhou and Chen,
2021) on two common benchmark NER datasets and Multi-
CoNER (Malmasi et al., 2022) (complex NER benchmark) in
both high- and low-resource settings. Co-regularized LUKE
is the current SOTA NER system on both CoNLL 2003 and
OntoNotes v5.0. Complex NER remains a difficult NLP task
in both low- and high-resource labeled data settings.

Training on the entire dataset: Beyond just eval-
uating ACLM performance on low-resource set-
tings, we also compare ACLM with all our base-
lines on the entire MultiCoNER dataset (each lan-
guage split contains ≈ 15300 sentences). Similar
to low-resource settings, ACLM outperforms all
our baselines across all languages and achieves
an absolute average gain of 1.58% over our best
baseline.

Method En Bn Hi De Es Ko Nl Ru Tr Zh Avg
Gold-only 71.25 59.10 61.59 75.33 67.71 65.29 71.55 68.76 62.44 60.56 66.36
LwTR 71.22 58.86 60.72 75.50 70.06 65.80 72.94 68.26 62.70 58.74 66.48
DAGA 64.30 47.93 53.03 67.70 62.07 59.84 65.37 60.72 52.45 55.32 58.87
MELM 66.27 56.27 61.04 71.25 65.56 63.71 70.43 66.28 60.74 57.72 63.93
ACLM (ours) 72.69 60.13 62.58 77.26 70.89 67.01 73.28 69.90 65.24 61.63 68.06

Table 9: Result comparison Complex NER. Avg is the aver-
age result across all languages. ACLM outperforms all our
baselines.

Entity-wise Performance Analysis: Previous to
MultiCoNER, common benchmark datasets like
CoNLL 2003 had only “easy entities” like names
of Persons, Locations, and Organizations. The Mul-
tiCoNER dataset has 3 additional types of NEs,
namely Products (PROD), Groups (GRP), and Cre-
ative Work (CW). These entities are syntactically
ambiguous, which makes it challenging to recog-
nize them based on their context. The top system
from WNUT 2017 achieved 8% recall for creative
work entities. Table 10 compares the entity-wise
performance of ACLM with our various baselines
on two low-resource settings on the MultiCoNER
dataset. All results are averaged across all 10 lan-

guages. ACLM outperforms all our baselines on
all individual entities, including PROD, GRP, and
CW, which re-affirms ACLM’s ability to generate
effective augmentation for complex NER.

#Gold Method PER LOC PROD GRP CORP CW

200

Gold-Only 56.35 42.32 30.10 31.36 33.83 23.30
LwTR 56.13 41.78 34.87 36.52 39.30 27.46
DAGA 45.19 35.40 19.96 21.92 19.60 14.33
MELM 52.16 41.16 30.24 28.61 34.13 22.77
ACLM (ours) 64.42 48.92 41.76 37.31 44.08 30.61

500

Gold-Only 63.05 48.48 42.75 37.55 45.10 31.34
LwTR 64.80 54.17 45.70 44.06 50.80 35.10
DAGA 51.82 41.11 28.58 30.50 34.10 21.61
MELM 58.41 45.64 37.04 34.11 40.42 28.33
ACLM (ours) 66.49 51.24 48.87 42.00 51.55 35.18

Table 10: Entity-wise performance comparison of different
augmentation methods. Results are averaged across all lan-
guages.

Length-wise Performance Analysis: As men-
tioned in Section 2, low-context is a major prob-
lem in complex NER, and an effective complex
NER system should be able to detect NEs in sen-
tences with both low and high context (by context
we refer to the number of words around the NEs
in the sentence). By the nature of its fine-tuning
pipeline, ACLM is able to generate augmentations
of variable length, and our dynamic masking step
further boosts the length diversity of generated aug-
mentations. Adding to this, we acknowledge that
effective augmentations for syntactically complex
entity types should enable a model to learn to de-
tect these entities in even low-context. Table 11
compares the entity-wise performance of ACLM
with our various baselines on two low-resource set-
tings on the MultiCoNER dataset. All results are
averaged across all 10 languages. ACLM outper-
forms all our baselines across all length settings,
which re-affirms ACLM’s ability to generate effec-
tive augmentation for complex NER. To be specific,
ACLM improves over our best baseline by 8.8%
and 7.4% for 200 and 3.2% and 6.7% for 500 for
low- and high-context sentences, respectively.

