Enhancing WordNet with Specialized Lexicons for Improved Detection of Culturally Sensitive Terms

Abstract

WordNet, a comprehensive lexical database for English, lacks specialization in culturally specific or sensitive lexicons, limiting its effectiveness in detecting words related to ethnicity, diaspora, slurs, or reclaimed terms. To propose and evaluate a method for integrating WordNet with specialized lexicons to improve detection and relationship mapping of culturally sensitive terms. We analyze the coverage of various term categories in WordNet and estimate the potential improvements when integrating with a custom lexicon. We propose new relationship mappings and evaluate their potential coverage. Integration of WordNet with specialized lexicons can significantly improve coverage across various categories of culturally sensitive terms, with overall coverage estimates ranging from 60 to 85 out of 100 terms, depending on the specific domain. The proposed integration method shows promise in enhancing WordNet's capabilities for detecting and mapping relationships between culturally sensitive terms, potentially improving its utility in natural language processing tasks related to cultural understanding and hate speech detection.

Introduction 31 1

5

11

12

13

15

18

19

21

22

24

25

26

28

WordNet stands as one of the most extensive 33 lexical databases for the English language, 34 encompassing approximately 117,000 synsets and 35 over 150,000 unique words. Its primary focus lies vocabulary, general English providing 37 relationships such as synonyms, antonyms, 38 hypernyms, hyponyms, and meronyms(Miller et 75 best-performing model achieved an accuracy of 39 al., 1990; Fellbaum, 1990; Fellbaum, 2014; Miller

40 and Fellbaum, 2007). However, WordNet's broad 41 coverage comes at the cost of specialization in 42 culturally specific or sensitive lexicons, which 43 limits its immediate effectiveness in detecting 44 words of concern related to ethnicity, diaspora, 45 slurs, or reclaimed terms. Many of these terms were 46 annotated in SENTIWORDNET 3.0(Baccianella et 47 al., 2010; Esuli and Sebastiani, 2006) and ⁴⁸ WordNet-Affect (Strapparava and Valitutti, 2004). 49 In contrast, custom lexicons designed to detect 50 ethnic, cultural, sensitive, or offensive terms are 51 typically much smaller in size compared to 52 WordNet, but they offer a high degree of 53 specialization. Such lexicons might contain 54 between 2,000 and 4,000 words, depending on 55 their level of detail and focus. These specialized 56 resources often pay attention to context, 57 recognizing that certain words may become 58 offensive only in specific situations or regions. We 59 argue that adding new relations can help with 60 improving the detection and relationship mapping 61 of culturally sensitive terms

Offensive Language Detection

64 There are various innovative approaches to detect 65 and mitigate hate speech in online environments, 66 particularly on social media platforms. One study 67 employed a hybrid deep learning approach using 68 convolutional neural networks (CNN) 69 bidirectional gated recurrent units (Bi-GRU) for 70 hate speech detection on Twitter. The researchers 71 built four models: CNN, Bi-GRU, CNN+Bi-GRU, 72 and Bi-GRU+CNN, utilizing term frequency-73 inverse document frequency (TF-IDF) for feature 74 extraction and FastText for feature expansion. The 76 87.63%, demonstrating the potential of hybrid deep 77 learning in comprehending sentences broken down

78 by hybrid n-gram types, specifically Unigram- 130 3 Derogatory Exonyms, Caconyms and 79 Bigram-Trigram(Gde Bagus Janardana Abasan and 131 80 Setiawan, 2024).

81 Detection and substitution algorithms 82 combined to address toxic content, define euphemistic 83 problematic text and suggest 84 alternatives to educate users about more inclusive 85 language choices with an NLP classifier to promote 86 self-awareness among users and target the issue at 87 its source. Attention network visualization methods 88 were proposed to improve hate speech detection 89 and train embeddings through transfer learning, 90 followed by synonym expansion of semantic 91 vectors. Active learning cycles and entropy-based 92 selection techniques were used to enhance the 93 model's accuracy. This method achieved a receiver 94 operating characteristic (ROC) of 0.91 and a 95 precision-recall score of 0.90, while also providing 96 visualizations to illustrate the rationale behind hate 97 speech classifications. The use of semantic 98 embedding and lexicon expansion played a crucial role in improving the model's performance (Ahmed and Lin, 2024).

