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Abstract 1 

In this paper, I would like to present my 2 

project regarding the application of 3 

Hungarian WordNet (Miháltz et al., 2008) 4 

in defining semantic selectional categories 5 

for rules Verbs inflict on their nominal 6 

Subjects. I will give a proposal and an 7 

actual realization of a program that can turn 8 

the previously manual preprocessing task 9 

into an automated or semi-automated 10 

knowledge-based process that can easily 11 

account for outlier Subjects or different 12 

meanings of Verbs.  13 

1 Introduction 14 

When processing language, we often try to find 15 

patterns or groupings that would help explain 16 

various phenomena and could bring us closer to 17 

understanding the inner workings of natural 18 

languages. One of these patterns can be the way 19 

different (groups of) Verbs choose their 20 

arguments based on some shared aspect of the 21 

meanings of said arguments. 22 

The basis of this research is a previous, more 23 

linguistically based clustering task, in which I 24 

aimed to define verbal categories based on their 25 

semantic selectional preferences and their 26 

thematic role distribution on the Subject position 27 

based on corpus data form the Hungarian 28 

Gigaword Corpus (Oravecz et al., 2014) using 29 

roughly 70.000 sentences. To keep a smaller 30 

scope, this research was limited to nominal 31 

Subjects, so Proper Nouns and Pronouns were 32 

excluded in this work. I worked with 100 Verbs 33 

and 54 Nouns as their possible Subjects; these 34 

Nouns were manually categorized into 5 semantic 35 

categories – based on my intuition as a native 36 

speaker of Hungarian. This last part is where the 37 

current research becomes a much-needed addition 38 

to the clustering task: although the judgement of a 39 

native speaker is fairly reliable, it is not without 40 

error and at this low number of used words this 41 

was an acceptable way of categorizing, but if the 42 

number of used words was increased by just 43 

tenfold, it would be a tedious and almost certainly 44 

faulty method.  45 

The given categories were also static, which 46 

could be an acceptable way if there was a widely 47 

accepted complete list of categories of semantical 48 

selection. This, however, is not the case. This is 49 

why various WordNets can be used for a clearer 50 

and better-suited list of categories (Ye, 2004). 51 

Moving away from this static understanding of the 52 

selectional preferences and towards a knowledge-53 

based solution could be the right move, and using 54 

a WordNet is probably the best tool for that goal. 55 

Additionally, with the use of WordNet there 56 

wouldn’t be a need of a limit to a relatively short 57 

list of Nouns, rather the scope of the research 58 

could be widened to every Subject that occur in 59 

the corpus, even taking Proper Nouns into 60 

consideration. 61 

The paper has the following structure: following 62 

the introduction of the theoretical background in 63 

Chapter 2, in Chapter 3 I present the theoretical 64 

problem that is faced with this project, with the 65 

solution also presented in a schematic manner. In 66 

Chapter 4 I expand upon the previous schematic 67 

explanation introducing the algorithm that was 68 

constructed to tackle this challenge, after which 69 

Chapter 5 gives a short overview of the results and 70 

limitations of the current version and presents 71 

future steps to improve the state of this project. 72 

2 Background 73 

According to Chomsky (1965), in the case of 74 

semantic selection we have underlying rules that 75 

constrain the fully free choice of arguments, but 76 

this rule is not coded in syntax, rather it is part of 77 

a further layer, that is outside the domain of 78 

grammatical rules, so even though it rules over 79 

sentence forming, it is rather the part of semantics. 80 

Semantic selection can be formalized based on 81 

Resnik (1997), we can understand the selection as 82 
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the difference between a prior and a posterior 83 