#Gold Method len < 5 5 ≤ len < 10 10 ≤ len

200

LwTR 26.35 34.38 43.56
DAGA 18.20 29.53 39.49
MELM 23.27 38.81 50.29
ACLM (ours) 35.10 47.25 57.72

500

LwTR 34.04 42.74 56.47
DAGA 23.00 38.18 51.09
MELM 27.46 44.74 57.91
ACLM (ours) 37.42 52.23 63.13

Table 11: Length-wise performance comparison of differ-
ent augmentation methods. Results are averaged across all
languages. ACLM outperforms all our baselines across all
settings.
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Original
she became opposed to abortion in 1992 while attending a 
bible study and has since spoken out about how abortion has 
negatively impacted her life. 

Linguistically 
coherent 
entities

Context-
Entity Match

LwTR
she became average to abortion in guitar while attending a 
bible study and has since spoken out about how academy has 
negatively impacted her life.

❌ ✔

MELM
she became opposed to abortion in 1992 while attending a 
vegetable study and has since spoken out about how abortion 
has negatively impacted her life.

❌ ❌

ACLM w/o mixner
the bible warned against abortion and said abortion had 
negatively impacted the welfare state. ✔ ✔

ACLM w/ mixner
while attending the bible seminar in 1964 at the university of 
pittsburgh he earned a master of science degree in biology. ✔ ✔

Figure 4: Analysis and comparison of augmentations generated by our baselines with ACLM. Words underlined are the NEs.
Context entity mismatch occurs when the generated NEs do not fit the surrounding context. Linguistic incoherence refers to
cases where a generated NE does not follow the linguistic pattern for that particular type of NE or context.

C Templates and Attention Maps

Creating templates with keywords that effectively
provides the PLM with additional knowledge about
the NEs in the sentence is an integral part of ACLM.
Fig. 11, 12, 13, 14, 15 shows examples of templates
created for our sentences in MultiCoNER English
subset, Spanish subset, Hindi subset NCBI Disease
and TDMSci datasets, respectively. Additionally,
we provide examples of attention maps used to
create templates in Fig. 16f.

D Qualitative Analysis of Augmentations

D.1 Augmentation Examples

MultiCoNER Dataset: We provide additional ex-
amples of augmentations generated by ACLM and
all our baselines in Fig. 9 and Fig. 10 for Hindi
and English subsets of MultiCoNER dataset respec-
tively.
Extra Datasets: Fig 5, 6, 7 and 8 illustrate
augmetation examples for CoNLL 2003 (Tjong
Kim Sang and De Meulder, 2003) (news), BC2GM
(Smith et al., 2008) (bio-medical), NCBI Disease
(Doğan et al., 2014) (bio-medical) and TDMSci
(Hou et al., 2021) (science) datasets respectively.
Except for on CoNLL 2003 datasets, both our base-
lines, LwTR and MELM, generate incoherent and
unreliable training samples for the other 2 datasets.
We only compare ACLM with LwTR and MELM
as these methods don’t generate augmentations
from scratch and modify existing sentences. We
define unreliable sentences as sentences generated
with an entity-context mismatch (eg. a NE de-
scribing a disease prone to cows is placed in the
context of humans or vice-versa). Generating unre-
liable augmentations prove fatal in data-sensitive

domains like bio-medical as it may make the model
store wrongful knowledge. Our detailed analysis of
generated augmentations shows that: (1) LwTR is
prone to generating such incoherent sentences be-
cause it randomly samples entities from the corpus
with the same tag for replacement. (2) MELM
on the other hand, fine-tuned on a transformer-
encoder-based PLM, gets to see the entire context
of the sentence for generating a new NE. How-
ever, it does not learn to focus on particular key-
words and tends to generate a new NE based on
the broader context of the sentence (e.g., it does
not learn to differentiate between human and cow
diseases and generates a new NE based on the
broader context of the sentence). (3) ACLM gen-
erates highly reliable samples by conditioning on
templates with keywords related to the NE. We il-
lustrate examples of such templates in Fig. 14 and
15.

E Additional Details

Model Parameters: XLM-RoBERTa-large has ≈
355M parameters with 24-layers of encoder, 1027-
hidden-state, 4096 feed-forward hidden-state and
16-heads. mBART-50-large ≈ has 680M parame-
ters with 12 layers of encoder, 12 layers of decoder,
1024-hidden-state, and 16-heads.

