
1

Abstract 1

In this paper, I would like to present my 2

project regarding the application of 3

Hungarian WordNet (Miháltz et al., 2008) 4

in defining semantic selectional categories 5

for rules Verbs inflict on their nominal 6

Subjects. I will give a proposal and an 7

actual realization of a program that can turn 8

the previously manual preprocessing task 9

into an automated or semi-automated 10

knowledge-based process that can easily 11

account for outlier Subjects or different 12

meanings of Verbs. 13

1 Introduction 14

When processing language, we often try to find 15

patterns or groupings that would help explain 16

various phenomena and could bring us closer to 17

understanding the inner workings of natural 18

languages. One of these patterns can be the way 19

different (groups of) Verbs choose their 20

arguments based on some shared aspect of the 21

meanings of said arguments. 22

The basis of this research is a previous, more 23

linguistically based clustering task, in which I 24

aimed to define verbal categories based on their 25

semantic selectional preferences and their 26

thematic role distribution on the Subject position 27

based on corpus data form the Hungarian 28

Gigaword Corpus (Oravecz et al., 2014) using 29

roughly 70.000 sentences. To keep a smaller 30

scope, this research was limited to nominal 31

Subjects, so Proper Nouns and Pronouns were 32

excluded in this work. I worked with 100 Verbs 33

and 54 Nouns as their possible Subjects; these 34

Nouns were manually categorized into 5 semantic 35

categories – based on my intuition as a native 36

speaker of Hungarian. This last part is where the 37

current research becomes a much-needed addition 38

to the clustering task: although the judgement of a 39

native speaker is fairly reliable, it is not without 40

error and at this low number of used words this 41

was an acceptable way of categorizing, but if the 42

number of used words was increased by just 43

tenfold, it would be a tedious and almost certainly 44

faulty method. 45

The given categories were also static, which 46

could be an acceptable way if there was a widely 47

accepted complete list of categories of semantical 48

selection. This, however, is not the case. This is 49

why various WordNets can be used for a clearer 50

and better-suited list of categories (Ye, 2004). 51

Moving away from this static understanding of the 52

selectional preferences and towards a knowledge-53

based solution could be the right move, and using 54

a WordNet is probably the best tool for that goal. 55

Additionally, with the use of WordNet there 56

wouldn’t be a need of a limit to a relatively short 57

list of Nouns, rather the scope of the research 58

could be widened to every Subject that occur in 59

the corpus, even taking Proper Nouns into 60

consideration. 61

The paper has the following structure: following 62

the introduction of the theoretical background in 63

Chapter 2, in Chapter 3 I present the theoretical 64

problem that is faced with this project, with the 65

solution also presented in a schematic manner. In 66

Chapter 4 I expand upon the previous schematic 67

explanation introducing the algorithm that was 68

constructed to tackle this challenge, after which 69

Chapter 5 gives a short overview of the results and 70

limitations of the current version and presents 71

future steps to improve the state of this project. 72

2 Background 73

According to Chomsky (1965), in the case of 74

semantic selection we have underlying rules that 75

constrain the fully free choice of arguments, but 76

this rule is not coded in syntax, rather it is part of 77

a further layer, that is outside the domain of 78

grammatical rules, so even though it rules over 79

sentence forming, it is rather the part of semantics. 80

Semantic selection can be formalized based on 81

Resnik (1997), we can understand the selection as 82

Application of Hungarian WordNet in Semantic Category Definition

of Nouns for Cluster Analysis

Anonymous Submission

2

the difference between a prior and a posterior 83

distribution, where the prior distribution is the 84

general probability of a word appearing without 85

any restrictions in its environment and the 86

posterior distribution is the conditional 87

probability with the addition of a predicate. If a 88

