Retrieval-Augmented Multilingual Keyphrase Generation with Retriever-Generator Iterative Training
Yifan Gao, Qingyu Yin, Zheng Li, Rui Meng, Tong Zhao, Bing Yin, Irwin King, Michael Lyu
Abstract
Keyphrase generation is the task of automatically predicting keyphrases given a piece of long text. Despite its recent flourishing, keyphrase generation on non-English languages haven’t been vastly investigated. In this paper, we call attention to a new setting named multilingual keyphrase generation and we contribute two new datasets, EcommerceMKP and AcademicMKP, covering six languages. Technically, we propose a retrieval-augmented method for multilingual keyphrase generation to mitigate the data shortage problem in non-English languages. The retrieval-augmented model leverages keyphrase annotations in English datasets to facilitate generating keyphrases in low-resource languages. Given a non-English passage, a cross-lingual dense passage retrieval module finds relevant English passages. Then the associated English keyphrases serve as external knowledge for keyphrase generation in the current language. Moreover, we develop a retriever-generator iterative training algorithm to mine pseudo parallel passage pairs to strengthen the cross-lingual passage retriever. Comprehensive experiments and ablations show that the proposed approach outperforms all baselines.- Anthology ID:
- 2022.findings-naacl.92
- Volume:
- Findings of the Association for Computational Linguistics: NAACL 2022
- Month:
- July
- Year:
- 2022
- Address:
- Seattle, United States
- Editors:
- Marine Carpuat, Marie-Catherine de Marneffe, Ivan Vladimir Meza Ruiz
- Venue:
- Findings
- SIG:
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 1233–1246
- Language:
- URL:
- https://preview.aclanthology.org/icon-24-ingestion/2022.findings-naacl.92/
- DOI:
- 10.18653/v1/2022.findings-naacl.92
- Cite (ACL):
- Yifan Gao, Qingyu Yin, Zheng Li, Rui Meng, Tong Zhao, Bing Yin, Irwin King, and Michael Lyu. 2022. Retrieval-Augmented Multilingual Keyphrase Generation with Retriever-Generator Iterative Training. In Findings of the Association for Computational Linguistics: NAACL 2022, pages 1233–1246, Seattle, United States. Association for Computational Linguistics.
- Cite (Informal):
- Retrieval-Augmented Multilingual Keyphrase Generation with Retriever-Generator Iterative Training (Gao et al., Findings 2022)
- PDF:
- https://preview.aclanthology.org/icon-24-ingestion/2022.findings-naacl.92.pdf
- Code
- yifan-gao/multilingual_keyphrase_generation
- Data
- KP20k, Microsoft Academic Graph