distribution, where the prior distribution is the 84 

general probability of a word appearing without 85 

any restrictions in its environment and the 86 

posterior distribution is the conditional 87 

probability with the addition of a predicate. If a 88 

Verb has weak selectional preference, the 89 

difference between the two distributions is small, 90 

if it has strong preference, the difference is big. 91 

The basic idea behind this work is that 92 

semantical selection can be understood through 93 

application of the hypernymy relation. 94 

Hypernymy is a basic semantic relation, in which 95 

a lexical element with broader meaning is the 96 

superordinate of other lexical elements that have 97 

narrower meanings that expand the concept of 98 

their superordinate, like fruit is the hypernym or 99 

superordinate of apple, cherry and orange  100 

(Bußmann and Trauth, 1996). The relation 101 

between words and word classes in the case of 102 

hypernymy (both in theory and in WordNet) is 103 

understood as an IS-A relation (i.e. apple IS A 104 

fruit) (Resnik, 1993). This relation is transitive, 105 

meaning that the hypernym of a hypernym is also 106 

the hypernym of the original word that was the 107 

subordinate in the first place. Given this nature of 108 

the relation, hypernymy can be viewed as a 109 

hierarchical tree, where the roots are the most 110 

basic aspects of meaning (although being words 111 

themselves) and leaves are the end states of the 112 

superordination relation, the words with the most 113 

specific meanings, with every node in this tree 114 

being its own word with its own meaning. 115 

For this project I used the Hungarian WordNet 116 

(HuWN) (Miháltz et al., 2008). HuWN has over 117 

40.000 synsets, of which approximately 33.000 118 

are Nouns. HuWN was constructed following the 119 

conventions of the original WordNet (Miller, 120 

1995), while adapting the methods to the 121 

typological differences that are between English 122 

and Hungarian (Vincze et al., 2008). Thus, HuWN 123 

is an excellent tool for tasks like this. 124 

3 Proposal 125 

Previously, I had lists of words that needed some 126 

kind of tag that helps describe the selectional rules 127 

that play a role in choosing those exact words. 128 

This tag, as mentioned above, was first part of a 129 

static list, a Verb could only choose from a small 130 

variety of options. Language does not work that 131 

way. The idea was that based on the list of 132 

Subjects the Verb compiled next to itself, I could 133 

find their common tag with the use of HuWN. 134 

In HuWN, plenty of information about a word’s 135 

meanings is coded into synsets, but in the current 136 

research we would only need a few of that, namely 137 

the lemma (LITERAL) of the given Noun, and the 138 

word or expression that is linked to it via the 139 

hypernymy relation. Although the transitive 140 

nature of hypernymy is not inherently coded into 141 

WordNets, and in some cases this can make 142 

working with this relation more difficult (Cheng 143 

et al., 2023), the way it is represented is enough 144 

for us to be able to go from a leaf (in this case: one 145 

of the Nouns occurring as Subject) through 146 

hypernyms of hypernyms all the way to a root 147 

with a recursive algorithm.  148 

It is easy to visualize, based on the previous 149 

explanation, that we could find common 150 

hypernyms of 2 words with this recursive method 151 

by finding the first node in their lists of 152 

hypernyms where they overlap with each other. In 153 

this case, theoretically, that first overlapping node 154 

would be the perfect dynamic tag for the list of the 155 

given two words. Expanding on this idea is how 156 

we find the possible solution to the current 157 

problem. We are given a list of Nouns, we find all 158 

their “ancestors”, compare these lists, and find the 159 

fist common node they share – that is the dynamic 160 

tag that can theoretically be the selectional 161 

category the Verb places on its Subject. In Figure 162 

1, you can see this concept visualized. The aim is 163 

to find Hj, while avoiding the suboptimal Hi and 164 

Hk in the process.  165 

In some instances, Hi is the optimal tag we are 166 

looking for. When can this be useful? In cases 167 

where some words of the wordlist are clear 168 

 

Figure 1: Schematic tree of finding the optimal 

hypernym as a semantic tag for words W1-W6 
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outliers, we can exclude them, and they don’t 169 

