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Preface by the General Chair

Welcome to AACL-IJCNLP 2022, the 2nd Conference of the Asia-Pacific Chapter of the Association for
Computational Linguistics and the 12th International Joint Conference on Natural Language Processing!
The conference will be held online on November 20-23, 2022.

AACL-IJCNLP 2022 was originally scheduled to take place in Taipei, Taiwan. We had a discussion with
AACL executive board early this year whether to hold the conference entirely in the virtual mode due to
the strict COVID quarantine rule imposed by the Taiwan government. We later decided to wait until the
mid of June to re-evaluate the situation. In early June, the Central Epidemic Command Center in Taiwan
announced that starting from 15 June 2022, the mandatory quarantine period for international arrivals
in Taiwan would be reduced from 7 to 3 days. After a discussion with both the Program Chairs and
the Local Organization Chair, we decided to wait further until August to see if we could have a hybrid
conference in the hope that Taiwan will open its border fully in November. But we eventually made
a difficult decision to hold the conference entirely online at mid of August as the quarantine rule and
the travel ban imposed on foreign nationals were still in place in Taiwan. This was rather disappointed.
Nevertheless, our Program Chairs have put together a very interesting conference program. I hope to see
many of you joining our conference online.

AACL-IJCNLP 2022 adopted a dual paper submission system that authors can choose to submit their
papers to the "ACL Rolling Review (ARR)" or submit to the softconf submission site in a conventional
way. For the latter, authors had a chance to respond to reviewers’ comments. One innovation our Program
Chairs introduced is to allow authors to run additional experiments and upload revised papers during the
rebuttal period to address reviewers’ comments. This required additional efforts from our reviewers, area
chairs and senior area chairs to check the revised submissions. But it gave authors better opportunities
to address reviewers’ criticism. Another innovation is to introduce poster lightning talks in the main
conference. We hope these efforts will be followed in future conferences.

AACL-IJCNLP 2022 would not be possible without the contribution from a large number of volunteers
who are willing to spend tremendous time and effort. These include the members of our organisation
committee and various people from the ACL community. In particular, I would like to thank:

* the three Program Co-Chairs, Heng Ji, Sujian Li, and Yang Liu, who managed the whole
conference paper submission and review process, and assembled the conference program with
new initiatives such as a debate on “Is there more to NLP than Deep Learning?” and the “7 NLP
Dissertation Topics for Next 7 Years”;

* the Local Organisation Chair, Chia-Hui Chang, who was in charge of venue booking when we
initially planned for a hybrid conference and coordinated the setup of a registration site. She
was supported by a great local organisation team, including the Financial Chair, Lun-Wei Ku, the
Local Arrangement Chair, Kuan-Yu (Menphis) Chen, the Online Conference Coordinator, Richard
Tzong-Han Tsai, and the Registration Chair, Hsiu-Min Chuang;

* the Publication Co-Chairs, Min-Yuh Day, Hen-Hsen Huang, and Jheng-Long Wau,
who prepared the instruction for proceedings compilation and coordinated with our
workshop/tutorial/demo/student research workshop chairs to assemble all papers into our
conference proceedings;

* the Workshop Co-chairs, Soujanya Poria and Chenghua Lin, who selected 5 workshops for the
conference and ensured all the workshops could successfully run virtually;

* the Tutorial Co-Chairs, Miguel A. Alonso and Zhongyu Wei, who selected 6 tutorials to be
presented at the conference and prepared the tutorial abstract proceedings;
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* the Demonstration Co-Chairs, Wray Buntine and Maria Liakata, who manged the demo paper
submission and review process;

* the Special Theme Co-Chairs, Monab Diab and Isabelle Augenstein, who handled paper
submissions to the Special Theme on Fairness in Natural Language Processing;

¢ the Student Research Workshop (SRW) Co-Chairs, Hanqi Yan and Zonghan Yang, who organised
the student workshop under the guidance our our SRW Faculty Co-Advisors, Sebastian Ruder and
Xiaojun Wan;

* the Publicity Co-chairs, Pengfei Liu, Gabriele Pergola,and Ruifeng Xu, who communicated the
information about the conference to the community using various social media channels;

» the Website Chair, Miguel Arana Catania and Yung-Chun Chang, who ensured that the AACL-
IJCNLP 2022 website contains all up-to-date information;

* the Diversity & Inclusion (D&I) Chairs, Ruihong Huang and Jing Li, who have worked tirelessly
to make AACL-IJCNLP 2022 as welcoming and inclusive as possible for all participants. They
were supported by the D&I committee members, Yuji Zhang, Yuanyuan Lei, and Ayesha Qamar;

* the Sponsorship Coordinators, Hiroya Takamura, Wen-Hsiang Lu, and Deyi Xiong, who reached
out institutions and corporations to collect funds to support our conference;

* the Communication Chairs, Zheng Fang, Jiazheng Li, and Xingwei Tan, who stepped in with a
short notice to help Program Co-Chairs deal with a large number of email enquires;

* Priscilla Rasmussen, who stayed as a consultant for ACL, and Jennifer Rachford, the ACL
Business Manager, for helping with various conference matters;

* the Chair of the AACL, Keh-Yih Su, and all the AACL executive board members, that have
provided guidance regarding various decisions;

* the ACL executive board including the President, Tim Baldwin, for linking us with the right
support; the ACL Sponsorship Director, Chris Callison-Burch, for providing guidance to our
Sponsorship Chairs; and the ACL Treasurer, David Yarowsky, who negotiated a contract with
Underline for supporting our virtual conference;

* Rich Gerber from Softconf, who set up the AACL-IJCNLP conference submission site, has always
been responsive to our queries.

I would also like to express gratitude to our sponsors, whose generous support has been invaluable in
building up AACL-IJCNLP to what it is now. These include our Diamond-level sponsors - GTCOM,
LivePerson, Tourism Bureau, the Ministry of Science and Technology, the Ministry of Education and
National Central University in Taiwan; our Platinum-level sponsor - Baidu; our Gold-level sponsors -
Bloomberg; and our Bronze-level sponsors - Adobe.

Finally, I would like to thank all authors, senior area chairs, area chairs, reviewers, invited speakers and
panelists, the volunteers organizing and chairing various sessions in the conference, and all attendees,
for making this hopefully another successful NLP conference!

Hope you all enjoy AACL-IJCNLP 2022!

AACL-IJCNLP 2022 General Chair
Yulan He, King’s College London, UK
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Preface by the Program Committee Co-Chairs

We welcome you to AACL-IJCNLP 2022, the 2nd Conference of the Asia-Pacific Chapter of the
Association for Computational Linguistics (AACL) and the 12th International Joint Conference on
Natural Language Processing (IJCNLP)! Due to the strict COVID quarantine rule imposed by the
local government, AACL-IJCNLP 2022 has to be held fully virtual. However, conference organizers
have worked very hard to simulate an in-person meeting setting, thanks to the relatively mature virtual
conference infrastructures that have been built by our community.

AACL-IJCNLP 2022 has utilized two submission platforms SoftConf and ACL Rolling Review (ARR)-
OpenReview, and received 554 submissions in total (518 from SoftConf and 36 from ARR) for the main
conference. We have accepted 147 papers (87 long and 60 short) for the main conference and 44 papers
for the Findings. The submissions came from all over the world. Among the 191 accepted papers,
according to the information of the main contact, 84 were from the Asia-Pacific region (23 from China
mainland, 18 from India, 16 from Japan, 7 from South Korea, 5 from Australia, 3 from Singapore, 3 from
Taiwan, 3 from Bangladesh, 2 from New Zealand, 1 from Sri Lanka, 1 from Nepal, 1 from Malaysia,
and 1 from HongKong), 42 were from the America (36 from the USA, 5 from Canada, 1 from Chile),
and 65 from Europe and the Middle East (18 from the UK, 12 from Germany, 9 from France, 5 from
Netherlands, 4 from Switzerland, 4 from Italy, 3 from Norway, 2 from Egypt, 2 from Spain, 1 from
Estonia, 1 from Denmark, 1 from Finland,1 from Iron, 1 from Bulgaria and 1 from Czech).

We have developed the following new attempts this year for paper submission:

* We created a new special theme "Fairness in Natural Language Processing”.

* We added a new function during paper rebuttal to allow authors to upload their revised papers so
that some responses can be more clearly presented and elaborated.

AACL-IJCNLP2022 does have a great program, thanks to all of you! We have put up a very exciting
program with many new plenary sessions:

* We have invited four wonderful keynote speakers this year: Chris Callison-Burch (University of
Pennsylvania), Eduard Hovy (University of Melbourne and Carnegie Mellon University), Juanzi
Li (Tsinghua University), and Prem Natarajan (Amazon Alexa Al).

* A promised-to-be-heated debate: "Is there more to NLP than Deep Learning?" between "Yes”
team: Eduard Hovy (Team Lead), Kathleen McKeown, Dan Roth, Eric Xing and "No” team:
Kyunghyun Cho (Team Lead), Danqi Chen, Manling Li, Graham Neubig, to be moderated by
Rada Mihalcea.

» “7 NLP Dissertation Topics for Next 7 Years” by Kevin Duh, Fei Huang, Smaranda Muresan,
Preslav Nakov, Nanyun Peng, Joel Tetreault and Lu Wang.

* A panel on the special theme "Fairness in Natural Language Processing”, moderated by our special
theme chairs Mona Diab and Isabelle Augenstein.

* A Global Women in NLP session "Finding Your Purpose, Findign Your Voice - Professional

Growth in the Age of Deep AI" led by Pascale Fung.

We are very grateful for all of these speakers and panelists on accepting our invitations! We will also
have a special best paper award session and a lighting talk session for posters, following the successes of
previous ACL and NAACL conferences. The excellence of the overall AACL-IJCNLP2022 program is
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thanks to all the chairs and organizers. We especially thank the 47 Senior Area Chairs, 84 Area Chairs
and reviewers for their hard work. We are grateful to Amanda Stent, Goran Glavas, Graham Neubig,
and Harold Rubio for their invaluable support in the commitment of papers reviewed by ARR to AACL-
IJCNLP 2022. We appreciate Rich Gerber’s prompt responses and support whenever we request any fix
or adding new functions. It has been an enormous privilege for us to see the scientific advances that will
be presented at this conference. Congratulations to all authors!

We hope you will enjoy AACL-IJCNLP 2022, and look forward to seeing many of you online!

AACL-IJCNLP 2020 Program Committee Co-Chairs

Heng Ji (University of Illinois Urbana-Champaign and Amazon Scholar)
Yang Liu (Tsinghua University)

Sujian Li (Peking University)
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Preface by the Local Chair

Since winning the bid for organising AACL-IJCNLP 2022 conference in Taiwan, the local team has
worked hard to get subsidies from Ministry of Science and Technology, Ministry of Education, Bureau
of Foreign Trade, and National Central University, Taiwan. We also planned to co-host AACL-IJCNLP
2022 with ROCLING 2022, the annual meeting of the Association for Computational Linguistics of
Chinese Language Processing in Taiwan. We, Yung-Chun Chang, Kuan-Yu (Menphis) Chen and I,
envisioned that even if only half the registrants can come to Taiwan due to COVID-19, the conference
will still be lively with ROCLING participants.

Even at the end of June, we remained optimistic that a hybrid conference would be possible. However,
Taiwan’s border control were not lifted and passengers entering Taiwan still needed to be quarantined
for three plus four days after August, which will deter most international participants. Thus, we had to
adopt a purely online mode at last.