Verb has weak selectional preference, the 89

difference between the two distributions is small, 90

if it has strong preference, the difference is big. 91

The basic idea behind this work is that 92

semantical selection can be understood through 93

application of the hypernymy relation. 94

Hypernymy is a basic semantic relation, in which 95

a lexical element with broader meaning is the 96

superordinate of other lexical elements that have 97

narrower meanings that expand the concept of 98

their superordinate, like fruit is the hypernym or 99

superordinate of apple, cherry and orange 100

(Bußmann and Trauth, 1996). The relation 101

between words and word classes in the case of 102

hypernymy (both in theory and in WordNet) is 103

understood as an IS-A relation (i.e. apple IS A 104

fruit) (Resnik, 1993). This relation is transitive, 105

meaning that the hypernym of a hypernym is also 106

the hypernym of the original word that was the 107

subordinate in the first place. Given this nature of 108

the relation, hypernymy can be viewed as a 109

hierarchical tree, where the roots are the most 110

basic aspects of meaning (although being words 111

themselves) and leaves are the end states of the 112

superordination relation, the words with the most 113

specific meanings, with every node in this tree 114

being its own word with its own meaning. 115

For this project I used the Hungarian WordNet 116

(HuWN) (Miháltz et al., 2008). HuWN has over 117

40.000 synsets, of which approximately 33.000 118

are Nouns. HuWN was constructed following the 119

conventions of the original WordNet (Miller, 120

1995), while adapting the methods to the 121

typological differences that are between English 122

and Hungarian (Vincze et al., 2008). Thus, HuWN 123

is an excellent tool for tasks like this. 124

3 Proposal 125

Previously, I had lists of words that needed some 126

kind of tag that helps describe the selectional rules 127

that play a role in choosing those exact words. 128

This tag, as mentioned above, was first part of a 129

static list, a Verb could only choose from a small 130

variety of options. Language does not work that 131

way. The idea was that based on the list of 132

Subjects the Verb compiled next to itself, I could 133

find their common tag with the use of HuWN. 134

In HuWN, plenty of information about a word’s 135

meanings is coded into synsets, but in the current 136

research we would only need a few of that, namely 137

the lemma (LITERAL) of the given Noun, and the 138

word or expression that is linked to it via the 139

hypernymy relation. Although the transitive 140

nature of hypernymy is not inherently coded into 141

WordNets, and in some cases this can make 142

working with this relation more difficult (Cheng 143

et al., 2023), the way it is represented is enough 144

for us to be able to go from a leaf (in this case: one 145

of the Nouns occurring as Subject) through 146

hypernyms of hypernyms all the way to a root 147

with a recursive algorithm. 148

It is easy to visualize, based on the previous 149

explanation, that we could find common 150

hypernyms of 2 words with this recursive method 151

by finding the first node in their lists of 152

hypernyms where they overlap with each other. In 153

this case, theoretically, that first overlapping node 154

would be the perfect dynamic tag for the list of the 155

given two words. Expanding on this idea is how 156

we find the possible solution to the current 157

problem. We are given a list of Nouns, we find all 158

their “ancestors”, compare these lists, and find the 159

fist common node they share – that is the dynamic 160

tag that can theoretically be the selectional 161

category the Verb places on its Subject. In Figure 162

1, you can see this concept visualized. The aim is 163

to find Hj, while avoiding the suboptimal Hi and 164

Hk in the process. 165

In some instances, Hi is the optimal tag we are 166

looking for. When can this be useful? In cases 167

where some words of the wordlist are clear 168

Figure 1: Schematic tree of finding the optimal

hypernym as a semantic tag for words W1-W6

3

outliers, we can exclude them, and they don’t 169

spoil the tag we get by trying to find a tag that 170

would apply to every member of the list. For 171

example, in idioms it is usual that the Subject of a 172

Verb can be a Noun that would not appear in that 173