spoil the tag we get by trying to find a tag that 170 

would apply to every member of the list. For 171 

example, in idioms it is usual that the Subject of a 172 

Verb can be a Noun that would not appear in that 173 

environment in normal circumstances, like in the 174 

expression “jön még kutyára dér” (literally: “the 175 

hoarfrost is still to come for the dog”, meaning: be 176 

sure your sins will find you out), dér (hoarfrost) is 177 

an unusual Subject for jön (come), so this way it 178 

could be excluded easily. This might also help to 179 

account for different meanings of the same Verb, 180 

although the Subjects that belong to other 181 

meanings cannot be considered outliers, with the 182 

correct scope they could also be filtered out or 183 

looked at in another round of tag searching. 184 

Staying with the example above, jön can mean a 185 

physical movement in space or a metaphorical 186 

movement of an event in time, and these stand 187 

with vastly different Subjects. 188 

Similar methods are widely used in different 189 

Natural Language Processing tasks, such as Word 190 

Sense Disambiguation (i.e. Resnik, 1995; 1997; 191 

Ye, 2004; Dhungana and Shakya, 2015), and 192 

improvements on HuWN itself happened with a 193 

similar approach (Miháltz et al., 2013), but in the 194 

field of the current research it is less utilized. As 195 

previously mentioned, this is first and foremost is 196 

an attempt for automatization in the pre-197 

processing for the main clustering task, but it 198 

would greatly simplify and improve the work 199 

process. 200 

The algorithm constructed to solve this task 201 

would get a list of Nouns, it would find the leaves 202 

each of these nouns are represented on, in that 203 

synset it would identify the hypernyms ID under 204 

the ILR tag, and using that ID recursively steps up 205 

to the root of the hypernymy hierarchy. These lists 206 

are then concatenated into a single list, and we 207 

could find the optimal tag at the node they all first 208 

overlap at. The realization of this code is 209 

expanded upon in the next chapter and can be 210 

found on GitHub1. 211 

4 Algorithm 212 

Given that HuWN is accessible in XML file 213 

format, a simple code using Python ElementTree 214 

(2024) should be the easiest way to find both the 215 

full lists of hypernyms to wordlists, and their 216 

 
1 https://github.com/anonymous-

subs101/gwc2025 

lowest common hypernym acting as their 217 

selectional tag as well. Since each synset contains 218 

both a LITERAL and an ID of a meaning, 219 

identifying words in HuWN shouldn’t be a 220 

problem. Moreover, the hypernyms are coded into 221 

the synsets using its ID, so finding their 222 

representations and their hypernyms can be done 223 

using analogous methods. 224 

There were two attempts of the program that 225 

realized the theoretical mechanism outlined in the 226 

previous chapter. The first attempt was 227 

constructed with the use of ElementTree and the 228 

original XML file, but it was a faulty method, 229 

because the use of the original file as an outside 230 

object made it too slow to help the work, it was 231 

rather a hindrance, so it quickly became obsolete. 232 

In the previous chapter I mentioned that only a 233 

limited number of the encoded information was 234 

needed in this task. This realization made the 235 

second attempt possible: I could convert the 236 

information into an inside object, and the nature 237 

of the information made it possible to use various 238 

dictionaries for the task. I used the xmltodict 239 

(Blech, 2022) Python library for this. Three 240 

dictionaries were constructed and used to 241 

substitute the XML file, these were id_lit_dict, 242 

lit_id_dict and lit_hypo_dict. Information on 243 

these dictionaries can be found in Table 1. The 244 

numpy (Harris et al., 2020) library was also used 245 

in the code to calculate different variables. 246 

As it can be seen in the GitHub directory, there 247 

are four functions in this second attempt, I would 248 

like to introduce each of them in short. 249 

4.1 findAllHyperonym 250 

The first function was made to create the full list 251 

of hypernyms for a word included in HuWN. It 252 

takes a synset ID as its input and gives back a set 253 

of IDs as its output – this set being the hypernyms 254 

of the input synset. It achieves this by searching 255 

through the id_hypo_dict for the input ID and 256 

finding every hypernym belonging to that. Then it 257 

recursively goes through the same process with 258 

the found hypernyms, creating the said set in the 259 

 id_lit_dict lit_id_dict id_hypo_dict 

key ID LITERAL ID 

value LITERAL ID 
ID of 

hypernym 

 Table 1: Keys and values of the different utilized 

dictionaries 
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process. The set contains every possible hierarchy 260 