Compute Infrastructure: All our experiments are
conducted on a single NVIDIA A100 GPU. An
entire ACLM training pipeline takes ≈ 40 minutes.

Dataset Details: We use 5 datasets in total for
our experiments: MultiCoNER 2 (Malmasi et al.,

2https://registry.opendata.aws/multiconer/
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Original
The [European Commission]ORG  said on Thursday it disagreed with [German]MISC advice to consumers to 
shun [British]MISC  lamb until scientists determine whether mad cow disease can be transmitted to sheep.

LwTR
The [European Sox]ORG  seed on Thursday it disagreed with [German]MISC  advice to consumers to shun 
[British]MISC  regarding until scientists determine whether mad 70 disease can be -- to sheep 1

MELM
[France]LOC   's [Aquaculture Committee]ORG  suggested on Wednesday that consumers avoid eating meat 
from [German]MISC  sheep until scientists determine whether mad cow disease can be transmitted to the animals.

ACLM w/o  mixner
The [European Commission]ORG  said on Thursday that consumers should shun [British]MISC  lamb until 
scientists determine whether the disease can be transmitted to humans. 

ACLM  w/ mixner
The [European Commission]ORG  has a scientific and multidisciplinary group of veterinary scientists who 
disagreed with the consumers on Thursday and decided to shun them out until scientists determine whether the 
[Bovine Spongiform Encephalopathy]MISC  ( BSE ) -- mad cow disease can be transmitted. 

Figure 5: Augmentation examples of the CoNLL 2003 dataset from the news domain. All generations are produced in a
low-resource setting (500 training examples).

Original
To determine the genetic basis for the differences between the cardiac and [brain AE3 variants]GENE , we 
isolated and characterized the rat gene.

LwTR
To determine the genetic basis for the differences between the cardiac and [IgA AE3 related]GENE , we isolated 
and characterized the rat immunodeficiency increased 

MELM
To determine the genetic basis for the differences between the cardiac and [mouse EFR varianter]GENE , we 
isolated and characterized the rat gene.

ACLM w/o  mixner The genetic basis for the cardiac [brain AE3 variants]GENE  in the rat population is unknown. 

ACLM  w/ mixner
On basis of the differences in both [brain AE3 variants]GENE  and [estrogen receptors]GENE  we isolated the 
mechanisms that govern the variations in mouse and human genes. 

Figure 6: Augmentation examples of BC2GM from the bio-medical domain. All generations are produced in a low-resource
setting (500 training examples).

Original
In order to understand the genetic and phenotypic basis for [DPD deficiency]DISEASE , we have reviewed 17 
families presenting 22 patients with complete [deficiency of DPD]DISEASE .

LwTR
In order to understand the genetic and phenotypic basis for [DPD deficiency]DISEASE , we have pathology 17 
families presenting transcription patients with 292 deficiency of [DPD constructed]DISEASE .

MELM
In order to understand the genetic and phenotypic basis for [DDA eficiendency]DISEASE , we have reviewed 17 
families presenting 22 patients with complete [confferency cardiac disorderF]DISEASE . 

ACLM w/o  mixner
To determine the phenotypic basis of this [DPD deficiency]DISEASE  gene, we reviewed the gene in 22 patients 
with an unusual [deficiency of DPD]DISEASE . 

ACLM  w/ mixner

We examined the phenotypic basis of [DPD deficiency]DISEASE  in four families with patients suffering from 
[deficiency of DPD]DISEASE  ( Twenty - eight patients with a [protein S deficiency]DISEASE  and [PROS1 
gene defect]DISEASE  ). 

Figure 7: Augmentation examples of NCBI dataset from the bio-medical domain. All generations are produced in a low-resource
setting (500 training examples).

Original
These data show that if we are ever to fully master [natural language generation]TASK , especially for the 
genres of news and narrative, researchers will need to devote more attention to understanding how to generate 
descriptive, and not just distinctive, referring expressions.

LwTR
These data show that if we are ever to runs focus [Urdu/generation]TASK , proposed for the genres of + and 
narrative, researchers will need to devote more attention to understanding how to Fixed descriptive, and not just 
raw transformed morphological supervised corpora. 