It was a great experience to co-host the AACL-IJCNLP 2022 conference with the international team. On
behalf of the local organising team: Yung-Chun Chang, Kuan-Yu (Menphis) Chen, Hsiu-Min Chuang,
Min-Yuh Day, Hen-Hsen Huang, Lun-Wei Ku, Wen-Hsiang Lu, Tzong-Han Tsai, and Jheng-Long Wu,
we would like to thank our general chair, Yulan He, program co-chairs, Heng Ji, Yang Liu, Sujian Li, and
the international team. Yulan’s leadership and the international team made the conference go smoothly.
Without you, it would be impossible to accomplish so many tasks. I also learned a lot from it. Hope we
can meet physically in the near future.

AACL-IJCNLP 2022 Local Chair
Chia-Hui Chang (National Central University)

vii






Organizing Committee

General Chair
Yulan He, King’s College London, UK

Program Committee Co-Chairs
Heng Ji, Unversity of Illinois at Urbana-Champaign, USA
Yang Liu, Tsinghua University, China
Sujian Li, Peking Unversity, China

Local Organisation Chair
Chia-Hui Chang, National Central University, Taiwan

Workshop Co-Chairs
Soujanya Poria, Singapore University of technology and Design, Singapore
Chenghua Lin, University of Sheffield, UK

Tutorial Co-Chairs
Miguel A. Alonso, Universidade da Corufia, Spain
Zhongyu Wei, Fudan University, China

Demo Co-Chairs
Wray Buntine, VinUniversity, Vietnam
Maria Liakata, Queen Maty University of London, UK

Student Research Workshop Co-Chairs
Hangi Yan, University of Warwick, UK
Zonghan Yang, Tisnghua University, China

Student Research Workshop Faculty Co-Advisors
Sebastian Ruder, DeepMind, Uk
Xiaojun Wan, Peking University, China

Publication Co-Chairs
Min-Yuh Day, National Taipei University, Taiwan
Hen-Hsen Huang, Academia Sinica, Taiwan
Jheng-Long Wu, Soochow University, Taiwan

Publicity Co-Chairs
Pengfei Liu, Carnegie Mellon University, USA
Ruifeng Xu, Harbin Institute of Technology, Shenzhen, China
Garbriele Pergola, University of Warwick, UK

iX



Diversity & Inclusion Co-Chairs
Ruihong Huang, Texas A&M University, USA
Jing Li, Hong Kong Polytechnic University, China

Financial Chair
Lun-Wei Ku, Academia Sinca, Taiwan

Local Arrangement Chair
Kuan-Yu (Menphis) Chen, National Taiwan University of Science and Technology, Taiwan

Online Conference Coordinator
Richard Tzong-Han Tsai, National Central University, Taiwan

Sponsorship Co-ordinators
Wen-Hsiang Lu, National Chiao Tung University, Taiwan
Hiroya Takamura, Tokyo Institute of Technology, Japan
Deyi Xiong, Tianjin University, China

Webmaster
Yung-Chun Chang, Taipei Medical University, Taiwan
Miguel Arana-Catania, University of Warwick, UK

Communication Chairs
Xingwei Tan, University of Warwick, UK
Zheng Fang, University of Warwick, UK
Jiazheng Li, University of Warwick, UK

Special Theme co-chairs
Mona Diab, Facebook AI, USA
Isabelle Augenstein, University of Copenhagen, Denmark



Program Committee

Program Committee Co-chairs

Heng Ji, University of Illinois at Urbana-Champaign, USA
Sujian Li, Peking University, China

Yang Liu, Tsinghua University, China

Computational Social Science and Cultural Analytics
Senior Area Chairs: Chenhao Tan, Binyang Li
Area Chairs: Kenny Joseph, Fei Li, Xu Tong

Dialogue and Interactive Systems
Senior Area Chairs: Mahdi Namzifar, Spandana Gella
Area Chairs: Andrea Madotto, Yi-Chia Wang, Saab Mansour, Lili Mou, Saleh Soltan

Discourse and Pragmatics
Senior Area Chairs: Vincent Ng, Yang Liu
Area Chairs: Hen-Hsen Huang, Naoya Inoue, Sharid Lodiciga

Generation
Senior Area Chairs: Meng Jiang, Nanyun Peng, Victoria Lin
Area Chairs: Qingbao Huang, Lianhui Qin, Chenguang Zhu

Information Extraction
Senior Area Chairs: Marius Pasca, Radu Florian
Area Chairs: Qiang Ning, Minjoon Seo

Information Retrieval and Text Mining
Senior Area Chairs: Jing Jiang, Scott Wen-tau Yih, Yixin Cao
Area Chairs: Xu Chen, Muhao Chen, Xiang Wang, Weinan Zhang, Fuli Feng

Interpretability and Analysis of Models for NLP
Senior Area Chairs: Xipeng Qiu, Kevin Duh
Area Chairs: Jasmijn Bastings, Hassan Sajjad, Baotian Hu

Language Modeling
Senior Area Chairs: Han Zhao, Lena Voita
Area Chairs: Ilia Kulikov, Marjan Ghazvininejad, Wenhu Chen

Machine Learning for NLP
Senior Area Chairs: William Wang , Zhiting Hu, Bo Li
Area Chairs: Zichao Yang, Hao Peng, Xin Eric Wang, Boxin Wang, Kai-Wei Chang

Machine Translation and Multilinguality
Senior Area Chairs: Fei Huang, Yang Feng, Sid Patwardhan
Area Chairs: Boxing Chen, Jun Xie, Weihua Luo, Kehai Chen, Junhui Li, Marta R. Costa-jussa

NLP Applications
Senior Area Chairs: Deyi Xiong, Preslav Nakov, Tao Ge
Area Chairs: Zhouhan Lin, Lei Sha, Karin Verspoor, Christian Hardmeier, Yoshi Suhara

Phonology, Morphology, and Word Segmentation
Senior Area Chairs: Mark Hasegawa-Johnson, Peng Li
Area Chairs: Hai Zhao, Sakriani Sakti, Yan Song, Suma Bhat

X1



Question Answering
Senior Area Chairs: Avi Sil , Dian Yu
Area Chairs: Mo Yu, Kai Sun, Jing Liu, Yiming Cui, Jaydeep Sen, Qiang Ning

Resources and Evaluation
Senior Area Chairs: Joel Tetreault, Masayuki Asahara
Area Chairs: Mamoru Komachi, Courtney Napoles, Anne Lauscher, Sudha Rao

Semantics
Senior Area Chairs: Jonathan May, Wenbin Jiang
Area Chairs: Zheng Lin, Meishan Zhang, Mingxuan Wang, Zhiyang Teng

Sentiment Analysis, Stylistic Analysis, and Argument Mining
Senior Area Chairs: Shuai Wang, Alexandra Balahur
Area Chairs: Rui Xia, Serena Villata, Lun-Wei Ku, Ruifeng Xu

Speech and Multimodality Processing
Senior Area Chairs: Nancy Chen, JiaJun Zhang
Area Chairs: Hung Le, Hungyi Lee, Hanwang Zhang, Florian Metz, Jing Liu, Haoran Li, Tianzhu Zhang

Summarization
Senior Area Chairs: Ziqgiang Cao, Fei Liu
Area Chairs: Wenhao Wu, Ruifeng Yuan

Syntax: Tagging, Chunking and Parsing
Senior Area Chairs: Barbara Plank, Kewei Tu
Area Chairs: Carlos Gomez-Rodriguez, Joakim Nivre, Yusuke Miyao

Theme: “Fairness in Natural Language Processing”

Senior Area Chairs: Margaret Mitchell, Hal Daumé 111

Area Chairs: Su Lin Blodgett, Emily Dinan, Kai-Wei Chang, Kellie Webster, Marta R. Costa-jussa,
Timothy Baldwin, Zeerak Talat, Tanmoy Chakraborty, Yun-Nung Chen

Linguistic diversity
Senior Area Chairs: Steven Bird, Constantine Lignos
Area Chairs: Alexis Palmer, Antonios Anastasopoulos

xii



Reviewers

Sadaf Abdul Rauf, Sallam Abualhaija, Piush Aggarwal, Chunhui Ai, Akiko Aizawa, Moham-
mad Akbari, Md. Shad Akhtar, Ahmad Al Sallab, Fahad AlGhamdi, Bashar Alhafni, Hamed Alhoori,
Ahmed Ali, Hend Al-Khalifa, Hussein Al-Olimat, Miguel A. Alonso, Shehzadi Ambreen, Haozhe An,
Jisun An, Antonios Anastasopoulos, M. Hidayath Ansari, Rahul Aralikatte, Yuki Arase, Fawaz Arfaj,
Arturo Argueta, Arnav Arora, Masayuki Asahara, Aitziber Atutxa Salazar, Isabelle Augenstein, Lukasz
Augustyniak, Abhijeet Awasthi, Parul Awasthy, Fahima Ayub Khan

NGUYEN BACH, Xuefeng Bai, JinYeong Bak, Alexandra Balahur, Timothy Baldwin, Ramy Baly, Ritwik
Banerjee, rong bao, Mohamad Hardyman Barawi, Maria Barrett, Christine Basta, Mohaddeseh Bastan,
Jasmijn Bastings, Lee Becker, Emily M. Bender, Gibor Berend, Sabine Bergler, Gabriel Bernier-Colborne,
Thales Bertaglia, Dario Bertero, Chandra Bhagavatula, Suma Bhat, Parminder Bhatia, Arnab Bhattacharya,
Sudha Bhingardive, Chris Biemann, Yi Bin, Steven Bird, Debmalya Biswas, Johanna Bjorklund, Nate
Blaylock, Su Lin Blodgett, Michael Bloodgood, Victoria Bobicev, Sravan Bodapati, Nadjet Bouayad-Agha,
Florian Boudin, Pierrette Bouillon, Zied Bouraoui, Siddhartha Brahma, Ana Brassard, Wray Buntine

José G. C. de Souza, Aoife Cahill, Deng Cai, Agostina Calabrese, Chris Callison-Burch, John Calvo
Martinez, William Campbell, Shuyang Cao, Yang Trista Cao, Yixin Cao, Zigiang Cao, Spencer Caplan,
Giovanni Cassani, Taylor Cassidy, Damir Cavar, Mauro Cettolo, Joyce Chai, Tanmoy Chakraborty, Yllias
Chali, Hou Pong Chan, Ashis Chanda, Senthil Chandramohan, Kai-Wei Chang, Rochana Chaturvedi,
Jiahao Chen, John Chen, Hsin-Hsi Chen, Xiaoli Chen, Zhousi Chen, Xiang Chen, Qian Chen, Luoxin
Chen, Chung-Chi Chen, Kai Chen, Yun-Nung Chen, Yue Chen, Qiang Chen, Fuxiang Chen, Xinchi Chen,
Kuan-Yu Chen, Boxing Chen, Nancy Chen, Xu Chen, Muhao Chen, Wenhu Chen, Kehai Chen, Dhivya
Chinnappa, Luis Chiruzzo, Hyundong Cho, Eleanor Chodroff, KEY-SUN CHOI, Monojit Choudhury,
Chenhui Chu, Hsiu-Min Chuang, Jin-Woo Chung, Abu Nowshed Chy, Elizabeth Clark, Marta R. Costa-
juss, Josep Crego, Alina Maria Cristea, Yiming Cui, Rossana Cunha

