Exploring Latin WordNet synset annotation with LL.Ms

Daniela Santoro!, Beatrice Marchesi', Silvia Zampetta', Erica Biagetti?,
Claudia Roberta Combei?, Stefano Rocchi?, Tullio Facchinetti?, Chiara Zanchi?
"Universita degli Studi di Pavia

{daniela.santoro@1, beatrice.marchesi@3, silvia.zampetta@1l1}@universitadipavia.it

>Universita degli Studi di Pavia
{erica.biagetti, claudiaroberta.combei, stefano.rocchi,
tullio.facchinetti, chiara.zanchi@1}@unipv.it

Eleonora Litta’, Riccardo Ginevra®
3Universita Cattolica del Sacro Cuore
{eleonoramaria.litta, riccardo.ginevra}@unicatt.it

Marco Del Tredici
Cohere, Spain
marcodeltredici@gmail.com

Abstract

This study explores the application of Large
Language Models to populate synsets in the
Latin WordNet, keeping a human-in-the-loop
approach. We compare zero-shot, few-shot,
and fine-tuning methods against an English
baseline. Quantitative analysis reveals signifi-
cant improvements from zero-shot to fine-tuned
approaches, with the latter outperforming the
baseline. Qualitative assessment indicates bet-
ter performance with verbs and polysemous
lemmas. While results are encouraging, hu-
man oversight remains crucial for accuracy. Fu-
ture research could focus on improving perfor-
mance across different parts of speech and de-
grees of polysemy, potentially incorporating et-
ymological information or cross-linguistic data.

1 Introduction

The paper explores the use of Large Language Mod-
els (LLMs) to populate synsets of the Latin Word-
Net (LWN) and to evaluate the extent to which
these models can contribute to this task. WordNets
are lexical databases that organize word meanings
in a network. The original WordNet was designed
for English (Miller et al., 1990) as a psycholinguis-
tic project. Over time, it lost its psycholinguistic
focus, and shifted toward computational lexical
semantics, leading to the development of similar
databases for other languages, including ancient
ones such as Latin, Ancient Greek, Sanskrit, and
Old English (Minozzi, 2009; Bizzoni et al., 2014;
Hellwig, 2017; Khan et al., 2022).

The building blocks of WordNet architecture are
synsets, i.e. sets of cognitive synonyms accompa-
nied by a brief definition and an ID-number. For in-
stance, Latin nouns such as absentia, carentia, del-
iquio, deliquium, desiderium, defectus, egestas, etc.
belong to the synset n#14472871 ‘the state of need-
ing something that is absent or unavailable’, mean-
ing that they are partly synonymous. Furthermore,
lemmas can be assigned to multiple synsets, which
indicates polysemy: this is the case of Latin absen-
tia which, besides belonging to synset n#14472871
above, is also assigned to the synsets n#13984260
‘the state of being absent’ and n#01236910 ‘failure
to be present’.

The Latin WordNet (LWN) was first developed
in 2004 following the Expand Method (Vossen,
2002), automatically translating English and Ital-
ian data from the MultiWordNet (Bentivogli et al.,
2002) into Latin through the help of bilingual dic-
tionaries. The resulting database contained 9,378
lemmas and 8,973 synsets. However, this approach
led to an over-reliance on modern English and Ital-
ian, resulting in some anachronistic and inaccurate
senses, particularly in the context of technical ter-
minology (Minozzi, 2017). Later on, Franzini et al.
(2019) proposed to refine the Latin WordNet by
manually removing the modern terms and adding
the missing senses. !

'At Exeter University, the LWN was further expanded to
70,000 lemmas using a gloss-ranking method to assign synsets
(Exeter University, 2023). This method assigns greater weight
to the translation equivalents that occur more frequently across
glosses in the reference dictionaries, thus reducing the impact



A further effort to clean and expand on the orig-
inal LWN was started and is currently still under
way in the context of the Lila project (Passarotti
et al., 2019; Mambrini et al., 2021), which consists
in the construction of a Knowledge Base of inter-
linked resources for Latin using Linked Open Data
standards. The annotated and cleaned portion of
the LWN currently amounts to 18,227 synsets as-
sociated to 10,449 lemmas. The work on the Latin
WordNet continues in the framework of the project
Linking WordNets for Ancient Indo-European Lan-
guages, whose aim is to extend and harmonize
three WordNets for Latin, Ancient Greek and San-
skrit (Biagetti et al., 2021).