MELM
These data show that if we are ever to fully master [the text interpretation]TASK , especially for the genres of 
news and narrative, researchers will need to devote more attention to understanding how to generate descriptive, 
and not just distinctive, referring expressions.  

ACLM w/o  mixner
These results show that in the [natural language generation]TASK  of news text, researchers are able to 
generate descriptive text with distinctive language expressions. 

ACLM  w/ mixner
These data show that if we are ever to fully master [natural language generation]TASK  for genres other than 
narrative, researchers will be able to generate descriptive and distinctive meaning by referring to them. We 
propose a holistic approach to [image description generation]TASK  that is noisy and challenging. 

Figure 8: Augmentation examples of TDMSci from the science domain. All generations are produced in a low-resource setting
(500 training examples).
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Original [हँसेल और Ťेटल]CW, एक परी कथा िजसमŐ नामांिकत पाũ ŰेडŢंब का िनशान छोड़ते हœ

LwTR [ओपनऑिफस और Ťेटल]CW, एक िकया तक िजसमŐ रेिटंग पाũ ŰेडŢंब का मŐ िकया। हœ

MELM [◌ी के जूरा]CW, एक परी कथा िजसमŐ नामांिकत पाũ ŰेडŢंब का िनशान छोड़ते हœ

ACLM w/o  mixner [हँसेल और Ťेटल]CW की कथा को १९९९ मŐ नामांिकत िकया गया था।

ACLM  w/ mixner
[हँसेल और Ťेटल]CW की परी कथा को नामांिकत िकया गया था , िजसे [िनलेसातो]GRP सैटेलाइट नेटवकŊ  Ȫारा 
Ůसाįरत िकया जाता है।

Original उɎोनें १९०० मŐ [हावŊडŊ िवʷिवȨालय]GRP से माːर िडŤी और १९०४ मŐ डॉƃरेट की उपािध Ůाɑ की।

LwTR उɎोनें १९०० है। [हावŊडŊ िवʷिवȨालय]GRP से १९९३ िडŤी और १९०४ मŐ डॉƃरेट की उपािध Ůाɑ की।

MELM उɎोनें १९०० मŐ [बॉ̵Ōड कॉलेज]GRP से माːर िडŤी और १९०४ मŐ डॉƃरेट की उपािध Ůाɑ की।

ACLM w/o  mixner उɎोनें १९०० मŐ [हावŊडŊ िवʷिवȨालय]GRP से आिकŊ टेƁर की िडŤी Ůाɑ की।

ACLM  w/ mixner
वह [हावŊडŊ िवʷिवȨालय]GRP से ˘ातक की िडŤी Ůाɑ करने के बाद डॉƃरेट की उपािध Ůाɑ करने के िलए 
[िडजाइन के हावŊडŊ Ťेजुएट ˋूल]GRP मŐ आिकŊ टेƁर इंजीिनयर बन गए।

Figure 9: Augmentation examples on the Hindi subset of the MultiCoNER dataset. All generations are produced in a
low-resource setting (500 training examples).

Original
gibson was educated at [harrow school]GRP , where he played in the cricket team, and at 
[trinity college]LOC .

LwTR
gibson was early at [real pictures]GRP , where he played in the cricket team seventh and at 
[trinity college]LOC . 

MELM
gibson was educated at [harford schools]GRP , where he played in the cricket team, and at 
[is college]LOC  . 

ACLM w/o  mixner
gibson was educated at [harrow school]GRP  and played on the football team at [trinity 
college]LOC . 

ACLM  w/ mixner
gibson was educated at [harrow school]GRP , then at [trinity college]LOC  and then at the 
missionary college of [stavanger]LOC  from which he graduated in 1946. 

Original
in previous years he had worked with [alex cox]PER  on the soundtracks of his films [sid and 
nancy]CW  and [walker]CW  in 1986 and 1987.

LwTR
in previous years he had worked with [alex pauwels]PER  on the soundtracks of his actor 
[illegal and nancy]CW  and [family]CW  in 1986 and 1987. 

MELM
in previous years he had worked with [roux wilsmith]PER  on the soundtracks of his films 
[du, the ware]CW  and walkaway in 1986 and 1987. 

ACLM w/o  mixner [alex cox]PER  wrote the soundtracks for his films [sid and nancy walker]CW  in 1987 . 

