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Abstract

The mixing of two or more languages is called
Code-Mixing (CM). CM is a social norm in
multilingual societies. Neural Language Mod-
els (NLMs) like transformers have been effec-
tive on many NLP tasks. However, NLM for
CM is an under-explored area. Though trans-
formers are capable and powerful, they can-
not always encode positional information since
they are non-recurrent. Therefore, to enrich
word information and incorporate positional
information, positional encoding is defined.
We hypothesize that Switching Points (SPs),
i.e., junctions in the text where the language
switches (L1 → L2 or L2 → L1), pose a chal-
lenge for CM Language Models (LMs), and
hence give special emphasis to SPs in the mod-
eling process. We experiment with several posi-
tional encoding mechanisms and show that rota-
tory positional encodings along with switching
point information yield the best results.

We introduce CONFLATOR: a neural lan-
guage modeling approach for code-mixed lan-
guages. CONFLATOR tries to learn to empha-
size switching points using smarter positional
encoding, both at unigram and bigram levels.
CONFLATOR outperforms the state-of-the-art
on two tasks based on code-mixed Hindi and
English (Hinglish): (i) sentiment analysis and
(ii) machine translation.

1 Code-Mixing: Juxtaposition of two
Languages

Code-mixing is defined as the alternation of two
or more languages during articulation. Recently,
code-mixing has gained a lot of attention in the
area of NLP due to the prevalence of language mix-
ing in multilingual societies such as India, Europe,
US, South Africa, Mexico, etc. In such societies,
code-mixing is fairly commonplace, especially in
informal conversations, where the native language

*Work does not relate to position at Amazon.

is often romanized and code-mixed with an auxil-
iary language. This effect occasionally manifests in
posts originating from the aforementioned sources
on social media platforms such as Twitter, Face-
book, etc. An example of Hindi and English code-
mixing is shown in the following phrase where an
English word, dance, is mixed with Hindi roman-
ized words: Gaaye, aur, kare.

GaayeHI aurHI danceEN kareHI
English translation: sing and dance

With the proliferation of code-mixing on the in-
ternet, it is important to study language processing
and language modeling for code-mixed languages.
While language modeling using neural networks
has come a long way, replacing n-gram language
models with distributed neural representations
(Bengio et al., 2003) to recent large transformer-
based pre-trained language models (LMs) such as
GPT-x (Radford et al., 2019), BERT (Devlin et al.,
2018a) etc., code-mixed language modeling using
state-of-the-art (SoTA) Transformer-based models
is still under-explored.

The biggest hindrance in the adoption of SoTA
Transformer-based LMs for code-mixing can be at-
tributed to data scarcity. While Transformer-based
(Vaswani et al., 2017b) architectures such as BERT
and GPT have set new benchmarks in the domain of
language modeling, they are infamous for their low
sample efficiency. In other words, the voracious
data appetite of Transformers and the lack of sub-
stantial code-mixed datasets in the community is
the primary reason for the technological hindrances
in the area of code-mixed language modeling com-
pared to vanilla language modeling.

To corroborate the aforementioned arguments,
we experiment with Transformer-based models
such as GPT-2 and BERT for code-mixing. We em-
pirically observe that these models perform poorly
on tasks involving code-mixed data. Our hypothesis
is as follows: Since information related to switch-
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ing point is a major component in the context of
code-mixed content, it should thus be incorporated
in downstream processing. Switching points are a
bottleneck for a model’s processing of code-mixed
data and the reason for poor performance using
SoTA neural language models (Chatterjere et al.,
2020). Switching points play a crucial factor when
dealing with CM data. In the next few sections,
we discuss various positional encoding approaches,
switching points, and our approaches for language
modeling on code-mixed data. Our key contribu-
tions are:

• We propose CONFLATOR, an LM system that
incorporates switching point related positional
information.

• Our system improves the performance of ex-
isting models and achieves a new SoTA on
two tasks.

• We investigate, experiment with, and intro-
duce various switching point based positional
encoding techniques.

• We introduce a novel Switching Point based
Rotary matrix for Rotary Positional Encoding
(RoPE).

• We curate a new dataset of code-mixed tweets.

