Yue Deng
May refer to several people
Other people with similar names: Yue Deng (NTU)
2025
Meetalk: Retrieval-Augmented and Adaptively Personalized Meeting Summarization with Knowledge Learning from User Corrections
Zheng Chen
|
Jiang Futian
|
Yue Deng
|
Changyang He
|
Bo Li
Proceedings of the 3rd Workshop on Towards Knowledgeable Foundation Models (KnowFM)
We present Meetalk, a retrieval-augmented and knowledge-adaptive system for generating personalized meeting minutes. Although large language models (LLMs) excel at summarizing, their output often lacks faithfulness and does not reflect user-specific structure and style. Meetalk addresses these issues by integrating ASR-based transcription with LLM generation guided by user-derived knowledge. Specifically, Meetalk maintains and updates three structured databases, Table of Contents, Chapter Allocation, and Writing Style, based on user-uploaded samples and editing feedback. These serve as a dynamic memory that is retrieved during generation to ground the model’s outputs. To further enhance reliability, Meetalk introduces hallucination-aware uncertainty markers that highlight low-confidence segments for user review. In a user study in five real-world meeting scenarios, Meetalk significantly outperforms a strong baseline (iFLYTEK ASR + ChatGPT-4o) in completeness, contextual relevance, and user trust. Our findings underscore the importance of knowledge foundation and feedback-driven adaptation in building trustworthy, personalized LLM systems for high-stakes summarization tasks.
2021
An Alignment-Agnostic Model for Chinese Text Error Correction
Liying Zheng
|
Yue Deng
|
Weishun Song
|
Liang Xu
|
Jing Xiao
Findings of the Association for Computational Linguistics: EMNLP 2021
This paper investigates how to correct Chinese text errors with types of mistaken, missing and redundant characters, which are common for Chinese native speakers. Most existing models based on detect-correct framework can correct mistaken characters, but cannot handle missing or redundant characters due to inconsistency between model inputs and outputs. Although Seq2Seq-based or sequence tagging methods provide solutions to the three error types and achieved relatively good results in English context, they do not perform well in Chinese context according to our experiments. In our work, we propose a novel alignment-agnostic detect-correct framework that can handle both text aligned and non-aligned situations and can serve as a cold start model when no annotation data are provided. Experimental results on three datasets demonstrate that our method is effective and achieves a better performance than most recent published models.