ACLM  w/ mixner
[alex cox]PER  wrote the soundtracks for his film [sid and nancy and walker]CW  and 
appeared in many of his films, including [powder]CW , [simply irresistible]CW  and [d-
tox]CW . 

Figure 10: Augmentation examples on the English subset of the MultiCoNER dataset. All generations are produced in a
low-resource setting (500 training examples).

Original Template
speech pathologist [lionel logue]PER  taught at the school  
from 1910 to 1911.

[M] speech pathologist [M] <B-PER> lionel <B-PER> <I-
PER> logue <I-PER> [M] taught [M] school [M]

they were designed for interim use until the [m73 machine 
gun]PROD  could be fielded.

[M] designed [M] interim [M] <B-PROD> m73 <B-PROD> 
<I-PROD> machine <I-PROD> <I-PROD> gun <I-PROD> 
[M] fielded [M]

its aircraft and crews operate for its partly owned leisure 
subsidiary [holiday europe]CORP .

[M] aircraft [M] owned leisure subsidiary <B-CORP> 
holiday <B-CORP> <I-CORP> europe <I-CORP> [M]

Figure 11: Examples of templates created for sentences taken from the English subset of the MultiCoNER dataset. All templates
shown are created in a low-resource setting (500 training examples). Words underlined are identified keywords.
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Original Template

adémas fue lanzado como sencillo en algunos países, junto con 
la Segunda cancíon del álbum, [waiting for the sun]CW .

[M] lanzado [M] sencillo [M] países [M] cancíon [M] 
álbum [M] <B-CW> waiting <I-CW> <I-CW> for <I-CW> 
<I-CW> the <I-CW> sun <I-CW> [M]

La revista [time]CW  la agregó en una lista de las veinticinco 
mejores películas de animación

[M] revista [M] <B-CW> time <B-CW> [M] lista [M] 
veinticinco mejores películas [M]

En 2003, [ebro foods]CORP , prpietaria de la factoría, decidió 
cesar la actividad.

[M] <B-CORP> ebro <B-CORP> <I-CORP> foods <I-CORP> 
[M] prpietaria [M] factoría [M] decidió cesar [M] 
actividad [M]

Figure 12: Examples of templates created for sentences taken from the Spanish subset of the MultiCoNER dataset. All templates
shown are created in a low-resource setting (500 training examples). Words underlined are identified keywords.

Original Template

आिधकाįरक तौर पर बœड समाɑ हो गया, लेिकन २००१ मŐ अपने एʛम 
[जीवन की साँसे]CW के साथ वापसी की।

[M] आिधकाįरक [M] बœड [M] २००१ [M] एʛम [M] <B-CW> 
जीवन <B-CW> <I-CW> की <I-CW> <I-CW> साँसे <I-CW> [M] 
वापसी की [M]

अगले सफल वषŘ मŐ इसका िवˑार Šआ और [मेटŌ ो मिनला]LOC Ɨेũ मŐ 
नए पįरसरो ंकी ˕ापना Šई |

[M] <B-LOC> मेटŌ ो <B-LOC> <I-LOC> मिनला <I-LOC> Ɨेũ [M] 
नए पįरसरो ं[M] ˕ापना Šई [M]

पाˑा को [मेज़]PROD ƗुधावधŊक के ŝप मŐ भी परोसा जा सकता है। [M] पाˑा [M] <B-PROD> मेज़ <B-PROD> [M] परोसा [M]

Figure 13: Examples of templates created for sentences taken from the Hindi subset of the MultiCoNER dataset. All templates
shown are created in a low-resource setting (500 training examples). Words underlined are identified keywords.

Original Template

Within the kidney, [VHL]DISEASE  mRNA was differentially 
expressed within renal tubules suggesting that the   
[VHL]DISEASE  gene product may have a specific role in kidney 
development. 

[M] kidney [M] <B-DISEASE> VHL <I-DISEASE> [M] 
mRNA [M] differentially expressed [M] renal tubules  
[M]  <B-DISEASE> VHL <I-DISEASE> [M] gene product  
[M] kidney development [M]

In conclusion , we demonstrated that a point mutation in a 
lariat branchpoint consensus sequence causes a null allele in a 
patient with [FED]DISEASE .

[M] demonstrated [M] mutation [M] branchpoint  
consensus sequence [M] allele [M] patient [M] <B-
DISEASE> FED <B-DISEASE> [M]

Mutations associated with variant phenotypes in [ataxia-
telangiectasia]DISEASE . 