One study focused on preprocessing techniques for Arabic offensive language classification, including emoji conversion, letter normalization, and hashtag segmentation. BERT-based models did not show significant improvements in covering broader 106 domains and dialects to further refine these preprocessing(Husain and Uzuner, 2022) although BERT-based were successful in other sense delineations task(Tóth and Abdelzaher, 2023).

The impact of text normalization

on hate speech detection, particularly for out-ofvocabulary (OOV) words with repeated letters could detect offensive language, combining rulepatterns and the SymSpell spelling correction algorithm. This approach reduced OOV words by 8% and improved the F1 score of the detection model by 9-13% compared to existing methods, demonstrating the value of effective text normalization in enhancing hate speech detection. The model applied multiple rules regarding the position of repeated letters in a word, considering whether they appeared at the beginning, middle, or end of the word and the repetition pattern (Mansur et al., 2024). However, researchers could consider 125 developing relations that capture the emotional 126 intensity of words, the cultural context of 127 potentially offensive terms, or the historical 128 evolution of language used in discriminatory 129 contexts.

Endonym

132 Synonym relations are often employed in NLP and wordNet applications to address hate speech and covert offensive language, transforming them into more inclusive alternatives. By identifying and 136 replacing harmful terms with neutral or positive 137 equivalents, these systems can help reduce the ₁₃₈ prevalence of discriminatory language in various 139 contexts(Petiwala and Siva Sathya, 2011). This 140 approach leverages the semantic relationships 141 between words to find suitable substitutions that 142 preserve the intended meaning while removing 143 offensive connotations.

Exonyms are names used by outsiders to refer to 145 a place, group of people, or cultural entity, different 146 from the name used by the people or group themselves. For instance, "Germany" is an exonym 148 used in English, whereas Germans refer to their 149 country as "Deutschland." While exonyms are 150 common and often neutral, they can sometimes 151 take on negative connotations, especially when 152 they reflect colonial history or outdated, foreign views of a group(Vidović, 2022; Nick, 2020; 154 Jordan, 2023). In certain cases, exonyms are used 155 in a dismissive or offensive way, reinforcing 156 cultural otherness, or stereotypes, such as calling 157 the Indigenous peoples of the Americas "Indians," 158 a misnomer from colonial times.

159 Caconyms are incorrect or improper names used 160 for people, places, or things. They often arise from 161 linguistic misunderstandings or historical errors. 162 Caconyms can range from being mildly inaccurate 163 to highly offensive, particularly when they 164 perpetuate outdated, incorrect, or derogatory 165 representations. For example, the term "Eskimo" is 166 considered a caconym for the Inuit people, as it 167 originates from an external misunderstanding of 168 their culture and has pejorative overtones. 169 Mislabeling with caconyms can carry unintended 170 disrespect or reinforce harmful 171 especially when tied to colonialism, racism, or 172 ignorance(2023.)

Endonyms are names used by a group of people to describe themselves, their land, or their cultural 175 practices. These are self-referential terms, like 176 "Suomi" for Finland or "Roma" for the Romani 177 people. Using endonyms tends to reflect respect and recognition of a group's self-identification. However, problems arise when outsiders ignore or 180 refuse to use endonyms, opting instead for

181 offensive exonyms or caconyms. While endonyms 231 names. Historical and diachronic analysis, which is 182 generally carry neutral or positive connotations, 232 not a focus of WordNet, could see coverage 183 their omission in favor of external terms can 233 increase from 10-20 out of 100 terms to 65-75 out 184 become offensive, especially if the exonym or 234 of 100 terms through integration with a lexicon 185 caconym has a history of derogatory usage or 235 designed to detect shifts in meaning over time. 186 condescension. In all three cases, terms that are 236 187 incorrectly applied or misused can become 237 specialized lexicons shows promise in significantly 188 offensive depending on historical, cultural, or 238 enhancing coverage across various categories of 189 political context. What begins as an exonym can 239 culturally sensitive terms. The overall estimated 190 evolve into a slur or derogatory term if used to 240 coverage for detecting and generating new 191 demean or "other" a group. Similarly, caconyms, 241 relationships between words and ethnic/cultural 192 though often unintended in their offense, can 242 terms ranges from 60 to 85 out of 100 terms, 193 perpetuate ignorance and harm.