Daniel Dakota, Ankit Dangi, Falavigna Daniele, Aswarth Abhilash Dara, Avisha Das, Sarthak Dash,
Pradeep Dasigi, Vidas Daudaravicius, Hal Daumé III, Gaél de Chalendar, Renato De Mori, Mathieu
Dehouck, Luciano Del Corro, Vera Demberg, Michael Denkowski, Sunipa Dev, Chris Develder, Kuntal
Dey, Jwala Dhamala, Kaustubh Dhole, Mona Diab, Emily Dinan, Haibo Ding, Chenchen Ding, Nemanja
Djuric, Simon Dobnik, Tobias Domhan, Miguel Domingo, Daxiang Dong, Li Dong, Shuyan Dong,
Qiangian Dong, Zi-Yi Dou, Rotem Dror, Aleksandr Drozd, Yuhao Du, Cunxiao Du, Junwen Duan, Pablo
Duboue, Kevin Duh, Jonathan Dunn

Hiroshi Echizen’ya, Sauleh Eetemadi, Steffen Eger, Ismail El Maarouf, Akiko Eriguchi, Liana Ermakova,
Andrea Esuli, Saad Ezzini

Marzieh Fadaee, Wei Fan, Michael Firber, Chen Feiyang, Fuli Feng, Yang Feng, Paulo Fernandes, Daniel
Ferndndez-Gonzélez, Elisabetta Fersini, Mauajama Firdaus, Margaret Fleck, Radu Florian, Karén Fort,
Thomas Frangois, Dayne Freitag, Jesse Freitas, Peng Fu, Atsushi Fujita

Byron Galbraith, Bjorn Gambick, Leilei Gan, Xibin Gao, Wei Gao, Yuze Gao, Yang Gao, Utpal Garain,
Miguel Angel Garcia-Cumbreras, Guillermo Garrido, Susan Gauch, Tao Ge, Spandana Gella, Debela
Gemechu, Carlos Gemmell, lei geng, Marjan Ghazvininejad, Kripabandhu Ghosh, Michael Giancola, Jose
Manuel Gomez-Perez, Carlos Gémez-Rodriguez, Samuel Gonzalez-Lopez, Jesis Gonzédlez-Rubio, Colin
Gordon, Isao Goto, Navita Goyal, Natalia Grabar, Floriana Grasso, Eleni Gregoromichelaki, Shuhao Gu,
Yi Guan, Tunga Giingor, Peiming Guo, Vivek Gupta

Udo Hahn, Zhen Hai, Felix Hamborg, Michael Hammond, Na-Rae Han, Xudong Han, Jie Hao, Yongchang
Hao, Junheng Hao, Rejwanul Haque, Christian Hardmeier, John Harvill, Sadid A. Hasan, Maram Hasanain,
Mark Hasegawa-Johnson, Hiroaki Hayashi, Yoshihiko Hayashi, Shirley Anugrah Hayati, Bin He, Jie
He, Delia Irazi Hernandez Farias, Tsutomu Hirao, Tosho Hirasawa, Keikichi Hirose, Nora Hollenstein,

Xiil



Ales Horak, Dirk Hovy, Shu-Kai Hsieh, Chan-Jan Hsu, Yi-Li Hsu, Po Hu, Qinmin Vivian Hu, Huang Hu,
han hu, zhiyuan hu, Pengwei Hu, Zhiting Hu, Baotian Hu, Hang Hua, Kaiyu Huang, Jiangping Huang,
Chung-Chi Huang, Fei Huang, Hen-Hsen Huang, Qingbao Huang, Muhammad Humayoun

Ebuka Ibeke, Adrian Iftene, Filip Ilievski, Dmitry Ilvovsky, Koji Inoue, Naoya Inoue, Takashi Inui, Hitoshi
Isahara, Etsuko Ishii, Hayate Iso, Julia Ive

Mona Jalal, Abhik Jana, Hyeju Jang, Zongcheng Ji, Xiaowen Ji, Yuxiang Jia, Lavender Jiang, Chengyue
Jiang, Jyun-Yu Jiang, Shuoran Jiang, Zhuoxuan Jiang, Meng Jiang, Jing Jiang, Jing Jiang, Wenbin Jiang,
Zhanming Jie, Lifeng Jin, Baoyu Jing, Kristiina Jokinen, Gareth Jones, Kenneth Joseph, Dhanya Jothimani

Vimal Kumar K, Besim Kabashi, Indika Kahanda, Tomoyuki Kajiwara, Surya Kallumadi, Lis Kanashiro
Pereira, Diptesh Kanojia, Mladen Karan, Borje Karlsson, Shubhra Kanti Karmaker, Sanjeev Kumar Karn,
Omid Kashefi, Daisuke Kawahara, arefeh kazemi, Casey Kennington, Katia Lida Kermanidis, Salam
Khalifa, Halil Kilicoglu, Sunghwan Mac Kim, Hwichan Kim, David King, Tracy Holloway King, Julien
Kloetzer, Jordan Kodner, Mamoru Komachi, Kanako Komiya, Myoung-Wan Koo, Mikhail Kopotev, Valia
Kordoni, Yannis Korkontzelos, Katsunori Kotani, Venelin Kovatchev, Pavel Kral, Satyapriya Krishna,
Nikhil Krishnaswamy, Lun-Wei Ku, Roland Kuhn, Ilia Kulikov, Saurabh Kulshreshtha, Murathan Kurfali,
Haewoon Kwak

Hemank Lamba, Phillippe Langlais, Ekaterina Lapshinova-Koltunski, Stefan Larson, Anne Lauscher,
Alberto Lavelli, Julia Lavid-Lépez, Phong Le, Hung Le, Claudia Leacock, Young-Suk Lee, Lung-Hao Lee,
Roy Ka-Wei Lee, Hung-yi Lee, Gurpreet Lehal, Yang Lei, Yikun Lei, Jodo Leite, Alessandro Lenci, Yves
Lepage, Tomer Levinboim, Gina-Anne Levow, Xiang Li, Yanyang Li, Zhi Li, Si Li, Fei Li, Bangzheng
Li, Jinpeng Li, Haibo Li, Liangyou Li, Yitong Li, Zuchao Li, Juan Li, Sheng Li, Moxin Li, mingda Li,
Xiaonan Li, Jiaqi Li, Junyi Li, Weikang Li, Dongfang Li, Tao Li, Yuan Li, Binyang Li, Bo Li, Shuangyin
Li, Junhui Li, Baoli LI, Peng Li, Haoran Li, Vladislav Lialin, Chao-Chun Liang, Jindfich Libovicky,
Mohamed Lichouri, Constantine Lignos, ZhiChao Lin, Chu-Cheng Lin, Xi Victoria Lin, Zhouhan Lin,
Zheng Lin, Yuan Ling, Marina Litvak, Ting Liu, Yiqun Liu, Bang Liu, Jiangming Liu, Han Liu, Maofu
Liu, Zhuang Liu, Zitao Liu, Nelson F. Liu, Tengxiao Liu, Zhiyuan Liu, Qun Liu, Dexi Liu, Changsong
Liu, Fenglin Liu, Guangyi Liu, Yue Liu, Yongbin Liu, Yang Liu, Tianyi Liu, Fei Liu, Jing Liu, Jing
Liu, Sharid Lodiciga, Robert L Logan IV, Usha Lokala, Yunfei Long, Henrique Lopes Cardoso, Jaime
Lorenzo-Trueba, Natalia Loukachevitch, Ismini Lourentzou, Yanbin Lu, Sidi Lu, Di Lu, Yichao Lu, Ling
Luo, Wencan Luo, Weihua Luo, qi Lv

Xuezhe Ma, Liqun Ma, Jing Ma, Zhengrui Ma, Long-Long Ma, Nishtha Madaan, Aman Madaan, Andrea
Madotto, Peter Makarov, Andreas Maletti, Valentin Malykh, Saab Mansour, Jianguo Mao, Mitchell
Marcus, Edison Marrese-Taylor, Eugenio Martinez-Cdmara, Bruno Martins, David Martins de Matos,
Takuya Matsuzaki, Jonathan May, Sahisnu Mazumder, Stephen McGregor, Bridget Mclnnes, Ninareh
Mehrabi, Rui Meng, Fanchao Meng, Kourosh Meshgi, Florian Metze, Ivan Vladimir Meza Ruiz, Meryem
M’hamdi, Haitao Mi, Stuart Middleton, Margot Mieskes, Claudiu Mihdild, Erxue Min, Koji Mineshima,
SeyedAbolghasem Mirroshandel, Abhijit Mishra, Margaret Mitchell, Sudip Mittal, Yusuke Miyao, Daniela
Moctezuma, Ashutosh Modi, Alaa Mohasseb, Diego Molla, Manuel Montes, Hajime Morita, Larry Moss,
Lili Mou, Ahmed Mourad, Diego Moussallem, Pramod Kaushik Mudrakarta, Matthew Mulholland, Emir
Munoz, Saliha Muradoglu, Yugo Murawaki

Masaaki Nagata, Tetsuji Nakagawa, Preslav Nakov, Mahdi Namazifar, Courtney Napoles, Diane Napoli-
tano, Vincent Ng, Axel-Cyrille Ngonga Ngomo, Kiet Nguyen, Nhung Nguyen, Jian Ni, Eric Nichols,
Irina Nikishina, Qiang Ning, Takashi Ninomiya, Masaaki Nishino, Sergiu Nisioi, Tong Niu, Joakim Nivre,
Pierre Nugues

Tim Oates, Alexander O’ Connor, Maciej Ogrodniczuk, Tsuyoshi Okita, Oleg Okun, Antoni Oliver, Ethel
Ong, Abigail Oppong, Naoki Otani, Hiroki Ouchi

X1V



Deepak P, Avinesh P.V.S, Ankur Padia, Chester Palen-Michel, Alexis Palmer, Alessio Palmero Aprosio,
Youcheng Pan, Yi-Cheng Pan, Nikos Papasarantopoulos, Ivandré Paraboni, Kunwoo Park, Lucy Park,
Marius Pasca, Vaishnavi Patil, Siddharth Patwardhan, Sarah Payne, Hengzhi Pei, Wei Peng, Nanyun
Peng, Hao Peng, Gerald Penn, Gabriele Pergola, Scott Piao, Flammie Pirinen, Barbara Plank, Andrei
Popescu-Belis, Fred Popowich, Christopher Potts, Morteza Pourreza Shahri, Animesh Prasad, Emily
Prud’hommeaux

Chen Qian, Lianhui Qin, Xinying Qiu, Long Qiu, Xipeng Qiu, Chen Qu

Alexandre Rademaker, Sunny Rai, Taraka Rama, Lakshmi Ramachandran, Shihao Ran, Surangika
Ranathunga, Peter A. Rankel, Sudha Rao, Ari Rappoport, Traian Rebedea, Hanumant Redkar, Navid Rek-
absaz, Yuqi Ren, Corentin Ribeyre, Tharathorn Rimchala, Annette Rios, Anthony Rios, Paul Rodrigues,
Lina M. Rojas Barahona, Andrew Rosenberg, Sophie Rosset, Bryan Routledge, Irene Russo