environment in normal circumstances, like in the 174

expression “jön még kutyára dér” (literally: “the 175

hoarfrost is still to come for the dog”, meaning: be 176

sure your sins will find you out), dér (hoarfrost) is 177

an unusual Subject for jön (come), so this way it 178

could be excluded easily. This might also help to 179

account for different meanings of the same Verb, 180

although the Subjects that belong to other 181

meanings cannot be considered outliers, with the 182

correct scope they could also be filtered out or 183

looked at in another round of tag searching. 184

Staying with the example above, jön can mean a 185

physical movement in space or a metaphorical 186

movement of an event in time, and these stand 187

with vastly different Subjects. 188

Similar methods are widely used in different 189

Natural Language Processing tasks, such as Word 190

Sense Disambiguation (i.e. Resnik, 1995; 1997; 191

Ye, 2004; Dhungana and Shakya, 2015), and 192

improvements on HuWN itself happened with a 193

similar approach (Miháltz et al., 2013), but in the 194

field of the current research it is less utilized. As 195

previously mentioned, this is first and foremost is 196

an attempt for automatization in the pre-197

processing for the main clustering task, but it 198

would greatly simplify and improve the work 199

process. 200

The algorithm constructed to solve this task 201

would get a list of Nouns, it would find the leaves 202

each of these nouns are represented on, in that 203

synset it would identify the hypernyms ID under 204

the ILR tag, and using that ID recursively steps up 205

to the root of the hypernymy hierarchy. These lists 206

are then concatenated into a single list, and we 207

could find the optimal tag at the node they all first 208

overlap at. The realization of this code is 209

expanded upon in the next chapter and can be 210

found on GitHub1. 211

4 Algorithm 212

Given that HuWN is accessible in XML file 213

format, a simple code using Python ElementTree 214

(2024) should be the easiest way to find both the 215

full lists of hypernyms to wordlists, and their 216

1 https://github.com/anonymous-

subs101/gwc2025

lowest common hypernym acting as their 217

selectional tag as well. Since each synset contains 218

both a LITERAL and an ID of a meaning, 219

identifying words in HuWN shouldn’t be a 220

problem. Moreover, the hypernyms are coded into 221

the synsets using its ID, so finding their 222

representations and their hypernyms can be done 223

using analogous methods. 224

There were two attempts of the program that 225

realized the theoretical mechanism outlined in the 226

previous chapter. The first attempt was 227

constructed with the use of ElementTree and the 228

original XML file, but it was a faulty method, 229

because the use of the original file as an outside 230

object made it too slow to help the work, it was 231

rather a hindrance, so it quickly became obsolete. 232

In the previous chapter I mentioned that only a 233

limited number of the encoded information was 234

needed in this task. This realization made the 235

second attempt possible: I could convert the 236

information into an inside object, and the nature 237

of the information made it possible to use various 238

dictionaries for the task. I used the xmltodict 239

(Blech, 2022) Python library for this. Three 240

dictionaries were constructed and used to 241

substitute the XML file, these were id_lit_dict, 242

lit_id_dict and lit_hypo_dict. Information on 243

these dictionaries can be found in Table 1. The 244

numpy (Harris et al., 2020) library was also used 245

in the code to calculate different variables. 246

As it can be seen in the GitHub directory, there 247

are four functions in this second attempt, I would 248

like to introduce each of them in short. 249

4.1 findAllHyperonym 250

The first function was made to create the full list 251

of hypernyms for a word included in HuWN. It 252

takes a synset ID as its input and gives back a set 253

of IDs as its output – this set being the hypernyms 254

of the input synset. It achieves this by searching 255

through the id_hypo_dict for the input ID and 256

finding every hypernym belonging to that. Then it 257

recursively goes through the same process with 258

the found hypernyms, creating the said set in the 259