Proposing New -nyms **Inclusive Languaging**

The coverage of different categories of terms 197 varies considerably. For general ethnic and national 198 terms, WordNet's inherent coverage is estimated to 199 be high, between 70 and 85 out of 100 terms. 200 However, for more specific ethnonyms and 201 endonyms, WordNet's coverage drops to between 253 202 30 and 50 out of 100 terms. The representation of 254 203 slurs and derogatory exonyms in WordNet is 255 256 204 particularly limited, with coverage estimated at 257 205 only 10 to 25 out of 100 terms without a specialized 258 206 lexicon. Integration with a custom lexicon can raise 200 207 this coverage to between 70 and 80 out of 100 261 terms for offensive and derogatory language.

Reclaimed terms and euphemisms present a 264 210 particular challenge for WordNet, with initial 265 coverage estimated at less than 10 out of 100 terms. ²⁶⁶₂₆₇ 212 The addition of a specialized lexicon could 268 213 potentially increase this coverage to between 60 269 214 and 75 out of 100 terms, depending on the depth of $\frac{270}{271}$ 215 reclaimed and euphemistic language in the custom 272 216 database. For culturally sensitive terms related to 273 217 diaspora and mixed ethnicity, WordNet's coverage 275 218 is moderate, at about 40 to 60 out of 100 terms, but 276 this could be significantly enhanced to between 75 $\frac{277}{278}$ 220 and 85 out of 100 terms with a custom lexicon.

The generation of new relationships through the 280 222 integration of WordNet and specialized lexicons 282 223 offers significant potential for improved coverage. 283 224 Mapping WordNet hypernyms and hyponyms to 284 225 specific ethnic and cultural categories through the 286 226 custom lexicon could achieve coverage of 85 to 90 287 out of 100 terms in this domain. For antonyms and $\frac{288}{289}$ 228 endonyms, coverage could improve from 40-60 out 290 229 of 100 terms to 70-80 out of 100 terms with 291 230 additional resources focused on self-referential 293

In conclusion, the integration of WordNet with 243 depending on the specific domain and complexity 244 of the relationships being mapped. This improved Towards 245 coverage has the potential to enhance WordNet's 246 utility in natural language processing tasks related 247 to cultural understanding and hate speech 248 detection.

> 249 The methodology adopted for mapping pre-250 existing WN's relations to the new ones is 251 summarized as follows:

```
function mapWordNetToNewRelations(word):
```

```
// Initialize new relation mappings
newRelations = {}
// Fetch existing WordNet relations for the word
synsets = WordNet.getSynsets(word)
```

for synset in synsets:

```
// Check for hypernyms and map to ethnonyms if applicable
hypernyms = synset.getHypernyms
for hypernym in hypernyms:
  if isEthnicTerm(hypernym):
    newRelations["ethnonym"] = hypernym
// Check for hyponyms and map to specific ethnic terms
hyponyms = synset.getHyponyms
for hyponym in hyponyms:
  if isEthnicTerm(hyponym):
    newRelations["specific_ethnonym"] = hyponym
// Check for antonyms and map to potential endonyms
```

antonyms = synset.getAntonyms for antonym in antonyms: if isEndonym(antonym): newRelations["endonymic"] = antonym