Fatiha Sadat, Sylvie Saget, Monjoy Saha, Saurav Sahay, Sunil Kumar Sahu, Hassan Sajjad, Sakriani
Sakti, Elizabeth Salesky, Jonne Saleva, Avneesh Saluja, German Sanchis-Trilles, Hugo Sanjurjo-Gonzélez,
Ananth Sankar, Diana Santos, Bishal Santra, Soumya Sanyal, Naomi Saphra, Kamal Sarkar, Anoop
Sarkar, Shota Sasaki, Felix Sasaki, Ryohei Sasano, Asad Sayeed, Shigehiko Schamoni, Helmut Schmid,
William Schuler, Lane Schwartz, Nasredine Semmar, Gregory Senay, Minjoon Seo, Lei Sha, Swair
Shah, Cory Shain, Mingyue Shang, Yunfan Shao, Soumya Sharma, Ravi Shekhar, Tianxiao Shen, Bowen
Shen, Tianhao Shen, Yuming Shen, Aili Shen, Michael Sheng, Tian Shi, Yangyang Shi, xiaodong shi,
Tomohide Shibata, Yutaro Shigeto, Takahiro Shinozaki, Raphael Shu, Chenglei Si, Maryam Siahbani, Avi
Sil, Carina Silberer, Diego Silva, Stefano Silvestri, Patrick Simianer, Dan Simonson, Edwin Simpson,
Keshav Singh, Sahib Singh, Amando Jr. Singun, Olivier Siohan, Kevin Small, Luca Soldaini, Saleh
Soltan, Xingyi Song, Yan Song, Dongjin Song, Siqi Song, Yan Song, Anna Sotnikova, Marlo Souza, Felix
Stahlberg, Efstathios Stamatatos, Shane Steinert-Threlkeld, Pontus Stenetorp, Kristina Striegnitz, Keh-Yih
Su, Aparna Subramanian, Katsuhito Sudoh, Yoshi Suhara, Derwin Suhartono, Ming Sun, Shichao Sun,
Kai Sun

Zeerak Talat, George Tambouratzis, Akihiro Tamura, Fei Tan, Bowen Tan, Chenhao Tan, Yuka Tateisi,
Marta Tatu, Tatiane Tavares, Selma Tekir, Irina Temnikova, Zhiyang Teng, Joel Tetreault, Krishnaprasad
Thirunarayan, Yufei Tian, Erik Tjong Kim Sang, Takenobu Tokunaga, Marwan Torki, Samia Touileb,
Trang Tran, Aashka Trivedi, Yuen-Hsien Tseng, Kewei Tu

Kiyotaka Uchimoto, L. Alfonso Urefia-Lépez, Masao Utiyama

Rob van der Goot, Oskar van der Wal, Clara Vania, Shikhar Vashishth, Rakesh Verma, Karin Verspoor,
David Vilar, Jests Vilares, Martin Villalba, Serena Villata, Esau Villatoro-Tello, Elena Voita, Thuy Vu,
Henning Wachsmuth

Xinhao Wang, Han Wang, Junfeng Wang, Haoyu Wang, Hongfei Wang, Qian Wang, Xin Wang, Yanshan
Wang, Ping Wang, Hsin-Min Wang, Lei Wang, zili Wang, Rui Wang, Hao Wang, Tong Wang, Weiyue
Wang, Wei Wang, Wei Wang, Jin Wang, Xintong Wang, Yufei Wang, Zhaowei Wang, Xiaojie WANG,
Guangtao Wang, Jianzong Wang, Xuezhi Wang, Hao Wang, Wenqi Wang, William Yang Wang, Shuai
Wang, Yi-Chia Wang, Yi-Chia Wang, Xiang Wang, Xin Wang, Boxin Wang, Mingxuan Wang, Shuo
Wang, Xiting Wang, Koichiro Watanabe, Taro Watanabe, Shinji Watanabe, Roger Wattenhofer, Kellie
Webster, Feng Wei, Xiangpeng Wei, Charles Welch, Simon Wells, Derry Tanti Wijaya, Gijs Wijnholds,
Rodrigo Wilkens, Adina Williams, Jennifer Williams, Tak-sum Wong, Kam-Fai Wong, Alina Wréblewska,
Zhiyong Wu, Xianchao Wu, Chien-Sheng Wu, Fangzhao Wu, Stephen Wu, Ji Wu, Mengyue Wu, Wenhao
Wu

Heming Xia, Rui Xia, Ruicheng Xian, Min Xiao, Yuqing Xie, Yiqing Xie, Jun Xie, Yujie Xing, Zhenchang
Xing, Chao Xiong, Deyi Xiong, Chejian Xu, Benfeng Xu, Yueshen Xu, Song Xu, Canwen Xu, Qiongkai
Xu, Hongfei Xu, Ruifeng Xu, Dongkuan Xu, Tong Xu

XV



Shuntaro Yada, Ming Yan, Xu Yan, Mugiao Yang, Longfei Yang, Haiqin Yang, Eugene Yang, Wei Yang,
Ze Yang, Erguang Yang, Ziqing Yang, Zichao Yang, Roman Yangarber, Tae Yano, Wenlin Yao, Kaisheng
Yao, Wen-tau Yih, Lang Yin, Seunghyun Yoon, Masaharu Yoshioka, Liang-Chih Yu, Heng Yu, Dian Yu,
Mo Yu, Zhaoquan Yuan, Ruifeng Yuan, Chuan Yue, Frances Yung

Fadi Zaraket, Zhiyuan Zeng, Xingshan Zeng, Qingcheng Zeng, Torsten Zesch, Deniz Zeyrek, Shuang
(Sophie) Zhai, Yuxiang Zhang, Zeyu Zhang, Zizheng Zhang, Xiaohan Zhang, Chengzhi Zhang, Jingsen
Zhang, Ningyu Zhang, Guangwei Zhang, Dongyu Zhang, Zhuosheng Zhang, Ke Zhang, Biao Zhang,
Jinnian Zhang, Chenwei Zhang, Shuai Zhang, Jiajun Zhang, Wei-Nan Zhang, Meishan Zhang, Hanwang
Zhang, tianzhu zhang, Hai Zhao, Chao Zhao, Jieyu Zhao, Xiaobing Zhao, Dongyan Zhao, Lin Zhao,
Sendong Zhao, Han Zhao, Rui Zheng, Xiaoqing Zheng, Wenxuan Zhou, Qiang Zhou, Jingbo Zhou, Lina
Zhou, Su Zhu, Junnan Zhu, Shaolin Zhu, Chenguang Zhu, Caleb Ziems, Michael Zock, Bowei Zou, Vilém
Zouhar, Arkaitz Zubiaga, Ingrid Zukerman

XVi



Table of Contents

Chasing the Tail with Domain Generalization: A Case Study on Frequency-Enriched Datasets
Manoj Kumar, Anna Rumshisky and Rahul Gupta............ ... .. ... ... ... 1

Double Trouble: How to not Explain a Text Classifier’s Decisions Using Counterfactuals Synthesized by
Masked Language Models?
Thang Pham, Trung Bui, Long Mai and Anh Nguyen...................coiiiiiiiinennnn.. 12

An Empirical Study on Cross-X Transfer for Legal Judgment Prediction
Joel Niklaus, Matthias Stiirmer and Ilias Chalkidis ........... ... ... o i .. 32

CNN for Modeling Sanskrit Originated Bengali and Hindi Language
Chowdhury Rahman, MD. Hasibur Rahman, Mohammad Rafsan, Mohammed Eunus Ali, Samiha
Zakir and Rafsanjani Muhammod . ............ . i 47

Leveraging Key Information Modeling to Improve Less-Data Constrained News Headline Generation
via Duality Fine-Tuning
Zhuoxuan Jiang, Lingfeng Qiao, di yin, Shanshan Fengand BoRen ......................... 57

Systematic Evaluation of Predictive Fairness
Xudong Han, Aili Shen, Trevor Cohn, Timothy Baldwin and Lea Frermann................... 68

Graph-augmented Learning to Rank for Querying Large-scale Knowledge Graph
Hanning Gao, Lingfei Wu, Po Hu, Zhihua Wei, Fangli Xuand BoLong...................... 82

An Embarrassingly Simple Approach for Intellectual Property Rights Protection on Recurrent Neural
Networks
Zhi Qin Tan, Hao Shan Wong and Chee Seng Chan .............. ... ... i ... 93

WAX: A New Dataset for Word Association eXplanations
Chunhua Liu, Trevor Cohn, Simon De Deyne and Lea Frermann ........................... 106

Missing Modality meets Meta Sampling (M3S): An Efficient Universal Approach for Multimodal Senti-
ment Analysis with Missing Modality
Haozhe Chi, Minghua Yang, Junhao Zhu, Guanhong Wang and Gaoang Wang ............... 121

SPARQL-to-Text Question Generation for Knowledge-Based Conversational Applications
Gwénolé Lecorvé, Morgan Veyret, Quentin Brabant and Lina M. Rojas Barahona............ 131

S+PAGE: A Speaker and Position-Aware Graph Neural Network Model for Emotion Recognition in
Conversation
CHEN LIANG, JING XU, YANGKUN LIN, CHONG YANG and YONGLIANG WANG..... 148

Grammatical Error Correction Systems for Automated Assessment: Are They Susceptible to Universal
Adversarial Attacks?
Vyas Raina, Yiting Luand Mark Gales ........ ... ... i i 158

This Patient Looks Like That Patient: Prototypical Networks for Interpretable Diagnosis Prediction from
Clinical Text

Betty van Aken, Jens-Michalis Papaioannou, Marcel Naik, Georgios Eleftheriadis, Wolfgang Nejdl,
Felix Gers and Alexander LOESer . .. ... e e 172

Xvil



Cross-lingual Similarity of Multilingual Representations Revisited
Maksym Del and Mark Fishel. . .......... 185

Arabic Dialect Identification with a Few Labeled Examples Using Generative Adversarial Networks
Mahmoud Yusuf, Marwan Torki and Nagwa El-Makky ............... ... ... ... ... ... 196

Semantic Shift Stability: Efficient Way to Detect Performance Degradation of Word Embeddings and
Pre-trained Language Models
Shotaro Ishihara, Hiromu Takahashi and Hono Shirai............ ... . ... ... . ... .. ... ... 205

Neural Text Sanitization with Explicit Measures of Privacy Risk
Anthi Papadopoulou, Yunhao Yu, Pierre Lison and Lilja @vrelid ........................... 217

AGRank: Augmented Graph-based Unsupervised Keyphrase Extraction
Haoran Ding and Xiao Luo . . ... ..o e 230

Towards Unified Representations of Knowledge Graph and Expert Rules for Machine Learning and
Reasoning
Zhepei Wei, Yue Wang, Jinnan Li, Zhining Liu, Erxin Yu, Yuan Tian, Xin Wang and Yi Chang 240

Who did what to Whom? Language models and humans respond diversely to features affecting argument
hierarchy construction
Xiaonan Xu and Haoshuo Chen. ... i e 254

CrowdChecked: Detecting Previously Fact-Checked Claims in Social Media
Momchil Hardalov, Anton Chernyavskiy, Ivan Koychev, Dmitry Ilvovsky and Preslav Nakov. .266

Hate Speech and Offensive Language Detection in Bengali
Mithun Das, Somnath Banerjee, Punyajoy Saha and Animesh Mukherjee.................... 286

Learning Interpretable Latent Dialogue Actions With Less Supervision
Vojtéch Hudecek and Ondfej Dusek . ... e 297

Named Entity Recognition in Twitter: A Dataset and Analysis on Short-Term Temporal Shifts
Asahi Ushio, Francesco Barbieri, Vitor Sousa, Leonardo Neves and Jose Camacho-Collados . . 309

PInKS: Preconditioned Commonsense Inference with Minimal Supervision
Ehsan Qasemi, Piyush Khanna, Qiang Ning and Muhao Chen.............................. 320

Cross-Lingual Open-Domain Question Answering with Answer Sentence Generation
Benjamin Muller, Luca Soldaini, Rik Koncel-Kedziorski, Eric Lind and Alessandro Moschitti. 337