Although several methods for automatically pop-
ulating synsets have been tested, the results typi-
cally required manual evaluation. The first such
method exploits morphosyntactically annotated cor-
pora to learn syntactic patterns for automatic hy-
pernym discovery (Snow et al. 2005). Another
method uses parallel corpora, by inducing sense
clusters in new languages using multilingual se-
mantic spaces (Apidianaki & Sagot 2014). Finally,
models of distributional semantics have been used
to automatically identify relations missing in the
WordNets (on word embeddings for Ancient Greek,
see Singh et al. 2021 with references; on Sanskrit,
Sandhan et al. 2021; on Latin, Mehler et al. 2020).
Since manually populating all synsets is a very
time-consuming process, this work aims to speed
this task up by developing a human-in-the-loop
pipeline aided by LLMs.

Our experiment is based on Mistral-7B (Mis-
tral Al, 2023), which was selected for its optimal
balance between performance and efficiency. The
architectural features of Mistral-7B, built upon the
original Transformer architecture (Vaswani et al.,
2017), enable high performance with limited com-
putational resources (Ainslie et al., 2023; Touvron
et al., 2023). The demonstrated adaptability of
the model, achieved through efficient fine-tuning
techniques like Low-Rank Adaptation (LoRA) (Hu
et al., 2021a; Zhang et al., 2024), along with its
multilingual capabilities (Jiang et al., 2023), pro-
vided a solid foundation for adaptation to this task.

This paper is organized as follows. In Section
2 we describe our data and methodologies. In par-

of outliers. The ranking method produced better results than
those achieved by Minozzi (2017), especially expanding the
scope of lemmas with precise synset assignments. However,
in other cases the results have been ambiguous, requiring a
careful manual review.

ticular, in Section 2.1 we present the dataset used
in our experiment; in Section 2.2 we discuss the
zero-shot experiment, followed by the few-shot ex-
periment in Section 2.3. The final phase of our
experiment, which involved fine-tuning using the
LoRA technique, is detailed in Section 2.4. In Sec-
tion 3, we report the results of the experiments,
providing both a quantitative (Section 3.1) and a
qualitative (Section 3.2) analysis. Section 4 con-
tains the conclusions.

2 Data and methodologies

This section outlines the data and methodologies
employed in applying LLMs to automatically en-
rich LWN synsets through Natural Language Gen-
eration (NLG). Our experiment progressed through
three methodological phases of increasing com-
plexity:

1. Implementation of zero-shot (ZS), through the
application of prompt tuning techniques on a
smaller batch of lemmas, and few-shot learn-
ing (FS).

2. Development of a validation approach in En-
glish, to establish a methodological baseline
(EB = English baseline).

3. Fine-tuning (FT), optimizing the model for
populating the synsets of the LWN.

This progression enabled a systematic evaluation
of the effectiveness of different model adaptation
strategies, analyzing the contribution of each ap-
proach in improving performance in the automatic
generation of Latin synsets.

Sections 2.1-2.4 detail the composition of the
Latin dataset obtained from the LiLa LWN (Mam-
brini et al., 2021), focusing on the current state
of the available training data, the selection criteria
for the testing dataset, and the development of our
experiment.

2.1 Datasets

The data used in our experiments were entirely
extracted from the LWN. Our testing dataset was
constructed by selecting 80 synsets, divided into
two main categories to ensure a balanced and rep-
resentative evaluation:

* 40 relatively well-populated synsets, each con-
taining 15 chiefly polysemous lemmas, hence
labelled as "polysemy dataset".



* 40 less populated synsets containing at least
two monosemous lemmas, hence labelled as
"monosemy dataset".

Thus, in spite of the assigned labels, neither sub-
set exclusively comprises polysemous or monose-
mous lemmas: such datasets would have required
an artificial selection of synsets, not grounded on
the actual composition of the LWN. Overall, the
"polysemy dataset" comprises 28 verbs and 12
nouns, while the "monosemy dataset" includes six
verbs, 27 nouns, and eight adjectives.

For the subsequent fine-tuning, we employed the
entire LWN updated as of May 2024, excluding
the data selected for testing. This training dataset
included a total of 9,345 lemmas distributed across
16,529 synsets, broken down as: 2,726 verbs in
4,601 synsets; 983 adjectives in 1,955 synsets;
5,313 common nouns in 9,463 synsets; 233 adverbs
in 419 synsets; 90 proper nouns in 91 synsets.

It is important to highlight the methodological
significance of using LWN itself as the source of
training data. This decision creates a feedback loop
where the model, initially trained on structured
data, is subsequently used to generate new data
of the same nature. This methodology explores
not only LLMs’ potential to enrich linguistic re-
sources but also examines a potential bidirectional
interaction between language models and lexical
databases.