2 Related Work

It is important to study code-mixing as it is a part
of most multilingual societies and prevalent in so-
cial media. It is more complex to process code-
mixed text than monolingual text for NLP tasks
(Verma, 1976). Similar line of work was followed
by Bokamba (1988) and Singh (1985) on the com-
plexities of multi-languages on the basis of syn-
tactics and grammar. The difficulties of processing
code-mixed languages on social media is further ex-
acerbated by unusual spellings, many unique ways
of writing the same word, unnecessary capitaliza-
tion etc (Das and Gambäck, 2014; Laddha et al.,
2020).

With the growing popularity on social media,
Various tasks like sentiment analysis (Patwa et al.,
2020a; Chakravarthi et al., 2020), translation (Dhar
et al., 2018; Srivastava and Singh, 2020), hate-
speech detection (Bohra et al., 2018; Banerjee et al.,
2020), POS tagging (Vyas et al., 2014), etc. have
been performed on code-mixed data. Methods to
handle code-mixing for text classification include
the use of CNNs (Aroyehun and Gelbukh, 2018;
Patwa et al., 2020b), Transformer or BERT like

models (Samghabadi et al., 2020; Tang et al., 2020),
ensemble models (Tula et al., 2021; Jhanwar and
Das, 2018), focal loss (Tula et al., 2022; Ma et al.,
2020) etc.

Vaswani et al. (2017a) proposed transformers for
neural language modeling using masked language
modeling (MLM) and next sentence prediction,
which achieved SoTA performance on many NLP
tasks. Devlin et al. (2018b) released mBERT, a
model trained on multilingual corpus that includes
104 languages. A cross lingual language model
XLM was proposed in Lample and Conneau (2019)
which leveraged monolingual and crosslingual cor-
pus for pretraining. Nayak and Joshi (2022) present
a bert pretrained on CM data. However, they do not
make changes to their language model or technique
to handle code-mixed data in particular. Sengupta
et al. (2021) propose a Hierarchical transformer
based architecture that captures the semantic rela-
tionship among words and hierarchically learns the
sentence level semantics of code-mixed data. Ali
et al. (2022) Were one of the first to incorporate
switching point information in positional encoding.
They utilize dynamic positional encodings whereas
our method, CONFLATOR infuses switching point
information in rotatory positional encodings and
also uses both unigram and bigram tokens to get
the final embedding.

3 Data Extraction and Strategies

In this section, we discuss the details of code-mixed
data extraction. Our primary aim is to extract natu-
rally distributed code-mixed data.

3.1 Qualitative and Quantitative Checkpoints
for Hinglish Corpus

The performance of LMs is dependent on the train-
ing data size and quality, along with the vocabu-
lary size. Code-mixed language modeling suffers
from the following challenges: i) data scarcity, ii)
Words from 2 (or more) languages in the same
sentence, iii) Hindi is written using English letters
(i.e. transliteration), hence, there is no standardiza-
tion of spelling - which in effect proliferates word
forms (Laddha et al., 2020, 2022), iii) Code-mixing
is usually found on social media and netizens often
incorporate creativity in their mixing along with
wordplay. We consider two fundamental questions
to guide our data collection:

1. The performance on any NLP task depends on
the data complexity:
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Empirical measurement: Consider two 4-
word tweets - i) Ti : wL1wL1wL2wL2 and ii)
Tj : wL1wL2wL1wL2. Both the tweets have
2 words each from the languages L1 and L2.
Thus the mixing ratio of both the tweets Ti and
Tj is (4−2)/4 = 0.50. However, Ti only con-
tains 1 code alternation point whereas Tj con-
tains 3 switches. It is likely that Tj is harder
to process. Hence, we need a metric for the
level of mixing between the languages. We use
Code-Mixing-Index (Gambäck and Das, 2016)
(CMI) to measure such complexity. Please re-
fer to section 3.2 for more details on CMI.

2. How much data is good enough?

Empirical measurement: When two lan-
guages blend, it is quite natural that the num-
ber of unique word forms would be much
higher in a Hinglish corpus in comparison to
monolingual English or Hindi corpus. There-
fore, we ask an essential question at the very
beginning, how much data is good enough?
We decide to keep collecting data, until the
Heaps’ curve starts converging so that we
cover most of the unique words.