 id_lit_dict lit_id_dict id_hypo_dict

key ID LITERAL ID

value LITERAL ID
ID of

hypernym

 Table 1: Keys and values of the different utilized

dictionaries

4

process. The set contains every possible hierarchy 260

of which the original synset could be the lowest 261

member of. This function is embedded into the 262

next one. 263

4.2 ancestors 264

With this function we can find all the ancestors a 265

list of words has – some of which are presumably 266

common ancestors. It has one argument, that 267

being a list of words, and its output is a list of the 268

individual words and their lists of hypernyms. 269

With the use of the findAllHyperonym function it 270

can create a concise format of the superordination 271

hierarchy. 272

4.3 commonN 273

The commonN function is supposed to finds every 274

common ancestor a list of words has. This third 275

function has two inputs: a list of lists created by the 276

ancestors function and a number between 0 and 1. 277

As an output we get a list of lists, each having a 278

synset ID of a hypernym that is common for the 279

wordlist we had and the list of the words that 280

selection tag applies to. 281

In Chapter 3, I mentioned that in some cases 282

finding a tag that would apply to every appearing 283

Noun would be suboptimal, and in those cases, it is 284

better to find a tag that applies to only part of the 285

wordlist. With the number in the input, we can 286

specify what percentage of the wordlist should the 287

common ancestor apply to, 1 being 100%. 288

4.4 lowestCommon 289

Finally, we have our last function, that is meant to 290

execute the main purpose of the whole project, 291

finding the lowest common ancestor that can be 292

applied to the wordlist as the selectional preference 293

tag. It takes the same input as commonN, a list of 294

words and their hypernyms and a number. This 295

function checks if the possible tag we found is the 296

hypernym of any other candidates for being the tag, 297

and it stops when it finds the word (or phrase in 298

some cases) that is the hypernym of the original 299

wordlist but not any other candidates. Its output is 300

a list, because there could be more than one 301

candidate for which this constrain is true. 302

5 Results, limitations and future work 303

From a programming point of view, the algorithm 304

works great. The second version identifies the 305

hypernym that can be the appropriate tag almost 306

instantly, so it would seem to be fit for inserting 307

into the preprocessing chain. However, we should 308

also look at the tag it provides. 309

In some cases, the tag presented is mostly 310

serviceable, like when we input the Hungarian 311

equivalents of the words teacher, student, dog, cat, 312

horse, rabbit, mouse, human and mammoth, we get 313

“(living or once lived entity)”. In other cases, the 314

tag seems to be too specific, and not representing 315

well the intuitive categorization, as in horse, dog 316

and rabbit getting the tag [‘placental’, ‘placental 317

mammal’, ‘true mammal’]. This being the tag 318

makes sense, and it is factually correct, but in the 319

mind of a native speaker, this scientific 320

categorization probably does not take place. This 321

could be rectified by defining a list of categories, 322

that does occur in the speakers’ understanding, but 323

that goes beyond the goal of the current project. 324

Lastly, there were cases where the algorithm could 325

not find any suitable tags. This comes up with the 326

implementation of Proper Nouns into the research, 327

for example the pair teacher and Péter had no 328

common hypernyms, when in a real text it can 329

easily occur, that these words denote the same 330

entity, yet the algorithm finds no point where these 331

two intercept. 332

All this is to say that in certain limits and cases 333

the algorithm is fine, but without the necessary 334

fine-tuning it is not ready to be inserted into the 335

main task it is supposed to be one of the earliest 336

steps of. Finding any tag for the wordlist can be too 337

vague or too specific to have explanatory value 338

concerning the mental processes involved in 339

semantic selection. While the algorithm can be 340

helpful in finding the fitting tags, it is not ready to 341

be an automated step in the linguistic processing 342