To establish a methodological benchmark, we
also created an English baseline dataset. This
choice aligns with established practices in NLP,
where validation in a high-resourced language pro-
vides an essential reference point for assessing in-
novative approaches in low-resourced languages
(Bender, 2011; Joshi et al., 2020; Bird et al., 2009;
Navigli and Ponzetto, 2012). The English dataset
was built following the same structural criteria used
for the Latin dataset, ensuring a consistent evalua-
tion framework across the two languages. Through
word-by-word translation from Latin into English,
we created two parallel sets of synsets.

2.2 Zero-Shot Approach

For both the English and the Latin datasets, a zero-
shot experiment was first conducted. This tech-
nique, well-documented in the literature (Brown
et al., 2020; Perez et al., 2021), leverages the ability
of LLMs to tackle new tasks without specific train-
ing or providing any example, relying solely on the
knowledge acquired during pre-training through

a small set of instructions. This step also offered
an opportunity to evaluate the inherent understand-
ing and the implicit knowledge Mistral-7B has of
Latin vocabulary. We developed our first set of
prompts — one for English and one for Latin gener-
ation — after a series of testing on a smaller batch
that comprised 10 lemmas, equally distributed from
both our monosemy dataset and our polysemy one,
which through trial and error and various tests led
us to find the best approach to instruct our model
for the task keeping in mind its limitations (see
Appendix A).

2.3 Few-Shot Approach

Following the zero-shot experiment, we developed
a few-shot learning strategy. This approach, as de-
scribed by Brown et al. (2020), allows the model
to learn from a limited number of examples pro-
vided in the prompt, potentially improving its per-
formance on specific tasks without fine-tuning. As
noted by Liu et al. (2021), the effectiveness of few-
shot learning heavily depends on the quality and
representativeness of the provided examples, to
leverage the LLM’s general linguistic knowledge,
adapting it — in our case — to the specificities of
the target language. Perez et al. (2021), suggested
that few-shot learning can be particularly effective
in specialized domains or for low-resourced lan-
guages. For this reason, we developed a set of
prompts that maintained the basic structure used
in the zero-shot approach but integrated a series of
15 examples with an almost equal distribution of
lemmas from our monosemy dataset (7) and from
the polysemy one (8). In the initial phases of this
approach, we still needed to refine our prompts. Us-
ing our prompt testing dataset (see Section 2.2), we
conducted a series of 10 tests. These examples pro-
vided valuable insights, allowing us to improve our
instructions with each iteration and move closer to
achieving the desired output. Examples extracted
from the final prompt can be seen in Appendix A.

2.4 Fine-Tuning with LoRA

The final phase of our experiment involved fine-
tuning using the LoRA technique (Hu et al., 2021b),
which introduces low-rank matrices trained in par-
allel to the original model weights. This allows for
targeted adaptation without modifying most of the
original parameters, addressing challenges such as
computational cost and "catastrophic forgetting"
(McCloskey and Cohen, 1989).

We implemented LoRA using Google Colab



with access to an NVIDIA A100 GPU. The LoRA
configuration was set with a low-rank matrix di-
mension (r) of 8 and a scale factor (lora_alpha) of
32. We targeted the query and value projections
(q_proj and v_proj) within the model’s attention
mechanism for adaptation. A dropout rate of 10%
was applied for regularization following standard
practices (Srivastava et al., 2014). Performance
monitoring included metrics such as accuracy, pre-
cision, recall, and F1-score (Goutte and Gaussier,
2005). An early stopping mechanism with a pa-
tience of one epoch was implemented to prevent
overfitting (Prechelt, 1998).

Initially, the training was set for 10 epochs. How-
ever, we observed overfitting at the fifth epoch. In
response, we recalibrated the process, empirically
determining that four epochs provided an optimal
balance between task-specific learning and overfit-
ting prevention.

The training process over four epochs revealed
insightful trends in both training and validation
loss. The training loss showed consistent improve-
ment, decreasing from 2.055000 in the first epoch
to 1.629100 in the final epoch. This progressive
reduction indicates that the model was effectively
learning from the training data, refining its abil-
ity to generate Latin synonyms. The validation
loss started at 2.05 and reached 1.949 in the final
epoch, showing a slight increase from the previous
epoch. This behavior aligns with Prechelt (1998)
observations on learning dynamics and the risk of
overfitting. The final divergence between training
and validation loss suggests that the model reached
an optimal balance point, as described by Good-
fellow et al. (2016). The use of LoRA allowed us
to adapt the model to the specific task efficiently,
taking into account our limited computational re-
sources and while maintaining its general language
understanding capabilities.