Heaps’ law (Gopalan and Hopkins, 2020)
states that the number of unique words in a
text of n words is approximated by V (n) =
Knβ where K is a positive constant and β lies
between 0 and 1, K invariably lies between
10 and 100 and β between 0.4 an 0.6. Heaps’
law is often considered to be a good estimator
to calculate the vocabulary size. To compare,
from the figure 1, it can be seen that, for En-
glish Wiki, the flattening of the Heaps’ law
curve, starts at 40K-50K, whereas for mono-
lingual Hindi, it converges at 80K-90K, but
for Hinglish the same behavior starts around
800K vocabulary and 50M words.

3.2 Code-Mixing Index (CMI)

As mentioned previously, we expect the difficulty
of language processing tasks to increase as the level
of code-mixing increases. To measure the level of
code-mixing in our corpus, we use Code-mixing
Index (Gambäck and Das, 2016) :

Figure 1: Heaps’ plot on 50M word forms in English,
Hindi and Hinglish corpora. The β values are 0.58, 0.61,
0.74 respectively.

Cu(x) = wmfm(x) + wpfp(x)

= wm
N(x)−maxLiϵL(tLi)(x)

N(x)
∗ 100 + wp

P (x)

N(x)
∗ 100

= 100 ∗ wm((N(x)−maxLiϵL(tLi)(x)) + wpP (x)

N(x)

(1)
Where x denotes utterance, N is the number of

token in x belonging to any language Li, wm and
wn are weights. Please refer to Gambäck and Das
(2016) for a detailed explanation of CMI.

3.3 Data Acquisition Pipeline

We follow a pipeline similar to (Chatterjere et al.,
2020). We collect CM data from Twitter via the
Twitter API. We need to use relevant keywords
(words unique to Hindi) in our search to get CM
tweets. Words with lexical overlap between Hindi
and English should not be used for searching.
for example, the word do is confusing because
it means two in Hindi. We start with the ICON
2017 Hinglish sentiment analysis dataset (Patra
et al., 2018), which is annotated with word-level
language. From this data, we create two vocabu-
laries VHI and VEN , and generate a vocabulary of
unique Hindi words VHI−UNIQ = VHI −I , where
I = VHI

⋂
VEN . VHI−UNIQ set is then sorted in

descending order, based on the word frequency, and
is used as search words on the Twitter API. Once
we get the tweets, we use a word-level language
identifier (Barman et al., 2014) (having 90%+ ac-
curacy) on the tweets and calculate the CMI of the
tweet. Once we get the word-level language labels,
we can also know where the switching points are.
Tweets with CMI = 0 are discarded. Finally, we
are left with 87k tweets. The CMI distribution of
our data is given in table 1. This dataset is used to
pretrain our models.

Training and Testing data: We collect 87K sen-
tences distributed over all CMI ranges, instead of
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CMI # Tweets Percentage
0-10 7,036 8.05%

11-20 16,481 18.9%
21-30 22,617 25.9%
31-40 22,722 26.0%
41-50 11,404 13.1%
50+ 7,036 8.05%

Mean CMI: 28 Total # of tweets: 87,296

Table 1: CMI distribution of the collected data. The total
number of extracted tweets is 87K.

collecting equal data across the CMI ranges, so
that the resultant languages trained on this corpus
would be able to handle real data. We maintain the
same distribution over both our training and testing
corpora (4:1 ratio), for our language models.

4 The Bottleneck of Code-mixed
Language Modeling: Switching Points

Formally, Switching Points (SPs) are the tokens in
text, where the language switches. For code-mixed
languages, consisting of a pair of languages, there
can be two types of switching points. Suppose the
two languages as part of the code-mixed language
are L1 and L2, a switching point occurs when the
language in the text changes from L1 to L2 or L2
to L1. To explain it better, let us consider the fol-
lowing sample in Hinglish:

gaanaHI enjoyEN kareHI
English Translation: Enjoy the song.

In the above example, when the language
switches from Hindi to English (gaanaHI enjoyEN)
a HI-EN (HIndi-ENglish) switching point oc-
curs. Similarly, a EN-HI(ENglish-HIndi) switch-
ing point occurs at - enjoyEN kareHI.