of which the original synset could be the lowest 261 

member of. This function is embedded into the 262 

next one. 263 

4.2 ancestors 264 

With this function we can find all the ancestors a 265 

list of words has – some of which are presumably 266 

common ancestors. It has one argument, that 267 

being a list of words, and its output is a list of the 268 

individual words and their lists of hypernyms. 269 

With the use of the findAllHyperonym function it 270 

can create a concise format of the superordination 271 

hierarchy. 272 

4.3 commonN 273 

The commonN function is supposed to finds every 274 

common ancestor a list of words has. This third 275 

function has two inputs: a list of lists created by the 276 

ancestors function and a number between 0 and 1. 277 

As an output we get a list of lists, each having a 278 

synset ID of a hypernym that is common for the 279 

wordlist we had and the list of the words that 280 

selection tag applies to. 281 

In Chapter 3, I mentioned that in some cases 282 

finding a tag that would apply to every appearing 283 

Noun would be suboptimal, and in those cases, it is 284 

better to find a tag that applies to only part of the 285 

wordlist. With the number in the input, we can 286 

specify what percentage of the wordlist should the 287 

common ancestor apply to, 1 being 100%.  288 

4.4 lowestCommon 289 

Finally, we have our last function, that is meant to 290 

execute the main purpose of the whole project, 291 

finding the lowest common ancestor that can be 292 

applied to the wordlist as the selectional preference 293 

tag. It takes the same input as commonN, a list of 294 

words and their hypernyms and a number. This 295 

function checks if the possible tag we found is the 296 

hypernym of any other candidates for being the tag, 297 

and it stops when it finds the word (or phrase in 298 

some cases) that is the hypernym of the original 299 

wordlist but not any other candidates. Its output is 300 

a list, because there could be more than one 301 

candidate for which this constrain is true. 302 

5 Results, limitations and future work 303 

From a programming point of view, the algorithm 304 

works great. The second version identifies the 305 

hypernym that can be the appropriate tag almost 306 

instantly, so it would seem to be fit for inserting 307 

into the preprocessing chain. However, we should 308 

also look at the tag it provides. 309 

In some cases, the tag presented is mostly 310 

serviceable, like when we input the Hungarian 311 

equivalents of the words teacher, student, dog, cat, 312 

horse, rabbit, mouse, human and mammoth, we get 313 

“(living or once lived entity)”. In other cases, the 314 

tag seems to be too specific, and not representing 315 

well the intuitive categorization, as in horse, dog 316 

and rabbit getting the tag [‘placental’, ‘placental 317 

mammal’, ‘true mammal’]. This being the tag 318 

makes sense, and it is factually correct, but in the 319 

mind of a native speaker, this scientific 320 

categorization probably does not take place. This 321 

could be rectified by defining a list of categories, 322 

that does occur in the speakers’ understanding, but 323 

that goes beyond the goal of the current project. 324 

Lastly, there were cases where the algorithm could 325 

not find any suitable tags. This comes up with the 326 

implementation of Proper Nouns into the research, 327 

for example the pair teacher and Péter had no 328 

common hypernyms, when in a real text it can 329 

easily occur, that these words denote the same 330 

entity, yet the algorithm finds no point where these 331 

two intercept. 332 

All this is to say that in certain limits and cases 333 

the algorithm is fine, but without the necessary 334 

fine-tuning it is not ready to be inserted into the 335 

main task it is supposed to be one of the earliest 336 

steps of. Finding any tag for the wordlist can be too 337 

vague or too specific to have explanatory value 338 

concerning the mental processes involved in 339 

semantic selection. While the algorithm can be 340 

helpful in finding the fitting tags, it is not ready to 341 

be an automated step in the linguistic processing 342 

chain that is required in the original clustering task. 343 

If we were to stay with the current state, it might be 344 

a working semi-automated tool to assist annotation, 345 

thus making sure that the human errors are limited, 346 

and the tagging is faster. 347 

Accounting for the automation is a different 348 

topic. For that, we would need extensive 349 

fundamental research in mental semantic category 350 

representation while language processing, so that 351 

we can have a better understanding of the way 352 

native speakers use these semantic selectional 353 

rules, and so we could better model that with our 354 

algorithm. This, however, would be another, far 355 

larger project, than this current one. For the time 356 

being, the tool can be applied as assistance – rather 357 

than the annotator itself. 358 
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