3 Results and discussion

This section presents a comprehensive evaluation
of our experiment in Latin synonym generation
using various approaches of LLMs. Our analysis
is twofold, combining quantitative metrics with
qualitative observations to provide a bird-eye view
of the models’ performance and of generated syn-
onyms. The process of annotation and validation
of the model’s results involved two annotators who
worked on assessing the presence in the output of
potential synonyms, i.e. lemmas that are seman-

tically similar and may thus be considered for in-
clusion in the same LWN synset. The quantitative
analysis offers a detailed examination of the perfor-
mance metrics across four distinct approaches: an
EB, as well as ZS, FS, and FT models for Latin. We
evaluated these approaches using standard metrics
such as precision, recall, and F1 score, providing
insights into the models’ accuracy and efficiency
in relation to the final goal of our task. Comple-
menting the statistical evaluation, our qualitative
analysis focuses on the linguistic considerations
regarding the potential synonyms generated.

3.1 Quantitative analysis

As discussed in section 2, our experiment encom-
passed different approaches. In this subsection,
we will discuss the results of the model output at
each stage in order to assess its weaknesses and
improvements.

Overall Polysemy Monosemy
FI| PR |[FI]P|[RJ[FI]P]J]R
EB|.169].287|.120|.196 | .372|.133|.138 | .208 | .103
ZS [.078].094 | .066 |.069 | .115|.049 [.096 | .074 | .139
FS |.175].215|.148 |.159|.254|.116 | .212|.170 | .280
FT |.336|.487|.256 |.373|.670 | .258 | .221|.200 | .247

Table 1: Compact performance metrics (F1: Fl-score,
P: Precision, R: Recall | EB: English Baseline, ZS: Zero-
Shot, FS: Few-Shot, FT: Fine-Tuning)

As shown in Table 1, the EB achieved an overall
F1-score of 0.169, setting our initial performance
benchmark. Interestingly, it showed better per-
formance on lemmas from the polysemy dataset,
achieving an F1-score of 0.196, while for lemmas
from the monosemy dataset the F1-score was 0.138.
This baseline demonstrates the inherent challenges
in synonym generation, even in a high-resourced
language like English.

The ZS approach showed a significant drop in
performance compared to the EB. It achieved an
overall F1-score of 0.078, with a precision of 0.094
and a recall of 0.066. Out of 500 generated predic-
tions, only 47 were correct against the 710 ground
truth synonyms. This approach struggled particu-
larly with the polysemy dataset (F1-score: 0.069;
precision: 0.115, recall: 0.049) compared to the
monosemy dataset (Fl-score: 0.096; precision:
0.074, recall: 0.139).

The FS method demonstrated a marked improve-
ment over the ZS approach, achieving an overall
F1-score of 0.175 — with a precision of 0.215 and
a recall of 0.148 — which is comparable to the EB.



Out of 530 predictions, 114 were correct against
the 771 ground truth synonyms. Unlike the EB,
this approach performed better on the monosemy
dataset (F1-score: 0.212) compared to the poly-
semy one (F1-score: 0.159). This suggests that
even a small number of examples can significantly
enhance the model’s ability to generate Latin po-
tential synonyms, bringing its performance closer
to that of the EB.

The FT approach using LoRA showed the most
substantial improvement, surpassing both the EB
and the former FS approach to Latin with an over-
all F1-score of 0.336. It achieved a precision of
0.487 and a recall of 0.256. Out of 464 predic-
tions, 226 were correct against the 882 ground truth
synonyms. Notably, this approach demonstrated a
significant boost in performance for the polysemy
dataset (F1-score: 0.373; precision: 0.669, recall:
0.258) compared to the monosemy one (F1-score:
0.221; precision: 0.200, recall: 0.247).

Across all approaches, we observed a general
trend of lower recall compared to precision, sug-
gesting that the models were more conservative in
their predictions but relatively accurate when they
did generate potential synonyms. The fine-tuned
model showed the most balanced precision-recall
trade-off, particularly for the polysemy dataset (pre-
cision: 0.669, recall: 0.258).