In the context of modeling code-mixed lan-
guages, switching points can be considered as or-
dinary bigrams, that occur with other monolingual
bigrams in a corpus. It is easy to infer that particular
SP bigrams will be relatively rare in a given corpus.
Hence, such sparse occurrences of switching point
bigrams make it difficult for any Language Model
to learn their probabilities and context. Since the
language changes at the switching point, LMs are
likely to find it difficult to process these tokens. In
order to counter this challenge, we partition our
code-mixed data into (i) switching points, and (ii)
non-switching points. We then build LMs specifi-
cally for switching points and non-switching points,

as discussed in the following sections.
CONFLATOR Hypothesis: The CONFLA-

TOR is built on 2 hypotheses. i) Positional informa-
tion is important for language models, especially
when dealing with CM text. ii) Switching points
are the bottleneck for code-mixed language models
(CMLM). We incorporate positional information
of switching points into our CMLM.

5 Positional Encoding Techniques

As discussed, SPs are a major bottleneck hence han-
dling them separately is needed. Positional encod-
ing are necessary for language models to learn de-
pendencies between tokens. Positional embedding
was first introduced by Vaswani et al. (2017b). The
proposed sinusoidal positional encoding is com-
posed of sine and cosine values with position in-
dex as inputs. The encoding techniques are further
improved by Liu et al. (2020) where a dynamic
function is introduced to learn position with gradi-
ent flow and Shaw et al. (2018) learned positional
representation of relative positions using a learn-
able parameter. We talk about different positional
encoding techniques in detail in the following sub-
sections.

We experiment with several contemporary tech-
niques and find that rotary positional encoding (Su
et al., 2021) performs the best.

5.1 Sinusoidal Positional Encoding (SPE)
Vaswani et al. (2017b) introduced a pre-defined si-
nusoidal vector pi ∈ Rd which is assigned to each
position i. This pi is added to the word embedding
xi ∈ Rd at position i, and xi + pi is used as input
to the model such that the Transformer can differ-
entiate words coming from different positions and
this also assigns each token a position-dependent
attention. - equation 2.

eabsij = 1√
d

(
(xi + pi)W

Q,1
) (

(xj + pj)W
K,1

)T (2)

Where W is the weight matrix, Q is query, K is
key, l in the layer.

5.2 Dynamic Positional Encoding (DPE)
Instead of using predefined periodical functions
like sin, Liu et al. (2020), introduced a dynamic
function Θ(i) at every encoder layer. Improving
upon sinusoidal PE, Dynamic PE learns Θ(i) in-
stead of a predefined pi to bring dynamic behavior
to the model. At each utterance, this learnable func-
tion Θ(i) tries to learn the best possible representa-
tion for positional information with gradient flow.
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Θ(i) is added to the word embedding wi as given
in equation 3.

eij =
1√
d

(
(xi +Θ(i))WQ,1

) (
(xj +Θ(j))WK,1

)T (3)

5.3 Relative Positional Encoding (RPE)
In absolute PE, using different pi for different posi-
tions i helps the transformer distinguish words at
different positions. However, the absolute PE is not
effective in capturing the relative word order. Shaw
et al. (2018) introduced a learnable parameter ali−j

which learns the positional representation of the
relative position i-j at encoder layer l. With the help
of this, we can explicitly capture word orders in
our model as follows:

erelij = 1√
d

(
(xi)

l WQ,l
)(

(xi)
l WK,l + ali−j

)T
(4)

5.4 Switching Point-based Dynamic and
Relative Positional Encoding (SPDRPE)

Ali et al. (2022) introduce a novel, switching point
based PE. For illustration purposes, consider a
code-mixed Hinglish text - yeHI gaanaHI enjoyEN

kareHI. SP-based indices (SPI) set the index to 0
whenever an SP occurs. Indexing would normally
be Index = (0, 1, 2, 3), but due to switching point
incorporation, this gets changed to SPI = (0, 1, 0,
0). In addition to this, they use a learning parame-
ter ali−j , which encodes the relative position i-j at
the encoder layer l. This encoding approach learns
representations dynamically based on SPs along
with the embedding ali−j so that it can also capture
relative word orders, as follows:

eij =
1√
d

(
(xi +Θ(S(li)))

l WQ,l
)(

(xi +Θ(S(lj)))
l WK,l + ali−j

)T (5)