// Check for holonyms and map to cultural context

holonyms = synset.getHolonyms

for holonym in holonyms:

if isCulturalContext(holonym):

newRelations["cultural context"] = holonym

// Check for meronyms and map to specific cultural attributes meronyms = synset.getMeronyms

for meronym in meronyms:

if isCulturalAttribute(meronym):

newRelations["cultural_attribute"] = meronym

// Add custom relations based on lexical analysis

if isOffensive(word):

neutralTerm = findNeutralAlternative(word)

newRelations["endonymic"] = neutralTerm

if hasHistoricalContext(word):

historicalUsage = getHistoricalUsage(word)

currentUsage = getCurrentUsage(word)

newRelations["diachronic"] (historicalUsage,

292 currentUsage)

if hasCulturalVariation(word):

```
variations = getCulturalVariations(word)
294
            newRelations["culturally_specific_endonymic"] = variations
295
          if isMixedEthnicityTerm(word):
296
            appropriateTerms = findAppropriateTerms(word)
297
            newRelations["mixed_ethnicity_descriptor"]
298
299 appropriateTerms
300
          if isDiasporicTerm(word):
            homelandTerms = findHomelandTerms(word)
301
            newRelations["diasporic variant"] = homelandTerms
302
303
          if isSlur(word):
            severityLevel = assessSeverity(word)
304
            newRelations["offensiveness level"] = severityLevel
305
          if hasEuphemisticAlternative(word):
306
307
            euphemism = findEuphemism(word)
            newRelations["euphemistic substitute"] = euphemism
308
          if isReclaimedTerm(word):
309
            reclaimingGroup = findReclaimingGroup(word)
310
            newRelations["reclaimed usage"] = reclaimingGroup
311
          if hasCrossCulturalEquivalent(word):
312
            equivalents = findCrossCulturalEquivalents(word)
313
314
            newRelations["cross cultural equivalence"] = equivalents
          return newRelations
315
       // Helper functions (to be implemented)
316
       function isEthnicTerm(term): ...
317
       function isEndonym(term): ...
318
       function isCulturalContext(term): ...
319
320
       function is Cultural Attribute (term): ...
       function isOffensive(term): ...
321
       function findNeutralAlternative(term): ...
322
       function hasHistoricalContext(term): ...
323
       function getHistoricalUsage(term): ...
324
       function getCurrentUsage(term): ...
325
       function hasCulturalVariation(term): ...
326
       function getCulturalVariations(term): ...
327
       function isMixedEthnicityTerm(term): ...
328
       function findAppropriateTerms(term): ...
329
       function isDiasporicTerm(term): ...
330
       function findHomelandTerms(term): ...
331
       function isSlur(term): ...
332
       function assessSeverity(term): ...
333
       function has Euphemistic Alternative (term): ...
       function findEuphemism(term): ...
335
       function isReclaimedTerm(term): ...
336
```

Our study proposes new relationship mappings 343 to enhance WordNet's capabilities in this area. 389 International Conference on Language These include ethnonyms, specific ethnonyms, endonymic relations, cultural context, and cultural 346 attributes. Additionally, the research suggests 347 incorporating relations for 348 historical context, cultural variations, mixed 394 the 5th International Conference on Language 349 ethnicity descriptors, diasporic 350 offensiveness levels, euphemistic substitutes, reclaimed usage, and cross-cultural equivalence.

function findReclaimingGroup(term): ...

function hasCrossCulturalEquivalent(term): ...

function findCrossCulturalEquivalents(term): ...

337

338

339

340

341

342

The methodology for mapping these new 353 relations involves analyzing existing WordNet 354 relations and extending them with custom relations 399 Christiane Fellbaum. 2014. Large-scale 355 based on lexical analysis. This approach aims to 400 lexicography in the digital age. International 356 create a comprehensive understanding of culturally 401 Journal of Lexicography, 27(4). 357 sensitive terms within the lexical database.

358 The research also highlights the importance of 359 understanding the distinctions between exonyms, 360 caconyms, and endonyms in addressing potentially 361 offensive language. It emphasizes that the misuse 362 or ignorance of these terms can lead to unintended 363 offense or perpetuation of harmful narratives, 364 particularly in contexts related to colonialism, 365 racism, or cultural misunderstanding.

Conclusion

367 The integration of WordNet with specialized 368 lexicons and the proposed new relationship mappings show significant potential for improving 370 natural language processing tasks related to 371 cultural understanding and hate speech detection. This approach could enhance the ability of NLP 373 systems to detect, understand, and appropriately 374 handle culturally sensitive terms.