Discourse Parsing Enhanced by Discourse Dependence Perception
Yugqing Xing, Longyin Zhang, Fang Kong and Guodong Zhou. .................. ... ....... 354

Prediction of People’s Emotional Response towards Multi-modal News
Ge Gao, Sejin Paik, Carley Reardon, Yanling Zhao, Lei Guo, Prakash Ishwar, Margrit Betke and
Derry Tanti Wijaya . . ..ot e e e e e 364

AugCSE: Contrastive Sentence Embedding with Diverse Augmentations
Zilu Tang, Muhammed Yusuf Kocyigit and Derry Tanti Wijaya............................. 375

Seamlessly Integrating Factual Information and Social Content with Persuasive Dialogue
Maximillian Chen, Weiyan Shi, Feifan Yan, Ryan Hou, Jingwen Zhang, Saurav Sahay and Zhou Yu
399

XViil



Dual-Encoder Transformers with Cross-modal Alignment for Multimodal Aspect-based Sentiment Anal-
VSis
Zhewen Yu, Jin Wang, Liang-Chih Yu and Xuejie Zhang ....................coiiiee.... 414

AVAST: Attentive Variational State Tracker in a Reinforced Navigator
Je-Wei Jang, Mahdin Rohmatillah and Jen-Tzung Chien.................... ... .. ......... 424

Phylogeny-Inspired Adaptation of Multilingual Models to New Languages
Fahim Faisal and Antonios Anastasopoulos . .............oiiiiiiiieniiiiiiieenniin.. 434

Transferring Knowledge via Neighborhood-Aware Optimal Transport for Low-Resource Hate Speech
Detection
Tulika Bose, Irina Illina and Dominique Fohr........... ... .. ... . ... i ... 453

Bag-of-Vectors Autoencoders for Unsupervised Conditional Text Generation
Florian Mai and James Henderson............... i 468

RecInDial: A Unified Framework for Conversational Recommendation with Pretrained Language Mod-
els
Lingzhi Wang, Huang Hu, Lei Sha, Can Xu, Daxin Jiang and Kam-Fai Wong................ 489

SummVD : An efficient approach for unsupervised topic-based text summarization
Gabriel Shenouda, Aurélien Bossard, Oussama Ayoub and Christophe Rodrigues ............ 501

Director: Generator-Classifiers For Supervised Language Modeling
Kushal Arora, Kurt Shuster, Sainbayar Sukhbaatar and Jason Weston ....................... 512

VLStereoSet: A Study of Stereotypical Bias in Pre-trained Vision-Language Models
Kankan Zhou, Eason Lai and Jing Jiang. .......... .. 527

Dynamic Context Extraction for Citation Classification
Suchetha Nambanoor Kunnath, David Pride and Petr Knoth. .......... ... . ... ... ....... 539

Affective Retrofitted Word Embeddings
Sapan Shah, Sreedhar Reddy and Pushpak Bhattacharyya.................................. 550

Is Encoder-Decoder Redundant for Neural Machine Translation?
Yingbo Gao, Christian Herold, Zijian Yang and Hermann Ney ............................. 562

SAPGraph: Structure-aware Extractive Summarization for Scientific Papers with Heterogeneous Graph
Siya Qi, Lei Li, Yiyang Li, Jin Jiang, Dingxin Hu, Yuze Li, Yingqi Zhu, Yanquan Zhou, Marina
Litvak and Natalia Vanetik . . ... i e e 575

Toward Implicit Reference in Dialog: A Survey of Methods and Data
Lindsey Vanderlyn, Talita Anthonio, Daniel Ortega, Michael Roth and Ngoc Thang Vu....... 587

A Decade of Knowledge Graphs in Natural Language Processing: A Survey
Phillip Schneider, Tim Schopf, Juraj Vladika, Mikhail Galkin, Elena Simperl and Florian Matthes
601

Multimodal Generation of Radiology Reports using Knowledge-Grounded Extraction of Entities and
Relations

Francesco Dalla Serra, William Clackett, Hamish MacKinnon, Chaoyang Wang, Fani Deligianni,
Jeff Dalton and Alison Q. O’Neil . . ... e 615

XIiX



SBERT studies Meaning Representations: Decomposing Sentence Embeddings into Explainable Seman-
tic Features
Juri Opitz and Anette Frank. . ...... .. i e 625

The Lifecycle of "Facts": A Survey of Social Bias in Knowledge Graphs
Angelie Kraft and Ricardo Usbeck ........... .o i 639

Food Knowledge Representation Learning with Adversarial Substitution
Diya Li and Mohammed J ZakKi ... ... 653

Construction Repetition Reduces Information Rate in Dialogue
Mario Giulianelli, Arabella Sinclair and Raquel Fernandez. ....................... ... .. ... 665

Analogy-Guided Evolutionary Pretraining of Binary Word Embeddings
R. Alexander Knipper, Md. Mahadi Hassan, Mehdi Sadi and Shubhra Kanti Karmaker Santu. .683

Contrastive Video-Language Learning with Fine-grained Frame Sampling
Zixu Wang, Yujie Zhong, Yishu Miao, Lin Ma and Lucia Specia ........................... 694

Enhancing Tabular Reasoning with Pattern Exploiting Training
Abhilash Shankarampeta, Vivek Gupta and ShuoZhang .................. ... ... ..., 706

Re-contextualizing Fairness in NLP: The Case of India
Shaily Bhatt, Sunipa Dev, Partha Talukdar, Shachi Dave and Vinodkumar Prabhakaran ....... 727

Low-Resource Multilingual and Zero-Shot Multispeaker TTS
Florian Lux, Julia Koch and Ngoc Thang Vu ....... ... ... .. i 741

Unsupervised Domain Adaptation for Sparse Retrieval by Filling Vocabulary and Word Frequency Gaps
Hiroki Iida and Naoaki OKazaki. ... ... e 752

KESA: A Knowledge Enhanced Approach To Sentiment Analysis
Qinghua Zhao, Shuai Maand ShuoRen.......... ... i, 766

Cross-lingual Few-Shot Learning on Unseen Languages
Genta Winata, Shijie Wu, Mayank Kulkarni, Thamar Solorio and Daniel Preotiuc-Pietro. . . ... 777

Domain-aware Self-supervised Pre-training for Label-Efficient Meme Analysis
Shivam Sharma, Mohd Khizir Siddiqui, Md. Shad Akhtar and Tanmoy Chakraborty.......... 792

A Prompt Array Keeps the Bias Away: Debiasing Vision-Language Models with Adversarial Learning
Hugo Berg, Siobhan Hall, Yash Bhalgat, Hannah Kirk, Aleksandar Shtedritski and Max Bain . 806

Some Languages are More Equal than Others: Probing Deeper into the Linguistic Disparity in the NLP
World
Surangika Ranathunga and Nisansade Silva........... ..., 823

Neural Readability Pairwise Ranking for Sentences in Italian Administrative Language
Martina Miliani, Serena Auriemma, Fernando Alva-Manchego and Alessandro Lenci ........ 849

Delivering Fairness in Human Resources Al: Mutual Information to the Rescue
Leo Hemamou and William Coleman. . ........... ...t 867

Not another Negation Benchmark: The NaN-NLI Test Suite for Sub-clausal Negation
Thinh Hung Truong, Yulia Otmakhova, Timothy Baldwin, Trevor Cohn, Jey Han Lau and Karin
2 5510 o 883

XX



HaRiM™ : Evaluating Summary Quality with Hallucination Risk
Seonil (Simon) Son, Junsoo Park, Jeong-in Hwang, Junghwa Lee, Hyungjong Noh and Yeonsoo
L . e e 895

The lack of theory is painful: Modeling Harshness in Peer Review Comments
Rajeev Verma, Rajarshi Roychoudhury and Tirthankar Ghosal ............................. 925

Dual Mechanism Priming Effects in Hindi Word Order
Sidharth Ranjan, Marten van Schijndel, Sumeet Agarwal and Rajakrishnan Rajkumar ........ 936

Unsupervised Single Document Abstractive Summarization using Semantic Units
Jhen-Yi Wu, Ying-Jia Lin and Hung-Yu Kao ....... ... o i 954

Detecting Incongruent News Articles Using Multi-head Attention Dual Summarization
Sujit Kumar, Gaurav Kumar and Sanasam Ranbir Singh ........... ... .. ... ... .o ... 967

Meta-Learning based Deferred Optimisation for Sentiment and Emotion aware Multi-modal Dialogue
Act Classification
Tulika Saha, Aditya Prakash Patra, Sriparna Saha and Pushpak Bhattacharyya............... 978

Enhancing Financial Table and Text Question Answering with Tabular Graph and Numerical Reasoning
Rungsiman Nararatwong, Natthawut Kertkeidkachorn and Ryutaro Ichise . .................. 991

Fine-grained Contrastive Learning for Definition Generation
Hengyuan Zhang, Dawei Li, Shiping Yang and Yanran Li ................................ 1001

Hengam: An Adversarially Trained Transformer for Persian Temporal Tagging
Sajad Mirzababaei, Amir Hossein Kargaran, Hinrich Schiitze and Ehsaneddin Asgari . ...... 1013

What’s Different between Visual Question Answering for Machine "Understanding” Versus for Accessi-
bility?
Yang Trista Cao, Kyle Seelman, Kyungjun Lee and Hal Daumé Il . ....................... 1025

Persona or Context? Towards Building Context adaptive Personalized Persuasive Virtual Sales Assistant
Abhisek Tiwari, Sriparna Saha, Shubhashis Sengupta, Anutosh Maitra, Roshni Ramnani and Push-
pak Bhattacharyya . .. ... e 1035

Legal Case Document Summarization: Extractive and Abstractive Methods and their Evaluation
Abhay Shukla, Paheli Bhattacharya, Soham Poddar, Rajdeep Mukherjee, Kripabandhu Ghosh,
Pawan Goyal and Saptarshi Ghosh . .......... . e 1048

FPC: Fine-tuning with Prompt Curriculum for Relation Extraction
Sicheng Yang and Dandan Song ............. i 1065

Dead or Murdered? Predicting Responsibility Perception in Femicide News Reports
Gosse Minnema, Sara Gemelli, Chiara Zanchi, Tommaso Caselli and Malvina Nissim. ...... 1078

PESE: Event Structure Extraction using Pointer Network based Encoder-Decoder Architecture
Alapan Kuila and Sudeshna Sarkar........ ... i e 1091

How do we get there? Evaluating transformer neural networks as cognitive models for English past
tense inflection
Xiaomeng Maand Lingyu Gao ..ot e 1101

Characterizing and addressing the issue of oversmoothing in neural autoregressive sequence modeling
Ilia Kulikov, Maksim Eremeev and Kyunghyun Cho ............. ... ... o oot 1115

XX1



Identifying Weaknesses in Machine Translation Metrics Through Minimum Bayes Risk Decoding: A Case
Study for COMET
Chantal Amrhein and Rico Sennrich........ . .. 1125

Whodunit? Learning to Contrast for Authorship Attribution
Bo Ai, Yuchen Wang, Yugin Tanand Samson Tan ............ ... ... . .. i, 1142

Higher-Order Dependency Parsing for Arc-Polynomial Score Functions via Gradient-Based Methods
and Genetic Algorithm
xudong zhang, Joseph Le Roux and Thierry Charnois . .......... ...t 1158

Underspecification in Scene Description-to-Depiction Tasks
Ben Hutchinson, Jason Baldridge and Vinodkumar Prabhakaran........................... 1172