5.5 Rotary Positional Encoding (RoPE)
Analogous to the idea of electromagnetic waves
going through a polarizer to preserve their relative
amplitude, (Su et al., 2021) came up with the idea
of Rotary Positional Encoding (RoPE). The idea
is to use rotation matrices on the embedding vec-
tors to generate the positional values. The rotation
negates any absolute positional information and
only retains information about the relative angles
between every pair of word embeddings in a se-
quence. We know that the dot product between two
vectors is a function of the magnitude of individual
vectors and the angle between them. Keeping this
in mind, the intuition for RoPE is to represent the
embeddings as complex numbers and the positions
as pure rotations that we apply to them.
Mathematically, the formulations for a simple 2-
dimensional case are defined as follows:

fQ(xi, i) = (WQxi)e
√−1iθ

fQ(xj , j) = (WKxj)e
√−1jθ

g(xi, xj , i− j) = Re[(WQxi)(WKxi)
*e

√−1(i−j)θ]
(6)

where Re[] is the real part of a complex num-
ber and (WKxi)

* represents the conjugate complex
number of (WKxi). θ ∈ R is a preset non-zero con-
stant. Formulating f (Q,K) as a matrix multiplication,
we get:

fQ(xi, i) =
(

cosmθ1 −sinmθ1
sinmθ1 cosmθ1

)(
W

(11)
Q,K W

(12)
Q,K

W
(21)
Q,K W

(22)
Q,K

)(
x
(1)
i

x
(2)
i

)

(7)
where (xi

(1), xi
(2)) is xi expressed in the form of

2D coordinates. In the same way, we can turn func-
tion g into matrix form. By rotating the transformed
embedding vector by an angle in multiples of its
position index, we are able to incorporate relative
position information. Due to this characteristic, it
is termed as Rotary Position Embedding.

In order to generalize the result in 2D to any xi
in Rd where d is even, they divide the d-dimension
space into d

2 sub-spaces and combine them in merit
of the linearity of inner product, turning the atten-
tion formulation:

fQ,K = erotaryij = 1√
d

(
RMd

Θ,iW
Q,1 (xi)

)T (
RMd

Θ,jW
K,1 (xj)

)
(8)

RM =




cosmθ1 −sinmθ1 0 0 ... 0 0
sinmθ1 cosmθ1 0 0 ... 0 0

0 0 cosmθ2 −sinmθ2 ... 0 0
0 0 sinmθ2 cosmθ2 ... 0 0
. . . . ... . .
. . . . ... . .
0 0 0 0 ... cosmθd/2 −sinmθd/2
0 0 0 0 ... sinmθd/2 cosmθd/2


 (9)

where RM is orthogonal and sparse matrix pre-
defined parameters

Θ = θi = 10000-2(i-1)/d, i ∈ [1, 2, ..., d/2]. (10)

In contrast to the additive nature of the position
embedding methods used by other works, their ap-
proach is multiplicative. Moreover, RoPE naturally
incorporates relative position information through
rotation matrix product instead of altering terms
in the expanded formulation of additive position
encoding when applied with self-attention.

6 Incorporation of Switching Point
Information in CMLM

Positional encodings help the transformer learn de-
pendencies between tokens at different positions
of the input sequence. To enhance the positional
encodings for code-mixed text, we modify the rota-
tory positional encoding to incorporate switching
point information.
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Figure 2: Visual intuition for our rotary approach with
switching point incorporation. We consider a linearly
polarized electromagnetic wave and show the change in
rotation whenever a switching point occurs.

Figure 3: This diagram depicts the higher level under-
standing of the proposed positional embeddings.

6.1 Switching Point-based Rotary Matrix
Switching points are a potential bottleneck for code-
mixing language modeling and to address this prob-
lem, we incorporate switching point based rotary
positional encoding in our architecture. The intu-
ition behind RoPE is electromagnetic waves. The
embeddings are represented as complex numbers
and the positions are represented as pure rotations
that are applied to them. Keeping this in mind, we
address the problem of switching points (SP) with
the help of angles that participate in RoPE. When-
ever we encounter a switching point, we change the

rotation, i.e., we change the direction of these an-
gles. To implement the rotation change, we define a
switching point matrix. The switching point matrix
helps our model identify and learn the patterns of
code mixing in the corpus. Our matrix is defined
with 1s and -1s. When there is a language shift (L1
→ L2) or (L2 → L1), i.e., when we encounter a
switching point, we annotate the column value as
-1 and for the successive words in L2, we annotate
column values as 1 until another switching point
occurs.