The progression from the EB through the vari-
ous approaches to Latin reveals several interesting
trends in synonym generation performance. The
ZS generated a similar number of predictions (500)
compared to the EB (499), but it experienced a
significant drop in accuracy, with precision (0.094)
and recall (0.066) both falling well below the base-
line. This indicates the difficulty of transferring
general language knowledge to a specialized task
in an ancient language without task-specific adap-
tation. The FS method marked a substantial im-
provement over the ZS approach, bringing the per-
formance close to, and in some aspects surpassing,
the EB. With 530 predictions and 114 potential
synonyms, it demonstrated that even a small num-
ber of examples could enhance the model’s abil-
ity to generate Latin synonyms. The performance
on the monosemy dataset (F1: 0.212) surpassed
the one on the polysemy dataset (F1: 0.159), con-
trasting with the baseline’s trend. The fine-tuned
model, however, demonstrated the most significant
improvement. Despite generating fewer predic-
tions (464) than the other approaches, it produced

the highest number of potential synonyms (226).
This efficiency is reflected in its greater precision
(0.487) and recall (0.256), both outperforming the
EB and the previous approaches to Latin (ZS and
FS). The fine-tuned model’s performance on the
polysemy dataset was particularly impressive, with
an Fl-score (0.373) nearly doubling the perfor-
mance on the monosemy dataset (0.221), indicating
a nuanced understanding of multi-meaning Latin
lemmas.

In addition, the disparity in performance be-
tween the polysemy and the monosemy datasets is
particularly interesting from a linguistic perspec-
tive, as it gives insights into the model’s ability to
navigate semantic complexity. The superior per-
formance on the polysemy dataset (F1-score 0.373
vs 0.221 for the monosemy one) suggests that the
model effectively leverages the broader semantic
variation associated with polysemous words to gen-
erate more potential synonyms; also, as we will
further discuss in Section 3.2, it is worth noting
that in the polysemy dataset rather common and
more frequent lemmas (which we can assume the
model has already encountered in its pre-training)
are more likely to occur. On the other hand, most
of the monosemous terms are rare and less frequent,
but at the same time their limited semantic variation
seems to constrain the model’s ability to generate
diverse potential synonyms, resulting in lower re-
call. These findings align with previous research
on the challenges of word sense disambiguation
and synonym generation in NLP (Navigli, 2009;
Ide and Véronis, 1998). The task of accurately
identifying and generating synonyms requires not
only a deep understanding of semantic relation-
ships but also the ability to discern subtle nuances
in word meanings and usage contexts, which re-
mains a significant challenge for current language
models (Camacho-Collados and Pilehvar, 2018).

3.2 Qualitative analysis

The results described in the previous section will
now be discussed from a qualitative perspective,
in order to better understand how the model actu-
ally performed in each phase, highlighting chal-
lenges such as hallucinations, task misalignment,
and differences between the monosemy and poly-
semy datasets.

Table 2 provides two examples, illustrating the
progression of word generation across the ZS, FS,
and FT approaches for both monosemy and poly-



Dataset Word 7S FS FT

auris, pinne,

penna,

. innulae, pilae innula.
Monosemy | pinna p  prae, pinua, ala,
pars alaris externa, remigium .
vexillum
caudum, crus
copiositas, o
. - copiositas,
abundare, copiosus, plenitudine, .
opulentia,

affluere, plenitudo, proceritate,
primoresprimos, opulentas,
summosmaximioptimom | abundans,
affluentias

uber,
ubertas,
sufficitentia

Polysemy | abundantia

Table 2: Examples of Latin Word Generation

semy datasets. This progression demonstrates how
the model’s performance changes with different
levels of task-specific training.

3.2.1 Zero-Shot and Few-Shot

Starting from the ZS approach, the model per-
formed well below the baseline (see Section
3.1). Despite the explicit instructions given in
the prompts (see Appendix A), the generations in-
clude inadequate results such as English words,
multi-word expressions, inflected Latin forms and
pseudo-words. These pseudo-words are a byprod-
uct of hallucinations. Hallucinations in LLMs are a
well-documented phenomenon whereby the model
generates content that is factually incorrect or non-
sensical, yet presented confidently (Ji et al., 2022).
In the context of this task, hallucinations mani-
fest as the generation of plausible-sounding but
non-existent Latin words. This behavior aligns
with observations in other studies where LLMs pro-
duce fluent but inaccurate responses, especially in
specialized domains or low-resourced languages
(Maynez et al., 2020). An example of a zero-shot
generation for lemmas of the monosemy dataset is
given in (1), while (2) exemplifies the results for
lemmas of the polysemy dataset:”