375 Acknowledgments

376 None.

377 References

378 Michael Adams. 2013. From Elvish to Klingon: 379 Exploring invented languages. Linguistic зво *Typology*, 17(2):338–356.

³⁸¹ Usman Ahmed and Jerry Chun Wei Lin. 2024. 382 Deep Explainable Hate Speech Active Learning 383 on Social-Media Data. IEEE Transactions on 384 Computational Social Systems, 11(4).

385 Stefano Baccianella, Andrea Esuli, and Fabrizio 386 Sebastiani. 2010. SENTIWORDNET 3.0: An 387 enhanced lexical resource for sentiment analysis 388 and opinion mining. In Proceedings of the 7th 390 Resources and Evaluation, LREC 2010.

391 Andrea Esuli and Fabrizio Sebastiani. 2006. 392 SENTIWORDNET: A publicly available lexical offensive terms, 393 resource for opinion mining. In *Proceedings of* variants, 395 Resources and Evaluation, LREC 2006.

> 396 Christiane Fellbaum. 1990. English verbs as a 397 semantic net. International Journal of ³⁹⁸ Lexicography, 3(4):278–301.

402 I. Gde Bagus Janardana Abasan and Erwin Budi

- 403 Setiawan. 2024. Empowering hate speech
- 404 detection: leveraging linguistic richness and deep
- 405 learning. Bulletin of Electrical Engineering and
- 406 Informatics, 13(2).
- ⁴⁰⁷ Peter Jordan. 2023. Exonyms as parts of the ⁴⁰⁸ cultural heritage. *Onoma*, 58.
- $_{\mbox{\scriptsize 409}}$ Zainab Mansur, Nazlia Omar, Sabrina Tiun, and
- 410 Eissa M. Alshari. 2024. A normalization model
- 411 for repeated letters in social media hate speech
- 412 text based on rules and spelling correction. PLoS
- 413 ONE, 19(3 March).
- 414 George A. Miller, Richard Beckwith, Christiane
- 415 Fellbaum, Derek Gross, and Katherine J. Miller.
- 416 1990. Introduction to wordnet: An on-line lexical
- 417 database. *International Journal of Lexicography*, 418 3(4).
- 419 George A. Miller and Christiane Fellbaum. 2007.
- 420 WordNet then and now. Language Resources
- 421 and Evaluation, 41(2).
- 422 I. M. Nick. 2020. Socio-Onomastics: The
- Pragmatics of Names. Names, 68(1).
- 424 A J Petiwala and S Siva Sathya. 2011. A multi-
- agent system to learn literature ontology: An
- 426 experiment on English Quran corpus. In IAMA
- 427 2011 2011 2nd International Conference on
- 428 Intelligent Agent and Multi-Agent Systems, pages
- 428 Imetitgeni Ageni ana Mutit-Ageni Systems, pages 429 46–51.
- 430 Carlo Strapparava and Alessandro Valitutti.
- 431 2004. WordNet-Affect: An affective extension of
- 432 WordNet. In Proceedings of the 4th
- 433 International Conference on Language
- 434 Resources and Evaluation, LREC 2004.
- 435 Ágoston Tóth and Esra Abdelzaher. 2023.
- 436 Probing visualizations of neural word
- 437 embeddings for lexicographic use. In M.
- 438 Medved', M. Měchura, C. Tiberius, I. Kosem, J.
- Kallas, M. Jakubíček, and S Krek, editors,
- 440 Proceedings of Electronic Lexicography in the
- 441 21st Century Conference, volumes 2023-June,
- 442 pages 545-566. Brno: Lexical Computing CZ
- 443 S.r.o.
- 444 Domagoj Vidović. 2022. The treatment of
- 445 demonyms, ktetics and exonyms in the more
- 446 recent printed and online sources of the Institute
- 447 of Croatian Language and Linguistics. Studia
- 448 lexicographica, 16(30).
- 449 Caconym 2023. caconym, n. In Oxford English
- 450 Dictionary.

451 Appendices

452 None

453 A Supplementary Material

454 None.