SPM ∈ Rd
n∗n

if i == SP:

SPMi = −1

else:

SPMi = 1

(11)

The visual intuition of our approach is shown in
Figure 2. The switching point matrix (SPM) with
1s and -1s is defined in such a way that it trans-
poses the rotary matrix, intuitively inverting the
rotation at every switching point encounter. There-
fore, the final matrix, i.e., switching point rotary
matrix (SPRM) is a result of element-wise multipli-
cation of the defined switching point matrix (SPM)
with rotary matrix (RM):

SPRM = SPM × RM (12)

eSPRotary
ij = 1√

d

(
SPRMd

Θ,iW
Q,1 (xi)

)T (
SPRMd

Θ,jW
K,1 (xi)

)
(13)

6.2 Bigram and Switching Point-based Rotary
Positional Encoding (BSPRoPE)

Since the language changes at the SPs, we get two
consecutive tokens with different language hence
we also incorporate the bigram level information in
our model. In this positional encoding method, we
get positional information among the bigrams in an
utterance. We use the technique of switching point
based rotary positional encoding at a word-to-word
level and at bigram level as depicted in Figures 3,4
and mathematically expressed as Equation 16

eUniSPRotary
ij = 1√

d

(
SPRMd

Θ,iW
Q,1 (xi)

)T (
SPRMd

Θ,jW
K,1 (xj)

)
(14)

eBiSPRotary
ij = 1√

d

(
SPRMd

Θ,iW
Q,1 (xi)

)T (
SPRMd

Θ,jW
K,1 (xj)

)
(15)

prediction = a ∗ eUnigramSPRotary
ij + b ∗ eBigramSPRotary

ij (16)

where a and b are learnable coefficients. xi and
xi in equation 14 refer to unigram inputs whereas
as in equation 15 they refer to bigram inputs.
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Figure 4: CONFLATOR architecture within the encoder layer. It depicts how the unigrams and bigrams of the input
statement are passed as inputs to our encoder decoder architecture. In this framework, we generate a rotary matrix
and a switching point matrix. By performing element-wise multiplication of the aforementioned matrices, we get
our proposed novel switching point based rotary matrix. We represent the embeddings as complex numbers and their
positions as pure rotations that we apply to them with the help of our switching point based rotary matrix. Then,
upon getting the output layers for unigram and bigram statements separately. We introduce weighted coefficients a
and b for unigram outputs and bigram outputs, respectively. We get our final output layer by adding these weighted
unigram and bigram outputs.

(a) Sinusoidal PE (b) Rotary PE (c) Conflator

Figure 5: CONFLATOR is able to differentiate words coming from different positions and give high attention when
a switching point occurs (at bagEN and kidarHI) while the other models cannot do so.

6.3 CONFLATOR Architecture
The local dependencies for Unigram and Bigram
(Word2Vec trained from scratch) along with un-
igram and bigram SPRM are fed to a 6-headed
Multi-Head attention (MHA) in each encoder layer
of the transformer separately, resulting in 2 atten-
tion matrices. We introduce 2 learnable parameters
α and β that are used as weight coefficient for the
unigram and bigram matrix respectively. The final
matrix is passed to the decoder layer. The embed-
ding and architecture in depicted in figs. 3 and 4.

7 Experiments and Results
For our base models, each training step takes about
0.5 seconds. We train the base models for a total of
100,000 steps or 12 hours. For the big models like
bigram and SPM-based models, the step time is 1.0
seconds. The big models were trained for 250,000

CMI Range Transformer GPT-2 BERT Conflator
0-10 1018.54 823.71 666.48 492.96
11-20 1210.11 967.01 782.19 501.44
21-30 1401.37 1334.72 1007.34 544.71
31-40 2688.00 2334.73 1007.34 800.62
41-50 4421.22 3905.87 4337.02 1095.12

Average 2147.85 1873.20 1701.49 578

Table 2: Perplexity comparison between different mod-
els based on ranges of CMI. Lower Perplexity is better.

steps (2 days). We use ADAM optimizer with β1 =
0.9, β2 = 0.98 and ϵ = 1e-9. We use the method of
varying the learning rate over the course of training
from Vaswani et al. (2017b).