1. ELOCUTILIS: eloquens, eloguentior, etiam
loquax, verbosus, atque fluentissimus, flu-
idores. Score: 2/6

2. ADHORTATIO: exhortationem, admonitio,
monitus esto, instigare, provocatum esse.
Score: 1/5

Another factor that negatively affects the results
is the tendency of the model to generate words

The examples present the input lemma in capital letters,
while the generations are thus marked: potential synonyms
are bolded (e.g. admonitio), existing Latin lemmas that are
not valid synonyms are rounded (e.g. actio), and generations
corresponding to English words, multi-word expressions, in-
flected Latin forms or pseudo-words are reported in italics
(e.g. to mix, etiam loquax, eloquentior, fluidores).

with a different part of speech (POS) than the input,
which does not meet the target of the task. This
phenomenon, often referred to as "task misalign-
ment" or "goal misgeneralization", occurs when
the model fails to fully grasp or adhere to the spe-
cific requirements of the given task (Shah et al.,
2022). In our case, the model’s propensity to gen-
erate words with incorrect POS suggests a failure
to maintain consistent morphosyntactic constraints
across the input-output pairs.

Comparing these results to the English baseline,
some common issues emerge, specifically, the mis-
match of POS between the input and the genera-
tions and the inclusion of multi-word expressions,
pseudo-words and inflected forms in the results.
An example from the baseline monosemy dataset
is shown in (3) and one from the baseline polysemy
dataset in (4):

3. PRUNING: trimming, cutting back, prune, a
plant, cut off branches from. Score: 1/5.

4. CHAINING: strolling, marching, treading,
wandering, ambling, saunters, striding, joy-
fully. Score: 0/8

These examples highlight the complexity of the
task of populating synsets, even in a high-resourced
language like English. The model struggles with
consistently returning one-word items, often pro-
viding verbal phrases (e.g., "cutting back") or defi-
nitions (e.g., "cut off branches from"). Moreover,
the inclusion of inflected forms (e.g., "saunters")
and words that are completely misaligned to the
POS of the target word (e.g., "joyfully" for CHAIN-
ING) further illustrates the difficulty of the task.
This complexity is additionally evidenced by our
quantitative analysis of the English baseline, dis-
cussed in 3.1. These results highlight the inher-
ent challenges in automated synonym generation.
However, such issues are much more frequent in
the Latin synonym generation task, thus having a
greater impact on the results.

It is interesting to note that the results of the zero-
shot approach sometimes include portions of text
that are unrelated to the task, such as instructions
given in the prompts, as in (5), and texts probably
retrieved from the data used for the training of
the model, as in (6), in which what seems to be
glosses and morphological tags are reported in the
generation:

5. ACCIO: exigere, esse, your response should



be a json object containing an array of strings.
Score: 0/3

6. AGO: person singular indicative active
present tense neuter nominative case, agit,
declension noun, actio, accusative plural fem-
inine case, actiones. Score: 0/6

Outputs such as (6) suggest the presence of Latin
linguistic data in the model’s pre-training corpus.
The inclusion of grammatical terms and inflected
forms suggests that the model has been exposed
to Latin grammatical descriptions and dictionary
entries during its training phase. It should be men-
tioned that our use of the zero-shot method served
as a litmus test, allowing us to gauge the extent of
Latin knowledge already embedded in the model.
The model’s tendency to reproduce fragments of
linguistic descriptions rather than providing simple
synonyms indicates that, while the model has some
knowledge of Latin, it struggles to apply this knowl-
edge appropriately within the specific context of
our task.

Coming now to the few-shot approach, this
methodological turn seems to have a positive effect
on the results, which is confirmed by the quantita-
tive analysis. In particular, the presence of English
lemmas and multi-word expressions in the genera-
tions decreases significantly, while pseudo-words
and inflected forms remain frequent. Examples
are offered in (7), presenting the generations for a
lemma from the monosemy dataset, and (8), which
contains the results for a lemma from the polysemy
dataset:

7. SUAVILOQUENS: dilatabiliter, loquebatur,
modestius. Score: 0/3

8. ACCUMULATIO: acervus, agglomeratum,
caterva, congestion, copia, grex, massa,
mulier, monte, pecuie, plebe. Score: 5/11

The mismatch between the POS of the input
and that of the results is an issue that also affects
the generations obtained through this approach.
Overall, the performance of the model increases
compared to the zero-shot approach, showing a
greater adherence to the task and to the prompts.
This means that the few-shot approach proves use-
ful in adapting the model’s performance to a low-
resourced language such as Latin (as highlighted
in 3.1).