chain that is required in the original clustering task. 343

If we were to stay with the current state, it might be 344

a working semi-automated tool to assist annotation, 345

thus making sure that the human errors are limited, 346

and the tagging is faster. 347

Accounting for the automation is a different 348

topic. For that, we would need extensive 349

fundamental research in mental semantic category 350

representation while language processing, so that 351

we can have a better understanding of the way 352

native speakers use these semantic selectional 353

rules, and so we could better model that with our 354

algorithm. This, however, would be another, far 355

larger project, than this current one. For the time 356

being, the tool can be applied as assistance – rather 357

than the annotator itself. 358

5

References 359

Martin Blech. 2022. xmltodict. 360

Hadumod Bußmann and Gregory Trauth. 1996. 361

Routledge dictionary of language and linguistics. 362

Routledge, London, [Online-ausg.]. 363

Xuyou Cheng, Michael Schlichtkrull, and Guy 364

Emerson. 2023. Are Embedded Potatoes Still 365

Vegetables? On the Limitations of WordNet 366

Embeddings for Lexical Semantics. In Proceedings of 367

the 2023 Conference on Empirical Methods in 368

Natural Language Processing, pages 8763–8775, 369

Singapore. Association for Computational 370

Linguistics. 371

Noam Chomsky. 1965. Aspects of the theory of 372

syntax.Massachusetts Institute of Technology. 373

Research Laboratory of Electronics. Special technical 374

report. The MIT Press, Cambridge, Massachusetts, 375

50th Anniversary Edition. 376

Udaya Raj Dhungana and Subarna Shakya. 2015. 377

Hypernymy in WordNet, Its Role in WSD, and Its 378

Limitations. In 2015 7th International Conference on 379

Computational Intelligence, Communication Systems 380

and Networks, pages 15–19, Riga, Latvia. IEEE. 381

Charles R. Harris, K. Jarrod Millman, Stéfan J. Van 382

Der Walt, Ralf Gommers, Pauli Virtanen, David 383

Cournapeau, Eric Wieser, Julian Taylor, Sebastian 384

Berg, Nathaniel J. Smith, Robert Kern, Matti Picus, 385

Stephan Hoyer, Marten H. Van Kerkwijk, Matthew 386

Brett, Allan Haldane, Jaime Fernández Del Río, Mark 387

Wiebe, Pearu Peterson, et al. 2020. Array 388

programming with NumPy. Nature, 585(7825):357–389

362. 390

Márton Miháltz, Csaba Hatvani, Judit Kuti, György 391

Szarvas, János Csirik, Gábor Prószéky, and Tamás 392

Váradi. 2008. Methods and Results of the Hungarian 393

WordNet Project. In Attila Tanács, editor, GWC 394

2008: Proceedings, pages 311–320. University of 395

Szeged, Department of Informatics, Szeged. 396

Márton Miháltz, Bálint Sass, and Balázs Indig. 2013. 397

What Do We Drink? Automatically Extending 398

Hungarian WordNet With Selectional Preference 399

Relations. In pages 105–109, Trento. 400

George A. Miller. 1995. WordNet: a lexical database 401

for English. Communications of the ACM, 38(11):39–402

41. 403

Csaba Oravecz, Tamás Váradi, and Bálint Sass. 2014. 404

The Hungarian Gigaword Corpus. In Nicoletta 405

Calzolari, Khalid Choukri, Thierry Declerck, Hrafn 406

Loftsson, Bente Maegaard, Joseph Mariani, Asuncion 407

Moreno, Jan Odijk, and Stelios Piperidis, editors, 408

Proceedings of the Ninth International Conference on 409

Language Resources and Evaluation (LREC’14), 410

pages 1719–1723. European Language Resources 411

Association, Reykjavik, Iceland. 412

Python. 2024. xml.etree.ElementTree — The 413

ElementTree XML API. 414

Philip Resnik. 1993. Semantic classes and syntactic 415

ambiguity. In Proceedings of the workshop on Human 416

Language Technology - HLT ’93, page 278, 417

Princeton, New Jersey. Association for Computational 418

Linguistics. 419

Philip Resnik. 1995. Using Information Content to 420

Evaluate Semantic Similarity in a Taxonomy. 421

Philip Resnik. 1997. Selectional Preference and Sense 422

Disambiguation. In Tagging Text with Lexical 423

Semantics: Why, What, and How? 424

Veronika Vincze, György Szarvas, and Janos Csirik. 425

2008. Why are wordnets important? In European 426

Computing Conference. (ECC 08), WSEAS, pages 427

316–322. Malta. 428

Patrick Ye. 2004. Selectional Preference Based Verb 429

Sense Disambiguation Using WordNet. In 430

Proceedings of the Australasian Language 431

Technology Workshop 2004, pages 155–162. 432

 433