[M] Mutations [M] variant phenotypes [M] <B-DISEASE> 
ataxia <B-DISEASE> <B-DISEASE> - <B-DISEASE> <B-
DISEASE> telangiectasia <B-DISEASE> [M]

Figure 14: Examples of templates created for sentences taken from the NCBI Disease dataset. All templates shown are created
in a low-resource setting (500 training examples). Words underlined are identified keywords.

Original Template

Statistical approaches to [machine translation (SMT)]TASK  
use sentence-aligned, parallel corpora to learn translation rules 
along with their probabilities.

[M] Statistical approaches [M] <B-TASK> machine <B-
TASK> <I-TASK> translation <I-TASK> <I-TASK> ( <I-
TASK> <I-TASK> SMT <I-TASK> ) <I-TASK> [M] sentence  
[M] aligned [M] corpora [M] translation [M]

The goal of fully unsupervised [word segmentation]TASK , 
then, is to recover the correct boundaries for arbitrary natural 
language corpora without explicit human parameterization. 

[M] goal [M] unsupervised <B-TASK> word <B-TASK> <I-
TASK> segmentation <I-TASK> [M] correct boundaries  
[M] language corpora [M] human parameterization [M]

In particular , for [question classification]TASK  , no labeled 
question corpus is available for French, so this paper studies the 
possibility to use existing English corpora and transfer a 
classification by translating the question and their labels . 

[M] <B-TASK> question <B-TASK> <I-TASK>classification  
<I-TASK> [M] labeled question corpus [M] French [M] 
paper [M] existing English corpora [M] classification  
[M] translating [M] question [M] labels [M] 

Figure 15: Examples of templates created for sentences taken from the TDMSci dataset. All templates shown are created in a
low-resource setting (500 training examples). Words underlined are identified keywords.
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(a) Sentence: bamboo, like [wood]PROD is a natural
[composite material]PROD with a high strength to
weight ratio useful for structures.
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(b) Sentence: [michael sanchez]PER, who was mem-
ber of the band [deep forest]GRP, co wrote the
lyrics.
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(c) Sentence: his last theatrical composition was
music for [joan the woman]CW starring [geraldine
farrar]PER.
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(d) Sentence: while auditioning for television and
film roles, she worked on [theatre]GRP productions
of [romeo and juliet]CW and [arsenic and old
lace]CW.
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(e) Sentence: [capcom]CORP purchased the
intellectual property in 2012 and provided funding
for the project again,reimagining it as an [action-
adventure game]CW for release on multiple
platforms.
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(f) Sentence: the bulk of the locality is used for
growing [sugarcane]PROD and tropical fruit, while
some of the locality,
particularly surrounding the creeks is left as
swampy wetlands.

Figure 16: Attention maps for different sentences from the MULTICONER dataset. All the sentences are picked
from a low-resource setting (1000 training examples).
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class split EN DE ES RU NL KO FA ZH HI TR BN MULTI MIX

PER
train 5,397 5,288 4,706 3,683 4,408 4,536 4,270 2,225 2,418 4,414 2,606 43,951 296
dev 290 296 247 192 212 267 201 129 133 231 144 2,342 96
test 55,682 55,757 51,497 44,687 49,042 39,237 35,140 26,382 25,351 26,876 24,601 111,346 19,313

LOC
train 4,799 4,778 4,968 4,219 5,529 6,299 5,683 6,986 2,614 5,804 2,351 54,030 325
dev 234 296 274 221 299 323 324 378 131 351 101 2,932 108
test 59,082 59,231 58,742 54,945 63,317 52,573 45,043 43,289 31,546 34,609 29,628 141,013 23,111

GRP
train 3,571 3,509 3,226 2,976 3,306 3,530 3,199 713 2,843 3,568 2,405 32,846 248
dev 190 160 168 151 163 183 164 26 148 167 118 1,638 75
test 41,156 40,689 38,395 37,621 39,255 31,423 27,487 18,983 22,136 21,951 19,177 77,328 16,357

CORP
train 3,111 3,083 2,898 2,817 2,813 3,313 2,991 3,805 2,700 2,761 2,598 32,890 294
dev 193 165 141 159 163 156 160 192 134 148 127 1,738 112
test 37,435 37,686 36,769 35,725 35,998 30,417 27,091 25,758 21,713 21,137 20,066 75,764 18,478