We use two types of regularization during our
training process: We apply dropout to the output
of each encoder and decoder layer followed by
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Models
Positional representation Bigram F1 (%)

Sin/Cos Index Dynamic SPI Relative RM SPRM

Word2Vec + LSTM ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 56
BERT ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 60

3HA + Sinusoidal PE ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ 74.34
3HA + Dynamic PE ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 75.02
3HA + Relative PE ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ 75.32
3HA + Rotary PE ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗ 76.04

SOTA (PESTO) ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗ 75.6
Unigram SP Relative (USPR) ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ 75
Bigram SP Relative BSPR) ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✓ 75

Unigram SPRoPE + Good Tuning ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✗ 74.6
Unigram SPRoPE ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✗ 75

Conflator (BSPRoPE) ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✓ 76.23
Conflator with StableLM ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✓ 76.11

Conflator with Alpaca ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✓ 75.69
Conflator with LLaMA ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✓ 76.45

Table 3: Results of various position sensitive experiments for Sentiment Analysis on CM text. nHA refers to
n-headed attention.

Models
Positional representation Bigram BLEU

Sin/Cos Index Dynamic SPI Relative RM SPRM

3HA + Sinusoidal PE ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ 17.2
3HA + Dynamic PE ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 17.9
3HA + Relative PE ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ 18.4
3HA + Rotary PE ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗ 24.9

SOTA (IIITH-mrinaldhar) ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗ 28.4
Unigram SP Relative (USPR) ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ 9.8
Bigram SP Relative (BSPR) ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✓ 7.6

Unigram SPRoPE ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✗ 29.1
Conflator (BSPRoPE) ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✓ 25.16

Conflator with StableLM ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✓ 29.06
Conflator with Alpaca ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✓ 29.89

Conflator with LLaMA ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✓ 30.15

Table 4: Results of position sensitive experiments for Machine Translation on CM text. Higher BLEU is better.

Normalization. In addition, we apply dropout and
normalization to the sums of the word embeddings
and the positional encodings in both the encoder
and decoder layers. We use a rate of Pdrop = 0.2.

Intrinsic Evaluation: The perplexity scores
of baseline language models in comparison with
CONFLATOR on code-mixed language modeling
task are shown in 2. We see that our model per-
forms much better than other models.

Extrinsic Evaluation: We evaluate our model
on two downstream tasks: (i) sentiment analysis,
and (ii) machine translation. For sentiment analysis,
(Table. 3) we use the data provided by Patwa et al.
(2020a). CONFLATOR achieves 76.23% F1 score
and outperforms the SOTA (Ali et al., 2022). The
main reason for this is learning SP by aggregating
with the help of rotary positional encoding with a
variable length MHA framework. For the machine
translation (Table 4), we use the data provided by
(Dhar et al., 2018). We achieve 29.1 bleu score
and outperform the SOTA (Dhar et al., 2018) using
the Unigram SPRoPE model which is able to learn
the patterns of language mixing with the help of

switching point based rotary positional encoding.
8 Conclusion & Takeaways
In this work, we report experiments on Hinglish
sentiment analysis and Machine translation prob-
lems through the lens of language modeling. Our
contribution could be seen as following:
(i) We introduce the idea of switching point based
rotary positional encoding. Whenever a switch-
ing point is encountered, we incorporate rotation
change to learn the patterns of language mixing.
(ii) We introduce CONFLATOR, a neural lan-
guage modeling approach for code-mixed lan-
guages. CONFLATOR tries to learn better represen-
tations by means of switching point-based rotary
positional encoding, initially at unigram level and
then at bigram level.
(iii) We empirically prove that CONFLATOR is
learning the patterns of code-mixing which other
models with different positional encodings prove
unsuccessful, as shown in Figure 5.
(iv) It is also noteworthy that CONFLATOR
achieves comparable to SOTA results even without
any pre-trained heavy language model.
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9 Limitations

Although our bigram model achieves SOTA on sen-
timent analysis using unigram, it is slightly behind
the bigram model when it comes to machine trans-
lation, where using bigram at the decoder level
resulted in poor performance. Despite conducting
extensive experiments, there lacks a detailed expla-
nation on why the bigram-based approach for MT
fails. Future experiments will focus on exploring
or understanding the issue of bigrams for MT and
coming up with a solution for the same.
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