Unsupervised Commonsense Question Answering with Self-Talk

Vered Shwartz, Peter West, Ronan Le Bras, Chandra Bhagavatula, Yejin Choi


Abstract
Natural language understanding involves reading between the lines with implicit background knowledge. Current systems either rely on pre-trained language models as the sole implicit source of world knowledge, or resort to external knowledge bases (KBs) to incorporate additional relevant knowledge. We propose an unsupervised framework based on self-talk as a novel alternative to multiple-choice commonsense tasks. Inspired by inquiry-based discovery learning (Bruner, 1961), our approach inquires language models with a number of information seeking questions such as “what is the definition of...” to discover additional background knowledge. Empirical results demonstrate that the self-talk procedure substantially improves the performance of zero-shot language model baselines on four out of six commonsense benchmarks, and competes with models that obtain knowledge from external KBs. While our approach improves performance on several benchmarks, the self-talk induced knowledge even when leading to correct answers is not always seen as helpful by human judges, raising interesting questions about the inner-workings of pre-trained language models for commonsense reasoning.
Anthology ID:
2020.emnlp-main.373
Volume:
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)
Month:
November
Year:
2020
Address:
Online
Editors:
Bonnie Webber, Trevor Cohn, Yulan He, Yang Liu
Venue:
EMNLP
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
4615–4629
Language:
URL:
https://preview.aclanthology.org/icon-24-ingestion/2020.emnlp-main.373/
DOI:
10.18653/v1/2020.emnlp-main.373
Bibkey:
Cite (ACL):
Vered Shwartz, Peter West, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. 2020. Unsupervised Commonsense Question Answering with Self-Talk. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 4615–4629, Online. Association for Computational Linguistics.
Cite (Informal):
Unsupervised Commonsense Question Answering with Self-Talk (Shwartz et al., EMNLP 2020)
Copy Citation:
PDF:
https://preview.aclanthology.org/icon-24-ingestion/2020.emnlp-main.373.pdf
Video:
 https://slideslive.com/38938641
Code
 vered1986/self_talk
Data
ATOMICCOPACommonsenseQAMC-TACOPIQAWSCWinoGrande