COFAR: Commonsense and Factual Reasoning in Image Search
Prajwal Gatti, Abhirama Subramanyam Penamakuri, Revant Teotia, Anand Mishra, Shubhashis
Sengupta and Roshni Ramnani . ......... ... i 1185

xxil



Chasing the Tail with Domain Generalization: A Case Study on
Frequency-Enriched Datasets

Manoj Kumar!, Anna Rumshisky'?, Rahul Gupta'
IAlexa Al, Amazon
?Department of Computer Science, University of Massachusetts Lowell
{abithm, gupra}@amazon.com
arum@cs.uml.edu

Abstract

Natural language understanding (NLU) tasks
are typically defined by creating an annotated
dataset in which each utterance is encountered
once. Such data does not resemble real-world
natural language interactions in which certain
utterances are encountered frequently, others
rarely. For deployed NLU systems, this is a
vital problem, since the underlying machine
learning (ML) models are often fine-tuned
on typical NLU data, in which utterance fre-
quency is never factored in, and then applied
to real-world data with a very different distri-
bution. Such systems need to maintain inter-
pretation consistency for the high-frequency
(head) utterances, while also doing well on
low-frequency (tail) utterances. We propose
an alternative strategy that explicitly uses utter-
ance frequency in training data to learn mod-
els that are more robust to unknown distri-
butions. We present a methodology to simu-
late utterance usage in two public corpora and
create two new corpora with head, body and
tail segments. We evaluate several methods
for joint intent classification and named entity
recognition (referred to as IC-NER), and pro-
pose to use two domain generalization (DG)
approaches that we adapt to sequence label-
ing task. The DG approaches demonstrate up
to 7.02% relative improvement in semantic ac-
curacy over baselines on the tail data. We
provide insights as to why the proposed ap-
proaches work and show that the reasons for
the observed improvements do not align with
those reported in previous work.

1 Introduction

In academic research, natural language understand-
ing (NLU) tasks are typically defined by creating
annotated data, and then that data is used to train
and evaluate machine learning models designed to
solve that task. In such datasets, each utterance is
typically encountered only once. But real-world
natural language interactions do not look like that —

1

in the real world, frequency matters. When people
interact with each other “in the wild”, some things
are said often ("Time to go to bed!"), others are
infrequent to the point of being unique.

The same holds for how people interact with
digital assistants such as Alexa, Siri, or Google
Assistant, which we use as the case study in this pa-
per. The backbone of such commercial systems is
the task of joint intent classification and named en-
tity recognition (IC-NER) (Su et al., 2018; Coucke
et al., 2018; Anantha et al., 2021). The goal of this
task is to identify the intended action (play music,
open calendar, etc) and actionable slots (names,
places, objects, etc) from a user utterance.

The underlying joint IC-NER models must cor-
rectly handle both the frequently occurring requests
and a long tail of less common entities. But in the
common IC-NER corpora such as SNIPS (Coucke
et al., 2018), there is no way to distinguish be-
tween requests for generic entities ("play music
Jfrom youtube") and requests for a low-frequency
entity ("help me locate a game called the master of
ballantrae"). IC-NER models are fine-tuned on all
training data, and then applied to real-world data
with a very different distribution.

In order to mitigate this issue, this work pro-
poses a method for creating annotated data which
explicitly factors in utterance frequency. We divide
an NLU dataset into three disjoint segments: head
(most frequent utterances), tail (least frequent utter-
ances) and body (all remaining utterances). In this
work, we define a segment as a subset of the dataset
with similar characteristics, for example the head
segment contains utterances with high frequencies
in the real world. We then develop learning strate-
gies which benefit from the token and label distri-
butions in the head, body, and tail segments of the
resulting frequency-enriched datasets.

We simulate utterance usage patterns using
two common public corpora for the IC-NER
task: SNIPS (Coucke et al., 2018) which con-
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Table 1: Selected examples from head and tail segments in the newly created corpora: SNIPSesv and TOPesv.
Utterances from head segments include the repetition counts. Tokens with slot labels are boldfaced.

TOPesv

SNIPSesv
"play music off youtube": 76
Head o
play some google music": 36
"add outside the dream syndicate to millicent’s
Tail fresh electronic playlist"

"what s the weather in south punta gorda heights
"add 9th inning to my bossa nova dinner playlist"

"is the weather causing traffic delays today": 65
"where is macys": 46
"what new movies start this weekend": 32

"what is the quickest route to get to valdosta from atlanta"
"how long does it take to drive from adair to chelsea"

tains real-world utterances directed towards the
SNIPS voice assistant, and the Facebook Dialog
Corpus (TOP; Gupta et al. 2018) which is a crowd-
sourced collection of natural language queries re-
lated to navigation and event inquiries, creating
two frequency-enriched datasets (SNIPSesv and
TOPesv). Our methodology is based on entity
search volumes, which allows us to emulate a realis-
tic utterance frequency distribution in the data. Ut-
terances are then upsampled according to their esti-
mated frequency. SNIPSesv and TOPesv datasets
separate test data for head, body and tail segments,
enabling the comparison of model performance on
each segment. The proposed methodology can be
easily extended to other NLU tasks such as part-of-
speech tagging, sentence generation, or question
answering.

Using our frequency-enriched datasets, we com-
pare IC-NER performance of several methods. We
propose modifications to two domain generaliza-
tion (DG; (Blanchard et al., 2011)) approaches: do-
main masks for generalization (DMG; Chattopad-
hyay et al. 2020) and optimal transport (OT; (Zhou
etal., 2020a)). We adapt these methods for IC-NER
and demonstrate up to 7.02% relative improvement
in semantic accuracy on the tail data over strong
baselines.

We provide insights as to why the proposed DG
approaches work, showing that OT learns segment-
invariant representations using segment classifica-
tion analysis. Our analysis using random-valued
masks reveals that performance improvements by
DMG are rather likely due to the training process
resembling an enhanced version of dropout, rather
than learning segment-specific mask parameters,
an observation which does not align with those
reported in previous work. We corroborate our
observations in NLU with similar findings on a re-
lated task from computer vision, for which DMG
was originally proposed.

The main contributions of this work are thus as
follows: (i) We simulate utterance usage frequency

for two public NLU corpora. To the best of our
knowledge, these frequency-enriched datasets are
the first attempt to explicitly incorporate utterance
usage information in NLU. (ii) We adapt two do-
main generalization approaches to the sequence
labeling task in NLU and show improvement over
strong baselines on the tail segment, using the
frequency-enriched data. (iii) We demonstrate that
the reasons for improved performance from DMG
do not align with those reported in previous work.

2 Background

2.1 Improving tail recognition

Previous work on head to tail transfer learning
has typically focused on assigning classes to ei-
ther head or tail based on the number of examples
present in each class (Xiao et al., 2021; Raunak
et al., 2020). Our problem setting is different in
that we divide the dataset into head, body and tail
based on the estimated usage frequency of each
utterance. For example, in our case, the utterances
belonging to a common class (such as "play music"
intent) may not all be assigned to the head segment,
but rather may be split between head, body, and
tail, depending on their frequencies.

Since our problem setting presumes a different
definition of head and tail, many of the methods
(Kang et al., 2020; Ouyang et al., 2016; Cao et al.,
2019) developed for head-to-tail transfer are not
directly applicable in our case.

2.2 Domain generalization approaches

Domain generalization techniques (Blanchard et al.,
2011) are a subset of transfer learning approaches
where multiple domains with different label dis-
tributions and class-conditional distributions are
used for model building. As distinct from domain
adaption, no data from the target domain(s) is as-
sumed available for training/adaptation. We wanted
to investigate DG methods for our scenario, since
this would allow us to treat head, tail, and body
segments as virtual domains, without making any



specific assumptions about the data and label dis-
tributions in each segment.

A variety of DG approaches have been pro-
posed: kernel-based optimization methods (Blan-
chard et al., 2011, 2021; Muandet et al., 2013), aug-
menting with synthetic data perturbed using loss
gradients (Shankar et al., 2018), learning a transfor-
mation to jointly classify domains and labels (Zhou
et al., 2020b), learning a segment-invariant fea-
ture space by minimizing the optimal transport
between domain pairs (Zhou et al., 2020a), etc.
Broadly, these approaches learn to project dat-
apoints from different segments into equivalent
feature spaces for data representation, which im-
proves performance. This paradigm closely resem-
bles meta-learning, with the difference being that
meta-learning assumes access to labeled samples
from the target segment during the meta-testing
phase (Ravi and Larochelle, 2017). An alterna-
tive set of approaches focuses on learning segment-
specific knowledge, e.g., using outputs from a
model trained on seen segments to train a model for
unseen segments (Zhou et al., 2021) or selecting
convolution activations to create segment-specific
subnetworks in the model (Chattopadhyay et al.,
2020; Mallya et al., 2018; Berriel et al., 2019).

DG has been relatively less explored in NLU
when compared to computer vision. A handful
of works have applied DG for semantic parsing:
Wang et al. (2021) employed an adaptation of
MAML (Finn et al., 2017) to simulate new seg-
ments, Marzinotto et al. (2019) used an adversar-
ial domain classifier as a regularization technique.
We adapt two categories of DG approaches: learn-
ing representations which are segment-specific
(DMG; Chattopadhyay et al. 2020) and segment-
invariant (optimal transport; (Zhou et al., 2020a)).
We apply these approaches for generalizing IC-
NER performance from head, body and tail seg-
ments.

3 Methods

3.1 Dataset preparation

Both SNIPS (Coucke et al., 2018) and TOP (Gupta
et al., 2018) contain almost exclusively unique ut-
terances, and SNIPS is purposefully designed to
contain a balanced number of utterances per intent.
Following Chen et al. (2019), IC-NER models are
commonly evaluated on data that excludes nested
intents, since BERT-based architectures make han-
dling nested intents challenging. In order to enable

3

fair comparison of model performance, we follow
this strategy and remove nested intents from TOP.
We also remove all utterances labeled with “Unsup-
ported” intent.

3.1.1 Estimating usage frequency

In order to estimate usage frequency of each utter-
ance, we use the internet search volumes of each
labeled entity (defined as a token labeled with a
slot, e.g., ArtistName). We hypothesize that the
utterance’s usage frequency is influenced primarily
by the mentioned entities (e.g., master of ballantrae
in Section 1) and not the remaining tokens (e.g.,
stop words, play, order, etc)

We collect the monthly entity search volume (de-
noted esv) averaged over the last year using the
Google AdWords API'. We estimate the utterance
search volume as mean esv for all entities, assum-
ing that each entity contributes equally to the utter-
ance usage. For example, consider the following
utterance in the SNIPS corpora: “Book reserva-
tions at a restaurant in Olton around supper time".
There are two labeled entities in it: Olton (city) and
supper (time interval). Monthly search volumes in
Google for each entity are 266 and 33.1K respec-
tively. Hence, the estimated utterance usage esv,, is
16.7K. In a similar manner, we estimate the usage
frequency of all utterances in SNIPS and TOP.

Another option for estimating usage frequencies
is to use utterance perplexity estimated by a high-
quality pre-trained language model. In preliminary
analysis, we used the perplexities from GPT-2 to
approximate usage frequency. We did not find that
this method produced good estimates of usage fre-
quencies in spoken requests to digital assistants,
likely due to the domain difference of the data used
pre-training of GPT-2. Pre-training on in-domain
data can be used to address this in the future, po-
tentially enabling this alternative strategy for esti-
mating utterance frequency.