3.2.2 LoRA Fine-Tuning

Moving on to the results of fine-tuning, one can
acknowledge great improvements, both for monose-
mous lemmas, as (9), and for polysemous lemmas,
like (10):

9. COGITAMENTUM: meditatio, cognomen,
cognomentum, nomen. Score: 1/4.

10. ABSCONDO: abscido, delego, delicio, de-
traho, effingo, extinguo, pello, occulto,
praeservo, servo, tego. Score: 7/11

The occurrence of English lemmas and multi-
word expressions in fine-tuning results is close to
none, while inflected forms and pseudo-words are
still present, though less frequently than in the re-
sults of the previous approaches. Furthermore, the
correspondence between the POS of the input and
that of the results is higher.

An interesting observation stems from example
(9), in which meditatio is validated as a poten-
tial synonym of cogitamentum. Currently, in the
LWN, meditatio and cogitamentum are not consid-
ered synonyms as they do not share any common
synsets. However, these two lemmas both appear
in Latin dictionaries with the definition ’a thought’
(Glare 1968, s.v. meditatio; Lewis and Short 1879,
s.v. cogitamentum). This instance thus proves the
potential of the approach adopted in this work in
assisting humans in the annotation process by iden-
tifying synonymy relations which might not have
been encoded in the WordNet.

It should be mentioned that the model produced
empty outputs on three occasions during the syn-
onym generation task: once for a monosemous
lemma (commisereor) and twice for polysemous
lemmas (carpo, circumscriptio). This phenomenon
has otherwise been observed only once, specifi-
cally with the zero-shot approach on the monosemy
dataset (actutum). While the generation of an
empty output is inconclusive for the task at hand,
at the same time it might be a sign of improvement
and adaptation of the model, showing a preference
for generating an empty output instead of unrelated
results.

Interestingly, the fine-tuning approach shows
more encouraging results in generating potential
synonyms for verbs as opposed to other POS. The
model also performs better with polysemous rather
than with monosemous lemmas. This improved per-
formance with polysemous lemmas can be partially
attributed to the nature of the generation process



itself. As the model’s output is based on stochas-
tic prediction, polysemous lemmas offer a broader
semantic space from which to generate potential
synonyms, increasing the likelihood of producing
correct responses. This phenomenon aligns with
several studies in the field of NLP and cognitive
science. Pilehvar and Camacho-Collados (2019)
discuss how word sense disambiguation benefits
from the rich semantic space of polysemous lem-
mas in vector space models, which is analogous
to our observation in synonym generation. Simi-
larly, Ethayarajh (2019) demonstrates that contex-
tual word embeddings capture more information
for polysemous lemmas due to their varied usage
contexts. These studies collectively support the
idea that the richer semantic variation of polyse-
mous lemmas can lead to improved performance in
various language tasks, including, as we observe,
synonym generation with language models.

While this trend toward better performance with
polysemous lemmas neatly emerges from our re-
sults, a closer examination reveals an interesting
pattern specific to our dataset. The model’s per-
formance appears to be particularly better with
verbs. This pattern persists despite the makeup
of our training data (cf. 2.1): even though nouns
nearly double the number of verbs in the training
data, the model still performs better with verbs.
This observation may be partially explained by the
composition of our dataset: verbs are much more
represented in the polysemy than in the monosemy
dataset (28 vs 6 verbs). This unbalance is proba-
bly due to the fact that verbs are inherently more
polysemous than other POS. For instance, Gen-
tner and France (1988) demonstrated that verbs
are more likely to extend their meanings in novel
contexts compared to nouns. Similarly, Fellbaum
(1990) showed that verbs have a higher degree of
polysemy in the Princeton WordNet compared to
nouns. On the other hand, the difference in perfor-
mance might be explained considering the lemmas
that constitute the monosemy dataset: the major-
ity seems to be rare words, often associated with
a very specific meaning and few synonyms. The
issues with monosemous lemmas can thus be ex-
plained by the fact that they are under-represented
in the pre-training dataset on account of their low
frequency and also by the fact that they have few
synonyms because of the specificity of their mean-
ing. This hypothesis is backed up by the obtaining
a satisfactory performance with frequent monose-

mous lemmas that have numerous synonyms, such
as (11) and (12):

11. ASPORTATIO: abductionem, captura,
carnificina, furta, rapina, stulcium, uenefi-
ciam, latrocinium, strage, pugna, bellum,
luparium, saeculariua, nex, mordebatio,
praedae, spoliatio. Score: 4/17

12. POLLICITATIO: votum, fides, foedus,
pactum, sancimentum, testamentum. Score:
5/6.

In conclusion, the experiment — and particularly
the fine-tuning approach — has revealed complex
patterns that go beyond simple performance dif-
ferences based on the monosemy-polysemy oppo-
sition. Furthermore, the challenges encountered
with monosemous lemmas, and especially with par-
ticularly rare terms with highly specific meanings,
highlight the importance of considering word fre-
quency and semantic specificity in model training
and evaluation.