CW
train 3,752 3,507 3,690 3,224 3,340 3,883 3,693 5,248 2,304 3,574 2,157 38,372 298
dev 176 189 192 168 182 196 207 282 113 190 120 2,015 102
test 42,781 42,133 43,563 39,947 41,366 33,880 30,822 30,713 21,781 23,408 21,280 89,273 20,313

PROD
train 2,923 2,961 3,040 2,921 2,935 3,082 2,955 4,854 3,077 3,184 3,188 35,120 316
dev 147 133 154 151 138 177 157 274 169 158 190 1,848 117
test 36,786 36,483 36,782 36,533 36,964 29,751 26,590 28,058 22,393 21,388 20,878 75,871 20,255

#instances
train 15,300 15,300 15,300 15,300 15,300 15,300 15,300 15,300 15,300 15,300 15,300 168,300 1,500
dev 800 800 800 800 800 800 800 800 800 800 800 8,800 500
test 217,818 217,824 217,887 217,501 217,337 178,249 165,702 151,661 141,565 136,935 133,119 471,911 100,000

Table 12: MultiCoNER dataset statistics for the different languages for the train/dev/test splits. The bottom three rows show the
total number of sentences for each language.

2022) (CC BY 4.0 licensed), CoNLL 2003 3 (Tjong
Kim Sang and De Meulder, 2003) (Apache Li-
cense 2.0), BC2GM 4 (Smith et al., 2008) (MIT
License), NCBI Disease 5 (Doğan et al., 2014)
(Apache License 2.0) and TDMSci 6 (Hou et al.,
2021) (Apache License 2.0). All the datasets are
available to use for research purposes, and for our
work, we use all these datasets intended for their
original purpose, i.e., NER. MultiCoNER has data
in 11 languages, including code-mixed and multi-
lingual subsets. We experiment with 10 monolin-
gual subsets discussed in Section 4.1 with appro-
priate reason for not experimenting on Farsi in our
Limitations Section. According to the original pa-
pers of all 5 datasets used in the research, none
of them contains any information that names or
uniquely identifies individual people or offensive
content.

Data statistics (train/test/dev splits): Detailed
dataset statistics for MultiCoNER, CoNLL 2003,
BC2GM, NCBI Disease and TDMSci can be found
in Table 12 (language codes in Table 13), 14, 16,
17 and 15 respectively.

Implementation Software and Packages: We
implement all our models in PyTorch 7 and use
the HuggingFace 8 implementations of mBART50
and XLM-RoBERTA (base and large). We use the
FLAIR toolkit (Akbik et al., 2019) to fine-tune all

3https://huggingface.co/datasets/conll2003
4https://github.com/spyysalo/bc2gm-corpus
5https://huggingface.co/datasets/ncbidisease
6https://github.com/IBM/science-result-extractor
7https://pytorch.org/
8https://huggingface.co/

our NER models.
Potential Risks: Conditional Language Models
used for Natural Language Generation often tend to
hallucinate (Ji et al., 2022) and potentially generate
nonsensical, unfaithful or harmful sentences to the
provided source input that it is conditioned on.

Bangla (BN) Hindi (HI) German (DE)
Chinese (ZH) Korean (KO) Turkish (TR)
Dutch (NL) Russian (RU) Farsi (FA)
English (EN) Spanish (ES)

Table 13: The languages included in MULTICONER, along
with their 2-letter codes.

English data Articles Sentences Tokens
Training set 946 14,987 203,621
Development set 216 3,466 51,362
Test set 231 3,684 46,435

Table 14: CoNLL Dataset Stats

Train Test
# Sentences 1500 500
# Task 1219 396
# Dataset 420 192
# Metric 536 174

Table 15: TDMSci dataset statistics for the train/test splits.

Train Dev Test
# Sentences 15197 3061 6325

Table 16: BC2GM Dataset Train/Dev/Test Split
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Corpus characteristics Training set Development set Test set Whole corpus
PubMed citations 593 100 100 793
Total disease mentions 5145 787 960 6892
Unique disease mentions 1710 368 427 2136
Unique concept ID 670 176 203 790

Table 17: NCBI disease dataset statistics for the
train/dev/test splits.
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