3.1.2 Utterance sampling

We used the frequency estimate for each utterance
to determine the upsampling factor for that utter-
ance. Intuitively, an utterance with a higher esv,
should be sampled more, and is more likely to be
present in the head segment.

We normalize the obtained search volume to de-
rive a probability distribution p,, over utterances.
However, we compared the resulting distribution

"https://developers.google.com/
adwords/api/
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Figure 1: Overview of the dataset preparation process. For each utterance from the original train, dev and test
sets from SNIPS and TOP, we estimate the utterance frequency. The frequency is normalized to a probability

distribution which is used to sample utterances.

against the utterance in a proprietary commercial
dataset?, and observed that while Py gave reason-
able estimates in many cases, it was not well cali-
brated. Specifically, it produced a heavy skew in
favor of frequent utterances, possibly due to the
fact that we were only able to approximate fre-
quencies at the entity, rather than utterance level.
Sampling directly from p,, would therefore have
produced a corpus with a small number of unique
utterances and many repetitions, while omitting
most utterances from the original dataset.

To avoid this issue, we cap the maximum sam-
pling probability p,,4. of an utterance. We define
Pmaz 10 be the probability of the most common
utterance, defined as follows:

. ‘umax|

p =

where u; denotes a unique utterance and U4, de-
notes the most common unique utterance. We em-
pirically determine p;,q; = 0.00245 using the pro-
prietary corpus of user queries with semantically
similar intent labels to SNIPS and TOP. Further
details are provided in the Appendix.

(D

3.1.3 Splitting into head, body and tail

We create frequency-enriched versions of the TOP
and SNIPS datasets using the capped probability
distribution to sample utterances with replacement.
We fix the total number of utterances (V) in the
new corpus and sample utterances using the capped
distribution until we collect IV utterances. We seg-
ment the upsampled corpus into head, body, and
tail, where head and tail are designed to contain
fewer utterances than body. The frequency of ut-
terances in the head and tail segments is very high
or very low, respectively. We assign 10% most

2See Appendix for details.
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frequent utterances to head, 10% least frequent ut-
terances to tail and remaining utterances to body?>.
We create the train and test partitions of SNIPSesv
and TOPesv separately from the original train and
test partitions, hence resulting in six segments (3
train + 3 test) for each corpus.

We report utterance and label statistics of the
resulting datasets in Table 2. In both SNIPSesv
and TOPesv, the head segment contains relatively
fewer unique utterances than other segments, but
each unique utterance is repeated multiple times.
Note that the head segment does not contain the
complete set of labels (intents and classes) found in
the original corpora. Specifically, the head segment
in SNIPSesv and TOPesv contain only 30.5% and
38.4% of all the slot labels in the original segment,
respectively. Some intent labels are also missing
in other segments in TOPesv, likely because the
TOP corpus (Gupta et al., 2018), unlike SNIPS,
has a non-uniform intent distribution. In Table
1, we provide representative examples from head
and tail segments in the newly created corpora.
Note that utterances with popular/generic entities
(e.g., youtube, weather) are likely to end up in the
head segment when compared to less widely used
entities.

3.2 Domain Generalization Approaches

As the omitted intent statistics in Table 2 suggest,
head, body and tail segments of both datasets have
very different label distributions P(Y). At the
same time, since utterances are sampled accord-
ing to the entity search volume, each segment has a
different distribution over tokens P(X) (Table 1).
These differences in label and token distributions
motivate our choice of DG approaches for improv-

3Utterances are not shared between segments, hence the
exact fraction of utterances across head, body and tail may not
be equal to 10%-80%-10%



Table 2: Dataset statistics for head, body and tail segments in SNIPSesv and TOPesv, along with the respective
original corpora ("Original" segment). Splits (train, dev and test) for each segment are created using the corre-
sponding splits from the original corpora. For each split within a segment, the total utterance count (Utt), unique
utterance count (Uniq Utt), average repetition of unique utterances (Rep), and missing labels are provided. The
total number of intents and slot labels are provided against the respective column headers.

SNIPSesv TOPesv
. Uni #Missin #Missin Uni #Missin #Missin
Segment  Split Utt Uttq Rep Intents(;g) Slots(72§ Ut Uttq Rep Intents(li) Slots(26§
Train | 13084 12860 1.02 - 20265 19764  1.03 - -
Original  Dev 700 695 1.01 - 2 2955 2937 1.01 5 1
Test 700 699 1.00 - 2 5884 5834 1.01 4 2
"""""""""" Train | 1323 34 3891 2 44 | 1748 40 437 6 12
Head Dev 73 8 9.13 5 50 253 26 9.73 9 16
Test 74 11 6.73 1 48 515 40 12.88 7 15
"""""""""" Train | 10453 2537 412 - 2 | 13922 5668 246 - 1
Body Dev 558 230 243 - 11 2020 749 2.70 2 5
Test 557 267 2.09 - 3 4063 1634 2.49 2 5
"""""""""" Train | 1308 1308 100 - 2 | 1740 1740 100 3 7
Tail Dev 69 69 1.00 - 21 252 252 1.00 2 5
Test 69 69 1.00 - 14 508 508 1.00 3 5

ing performance on unseen segments (Blanchard
etal., 2011).

Both DG approaches explored in this work,
DMG (Chattopadhyay et al., 2020) and OT (Zhou
et al., 2020a), assume that the model can be broken
down into a feature extractor Fy and a task network
Toe. A typical feature extractor and task network
for IC-NER are BERT-based pretrained model and
sequence/slot classification network respectively
(Chen et al., 2019).

3.2.1 Domain Masks for Generalization
(DMG)

DMG encodes segment knowledge in masks (%),
which are segment-specific parameters jointly
learnt with Fy and To. For segment d, we ex-
tract binary activations m? from masks as follows:

m® ~ Bernoulli (o (Ihd)) 2)

where o represents the sigmoid activation function.
During forward pass, we multiply each activation
by m? to compute the effective activation passed
to the next layer. Hence, masks serve as layer-wise
“on”/“off” gates within Ty. Masks are sampled
during training, hence a different set of neurons
are activated for different mini-batches within the
same segment.

Similar to the original formulation of
DMG (Chattopadhyay et al., 2020), we en-
sure that masks are incentivized to learn
segment-specific information and avoid learning
similar representations for all segments by using a

soft overlap loss (sloU; Rahman and Wang 2016).
The soft-overlap loss is used in place of Jaccard
Similarity Coefficient which is non-differentiable
and hence cannot be optimized with gradient
descent. Specifically, we compute:

ﬁ,ldi i I:hdj

sloUm%, m%) =
( ) Z(ﬁldi +m% —m% om%)

At each mini-batch, we compute sloU (%, m% )
for every segment pair and sum across all pairs.
This soft-overlap loss is added to the classification
loss and used as the overall objective for optimiza-
tion.

1
ﬁDMG = ; g Eclass(xiayi)+
)

>\D1\/[G Z SIOU(ﬁldi,ﬁldj) (3)
di,d;ed

where n, d and L, represent the mini-batch size,
set of segments in the mini-batch, and the classifica-
tion loss function. At test time, we do not have seg-
ment labels for a sample. We arrive at the predicted
label by computing the mean prediction obtained
with all segment-specific masks.

3.2.2 Optimal Transport

Optimal transport (Shen et al. (2018)) learns
segment-invariant feature representations by en-
suring feature compactness, i.e., samples from the
same class across different segments are brought
close to each other and vice versa. Assuming
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Figure 2: Illustrating the different approaches used in this work: baselines Per-segment, aggregate and multihead,

and DG approaches: DMG++ and Optimal Transport.

c:R"™ x R® — R is the cost function for trans-
porting an unit mass from x; to x;, the p-th order
Wasserstein distance between d; and d; is:

P(d d:) = i
Wy (di,d;) = et
“4)
where II(d;, d;) is a collection of all joint prob-
ability measures on R™ x R™ with marginals d;
and d;. Following Zhou et al. (2020a) and from
the Kantorovich-Rubinstein theorem (Kantorovich
and Rubinshtein, 1958), the first order Wasserstein
distance can be given as:

Wi(di,dj) = sup Egeq, f(2i) — Bgeq, f(25)
Ifllo<1 5)

. N; N;
Given sets X; = {x;};”*; and X; = {x;},7; from
segments d; and d; respectively, we can compute
the empirical Wasserstein distance between these
two sets as:

WA X) = - D () - ;,jZf(Xj)
4 Xj (6)

where f represents a learnable function which
transforms inputs to segment-invariant represen-
tations. In this work, we parameterize f = Fig o Cq,
where Cq is a critic function that is applied on the
output from the feature extractor. At each training
mini-batch, we compute the critic loss L¢ as the
sum of absolute pairwise Wasserstein-1 distances
(Eq. 6) between all segment pairs. The critic loss
is jointly optimized with the classification loss to
learn representations that minimize segment varia-

/ (s, %;)dy(xi, %;)
R xR

tions while maximizing classification performance.

1
EOT - g Z /:'class (Xia yz)+
7

dor Y Wi(Xi, X;) (D)
di,djed

3.3 Baselines

We compare DG approaches with three baselines:
Per-segment, Aggregate and Multihead models.
Among these three baselines, we experiment with
shared and separate networks for the feature ex-
tractor Fyy and task networks Ty (Figure 2). In
the per-segment baseline, we construct a separate
model for each segment, and train them using re-
spective segment’s data. In the multihead baseline,
Fy is shared between segments while a different
To is trained for each segment. In the aggregate
baseline, both Fy and Ty are shared between the
segments. For the first two baselines where we
have multiple task networks, we predict the intent
and slot labels for a test sample by computing the
mean prediction from all segment-specific models.

4 Experiments

4.1 Model Components

We use the pretrained BERT-base model (Devlin
et al., 2019) as the feature extractor network Fy.
The task network Tg consists of two sub-networks:
(i) The IC network is a linear feed-forward layer
which predicts the intent given the CLS token em-
bedding using a single feed-forward layer (ii) The
NER network uses a similar feed-forward layer to
predict the slot at each word given the hidden state
from the last BERT layer. Similar to Chen et al.
(2019), we use the hidden state of the first sub-word
token of each word for slot prediction. We update



Table 3: IC-NER performance on SNIPSesv (top) and TOPesv (bottom) corpora for baselines: Per-segment, Ag-
gregate and Multihead; and domain generalization approaches: DMG++, Optimal Transport and Combined

Head Body Tail Original
Approach Sem SlotF1 Sem  SlotF1 Sem  SlotF1 Sem  SlotF1
Per-segment 87.84 96.73 8474 9457 82.61 92.69 8343 93.64
Aggregate 77.03 9534 8797 9560 81.16 91.81 86.14 9446
Multihead 87.84 96.73 8528 9475 81.16 9136 84.43 94.05
DMG++ 87.84 96.73 8833 9559 8841 93.87 87.00 94.74
Optimal Transport  77.03 9534  88.51 9577 8551 9328 86.43 94.26
Combined 77.03 9534 8995 9632 8551 9328 8629 9442

Head Body Tail Original
Approach Sem SlotF1 Sem SlotF1 Sem SlotF1 Sem  SlotF1
Per-segment 88.54 9693 88.53 95.15 84.06 93.09 86.71 93.49
Aggregate 88.74 97.10 9131 96.29 86.22 94.01 8895 94.67
Multihead 92.23 9827 90.16 9587 8740 9432 88.71 94.51
DMG++ 88.93 97.06 90.18 9594 86.81 9391 89.03 94.63
Optimal Transport 91.46  98.71 91.19 96.25 8740 94.60 89.34 94.88
Combination 88.54 97.58 90.67 96.01 87.60 93.74 88.73 94.40

parameters of both IC and NER networks using a
joint classification loss L;c + Ly ggr in order to
benefit from any shared knowledge between IC and
NER tasks.