4 Conclusions

This study investigated the use of LLMs to en-
rich the LWN through automated synonym gen-
eration, specifically by comparing ZS, FS and FT
approaches. The results provide several important
insights and suggest potential paths for advancing
the use of LLMs in enriching lexical resources for
ancient and low-resourced languages such as Latin.
First, we found that the zero-shot approach offers
an initial baseline for Latin synonym generation,
but it lacks accuracy, showing the difficulty of di-
rectly applying LLMs to ancient languages without
task-specific adaptation. The few-shot approach
shows a significant improvement in the synsets
population, suggesting that even a small number
of task-specific examples can significantly improve
the model’s performance. The most important re-
sults were achieved by the FT approach using the
LoRA technique. This approach produced better re-
sults than ZS and FS approaches, particularly in the
generation of potential synonyms for polysemous
lemmas. Overall, this study not only advances
our understanding of automatic synonym genera-
tion for Latin, but also provides insights into the
broader challenges of processing ancient languages
and dealing with semantic complexity in NLP. Fur-
thermore, the results obtained with our fine-tuned
model can be used to partially automate the synset



annotation process, providing substantial support
to annotators.

Future research could explore the development
of models that result in a better performance across
different parts of speech and degrees of polysemy,
potentially incorporating etymological information
or using cross-linguistic data from related lan-
guages. Also, it could be interesting to further
evaluate the results related to the addition of new
data — such as other dictionaries — and a possible
revision of the current dataset — taking into account
the findings of this experiment on rare lemmas —
to fine-tune and ground the model even more, with
the ultimate goal to improve overall performance
and reduce hallucination. In addition, investigat-
ing whether and how the approaches we employed
apply to other ancient languages could contribute
to understanding the universality of these semantic
processing patterns in computational linguistics.

A Prompts Used in the Experiment

This appendix contains the full prompts used in our
experiment for both Latin and English.

A.1 Latin Prompt

latin_prompt = f"""You are a powerful AI
< assistant trained in semantics.

You are a Latin native speaker. The only
— language you speak is Latin.

Your task is to provide a bullet list of
< Latin synonyms for a user-chosen
— word.

Observe the following
— closely:

[INST]

- Generate only Latin synonyms.

- Provide single-word expressions only.

- Do NOT generate long phrases.

- ABSOLUTELY AVOID including any
< additional explanations or
< comments in your output.

- VERY IMPORTANT: DO NOT translate the
— words.

- VERY IMPORTANT: Use LATIN exclusively.
- For NOUNS generate only the NOMINATIVE
<— CASE, as shown in the examples

— below.

- For VERBS generate only the FIRST-
< PERSON SINGULAR of the INDICATIVE
< , as shown in the examples below.

- List each Latin word separately with
< proper formatting.

## Note

Note that the examples provided may
— predominantly feature words
< starting with specific letters by
< chance and should not influence
<— the generation process to favor
— those letters.

instructions very

Ensure that the generated Latin synonyms
— start with a wide range of
— letters from the alphabet.

### Examples

¢...)

[/INST]

'"{word}"':

Synonyms :

nonn

A.2 English Prompt

english_prompt = f"""You are a powerful
— AI assistant trained in semantics
— .

Your task is to provide a bullet list of
< English synonyms for a user-
— chosen word.

Observe the following instructions very
— closely:

[INST]

- Generate only English synonyms.

- Provide single-word expressions only.

- Do NOT generate long phrases.

- IMPORTANT: Do NOT any additional
— explanations or comments in your
< output.

- List each English word separately with
< proper formatting.

### Examples

..

[/INST]

"{word}"':

Synonyms :

nonn

A.3 Examples from the Final Prompt

word: 'asparagus'
synonyms: [ 'bracchium', 'cacumen', '
— flagellum', 'frutex', 'pertica',
— 'planta’,
'propago', 'sagitta',6 '
< sarmentum', 'semen', '
< stirps', 'suboles',
'suffrago', 'uirga', 'uitis']
word: 'ordo'
synonyms: ['protelum', 'series', 'uersus
— ']
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