Abstract
The surge of pre-training has witnessed the rapid development of document understanding recently. Pre-training and fine-tuning framework has been effectively used to tackle texts in various formats, including plain texts, document texts, and web texts. Despite achieving promising performance, existing pre-trained models usually target one specific document format at one time, making it difficult to combine knowledge from multiple document formats. To address this, we propose XDoc, a unified pre-trained model which deals with different document formats in a single model. For parameter efficiency, we share backbone parameters for different formats such as the word embedding layer and the Transformer layers. Meanwhile, we introduce adaptive layers with lightweight parameters to enhance the distinction across different formats. Experimental results have demonstrated that with only 36.7% parameters, XDoc achieves comparable or even better performance on a variety of downstream tasks compared with the individual pre-trained models, which is cost effective for real-world deployment. The code and pre-trained models are publicly available at https://aka.ms/xdoc.- Anthology ID:
- 2022.findings-emnlp.71
- Volume:
- Findings of the Association for Computational Linguistics: EMNLP 2022
- Month:
- December
- Year:
- 2022
- Address:
- Abu Dhabi, United Arab Emirates
- Editors:
- Yoav Goldberg, Zornitsa Kozareva, Yue Zhang
- Venue:
- Findings
- SIG:
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 1006–1016
- Language:
- URL:
- https://preview.aclanthology.org/icon-24-ingestion/2022.findings-emnlp.71/
- DOI:
- 10.18653/v1/2022.findings-emnlp.71
- Cite (ACL):
- Jingye Chen, Tengchao Lv, Lei Cui, Cha Zhang, and Furu Wei. 2022. XDoc: Unified Pre-training for Cross-Format Document Understanding. In Findings of the Association for Computational Linguistics: EMNLP 2022, pages 1006–1016, Abu Dhabi, United Arab Emirates. Association for Computational Linguistics.
- Cite (Informal):
- XDoc: Unified Pre-training for Cross-Format Document Understanding (Chen et al., Findings 2022)
- PDF:
- https://preview.aclanthology.org/icon-24-ingestion/2022.findings-emnlp.71.pdf