4.2 Adapting DMG and OT for NER

Note that the DMG model learns a single mask pa-
rameter per segment, i.e it learns one mask for
IC (m%,) and another mask for NER (m% ;p).
This implies that ﬁlﬁl\, g 1S common across all to-
kens in the segment and the same activations in
Fy are selected for all tokens. This constrains the
learning process, since different tokens can benefit
from selecting different activations when learning
segment-specific representations. To support this,
we propose formulating the mask parameters as a
function of the segment and the token embedding:

mf = wlh; + b¢ (8)

where h; represents activation from Fy for token
t. We introduce a weight vector w? and bias b%
for each segment. The masks are sampled using
m{ similar to Eq. 2. We refer to this modified
version of DMG as DMG++. Similarly, we use two
critic networks for OT: Cq ;¢ is a feed-forward
linear layer which uses the CLS token embedding
similar to the IC network, whereas Cqo n gr applies
a single long short-term memory (LSTM) layer to
extract longitudinal information from the BERT
hidden states at each token.

We also train a DG approach combining DMG
and OT (referred to as Combined). We retain the
critic networks from OT, and introduce masks at the
input of critic networks in addition to masks at the
inputs of IC and NER networks. The overall loss

function to be optimized is a sum of classification
losses, critic loss and the overlap penalty loss. We
explore whether we can obtain any gains in task
performance due to the complementary nature of
these approaches.

We use AdamW (Loshchilov and Hutter, 2018)
optimizer (initial LR: 5e-5, decay rate: 0.96, (51,
52) =(0.9, 0.999), € = 1e-8) to minimize the respec-
tive loss objectives for each approach. We train the
models for 10 epochs for SNIPSesv and 5 epochs
for TOPesv. To improve training stability, we ac-
cumulate gradients from two mini-batches before
back-propagation. We follow Chattopadhyay et al.
(2020) and Zhou et al. (2020a) to fix approach-
specific learning parameters: we set Apy;g = 0.1
(Eq. 3) and set the critic coefficient as a function of
the training progress p, Ao = H%{;p — 1 where
6 = 10. We apply dropout with the rate of 0.1 at
all layers in Fy and Tg. Following (Chen et al.,
2019), we use two metrics to evaluate IC-NER per-
formance: (1) slot-filling F; (Slot F1), which is the
weighted average of F1 scores across slot labels
and (2) semantic accuracy rate (Sem Acc), which
computes the exact match accuracy of ordered slot
labels prefixed with the intent label.

5 Results

5.1 Performance on Seen and Unseen
Segments

We report IC-NER performance on the test sets
from all four segments in Table 3. For each
segment and method, we report mean Slot F}
and Sem Acc over 5 trials with different random
seeds. We observe that for both datasets, perfor-
mance on the head segment differs substantially



between approaches. Note that in SNIPesv, differ-
ent approaches produce the same evaluation fig-
ures, which we attribute to the limited number of
unique utterances in the head segment (Table 2),
even though it contains roughly the same utterance
count as the tail. While DG approaches do not pro-
vide a boost in performance over baselines for the
head segment, this is not necessarily a cause for
concern. We believe that in a real-world scenario
with digital assistants, very frequent requests can be
easily recognized using non-statistical models such
as rules and deterministic finite-state-transducers
(Mohri, 1997).

Among the three segments, improvements with
DG approaches (DMG++, OT & Combined) are
more visible in tail: the best DG approach returns
7.02% and 1.27% relative improvement in seman-
tic accuracy and slot ' on SNIPSesv datasets over
the best performing baseline. The original test
set, which is not modified by our work and rep-
resents yet another segment demonstrates minor
but consistent improvements in both metrics across
SNIPSesv and TOPesv. Further, we observe com-
petitive performance by optimal transport-based
approaches (OT and Combined) on the body seg-
ment: upto 2.25% relative improvement with the
best performing baseline on SNIPSesv and identi-
cal performance on TOPesv.

We observe that improvements in TOPesv are
lesser than SNIPSesv, specifically for Tail and
Body segments. We believe that there exists
a clearer variation between segments in case of
SNIPSesv due to a wider range of topics spanned
by the utterances (music, books, events, weather)
whereas TOPesv intents are generally confined to
navigation. Hence, DG approaches are more likely
to exhibit gains over baselines in SNIPSesv vs
TOPesv.

5.2 Analysis of DG performance gains
5.2.1 Segment Classification Model

Since OT attempts to learn segment-invariant rep-
resentations, we validate this paradigm by building
a segment classifier on the representations from
the trained feature encoder. We extract CLS token
embeddings for the above approaches and train a
multi-class linear regression model using the seg-
ment as class information. We downsample the
body segment by a factor of 8 to ensure a uniform
class distribution. The per-segment approach trains
a different Fy for each segment, hence we compute

the mean embedding from all three models. We
report segment accuracy (%) in Table 5.

We observe that the approaches which learn
segment-specific network components such as per-
segment (F) and multi-head (Tg) yield relatively
high classification accuracy, while the aggregate
model which learns a single network across seg-
ments returns the lowest performance among base-
lines. Optimal transport performs the worst, sug-
gesting that it learns the least segment-related infor-
mation. However, the difference with the majority
baseline (=~ 33%) suggests that segment-invariant
representations may not be completely achieved on
the test set, also observed in Galstyan et al. (2022).

5.2.2 Random-valued Mask Analysis

In order to analyze the segment-specific masks
learned by DMG++ approach, we compare the
learned masks using three metrics: (i) M1: Mean
pairwise cosine distance between m?, (i) M2:
Mean pairwise cosine distance between m?, and
(iii) M3: Mean fraction of “off” (0) dimensions in
m®. Since m? is sampled from m? (Eq. 2), we
compute M2 and M3 over 5 trials and report their
mean and standard deviation. Note that we only
analyze ﬁf}c since m%; R 1s dependent on token
embeddings.

From Table 6, we notice that m? are clearly dif-
ferent between segments in both SNIPSesv and
TOPesv. These differences extend to the sampled
versions (which are used in forward-pass) are illus-
trated in M2 and M3, a result of the overlap penalty.
Further, masks from all segments are “on” (= 1)
for ~ 59% and ~ 53% dimensions for SNIPSesv
and TOPesv respectively. To ascertain if segment-
specific information is learned by masks, we con-
duct a sanity check experiment where we replace
the masks with a random parameter that encourages
similar fraction of “on” dimensions to the learned
masks.

Surprisingly, we notice that random masks re-
turn on-par performance on all metrics and seg-
ments with the learned masks on both SNIPSesv
and TOPesv corpora (Table 4). This result clearly
indicates that the masks do not provide segment-
specific information and the exact set of “on”/“off”
dimensions which are controlled by the learned
masks are not critical for performance on unseen
segments. To further ascertain this finding, we
repeated the random masks experiment on PACS
corpora (Li et al., 2017) from computer vision, fol-
lowing (Chattopadhyay et al., 2020), with similar



Table 4: Comparing IC-NER performance between learnt masks (DMG) and random masks (DMG-Random;
repeated over 10 trials) on SNIPSesv and TOPesv. For brevity, only semantic accuracy (Sem) and slot filling F1

(Slot F1) are presented

Head Body Tail Original

Dataset Approach Sem SlotF1 Sem SlotF1 Sem SlotF1 Sem  SlotF1

DMG++ - 87.84 96.73 8833 9559 8841 9387 87.00 94.74
SNIPSesv  DMG- pwo 7865 9555 8826 9558 8797 93.66 86.74 94.67

Random o 255 0.33 0.18 0.05 0.67 0.29 0.18 0.08

- DMG++ - 8893 9706 90.18 9594 86.81 9391 89.03 94.63

TOPesv DMG- pno 8880 9696 90.08 9585 86.83 93.86 8891 9455

Random o 045 0.26 0.18 0.06 0.26 0.23 0.11 0.09

Table 5: Segment classification accuracy (%) for base-
lines and optimal transport. Majority baseline: ~ 33%

Per Agg Mul OoT
SNIPSesv  91.03 86.03 90.13  69.36
TOPesv 79.22 7233 76.78 65.56

Table 6: Comparing learnt m?) and sampled mask
(m?) parameters across segments

Metric SNIPSesv TOPesv
M1 0.41 0.95
M2 0.41 +0.03 0.53 +0.01
M3 40.76 £1.57 5270 +1.31

results (see Appendix).

Instead of learning segment-specific information
as suggested by Chattopadhyay et al. (2020), we
believe that the improvements yielded by DMG
approach can be attributed to learning generaliz-
able parameters using masks. Masks are encour-
aged to be robust by the training process, since m?®
are stochastically determined at each mini-batch
even for samples from the same segment. Further,
our experiments with random masks resemble the
training process in that a different set of masks
are sampled, except that gradients are not back-
propagated. Finally, we note that sampled masks
operate similar to a segment-specific dropout (Sri-
vastava et al., 2014) strategy. Hence, generalization
improvements in deep learning which have been
observed by dropout are likely to be enhanced with
segment-specific mask parameters.

6 Limitations

Obtaining search volumes using the Google Ad-
words API cannot disambiguate between different
context-based semantic interpretations of the same
word, especially when there are no additional to-
kens to provide context. For instance, search vol-
umes for apple will combine volumes related to
the corporation and the fruit, while apple phone
and apple juice will return only the relevant search
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volumes. Further, this work did not address avail-
ability concerns for tail utterances/entities which
may be more expensive or labor intensive to collect
and annotate.

7 Conclusions

We presented a methodology to estimate utterance
frequency information in public datasets for IC-
NER task. We create two new corpora: SNIPSesv
and TOPesv which use the frequency information
to segment the original corpora into head, body and
tail segments. We adapt two DG approaches for IC-
NER and compute performance on each segment
as well as the original test set, which represents
an unseen segment. Our experiments show im-
provement in tail entity recognition by each DG
approach as well as their combination. Our follow-
up analyses validate the segment-invariant repre-
sentation learning by OT and suggest that DMG
provides enhanced generalization using segment-
specific masks. To assist future research in this di-
rection, we will release the SNIPSesv and TOPesv
datasets used in this work upon publication.
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A Determining Maximum Utterance
Sampling Probability

We collected a real-world dataset of user-queries
directed to our voice-controlled agent to determine
the maximum utterance sampling probability p,,qz.
We uniformly sample from all queries within a 10-
day duration to preserve the frequency distribution.
However, we retain only utterances which were
identified as belonging to services similar to intents
in SNIPS and TOP corpora: entertainment (music,
books, video), weather, bookings and local search.
This results in a total of 15M utterances. We com-
pute repetition counts for each unique utterance
and compute p,,q, using the utterance with maxi-
mum repetition count following Eq. 1. This results
N Pruax=0.00245. We apply this estimated value
for P4 on SNIPSesv and TOPesv.

B Random-valued Masks for PACS

PACS corproa (Li et al., 2017) is a commonly used
DG benchmark from computer vision and contains
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images from four different styles: sketch, cartoon,
photo and art painting. Similar to previous evalua-
tions (Li et al., 2017; Chattopadhyay et al., 2020;
Zhou et al., 2020a), we compute the leave-one-
domain-out accuracy, where one domain is treated
as target and remaining three domains are treated
as source. We build a DMG model following the
same architecture as (Chattopadhyay et al., 2020)
and repeat our evaluations by replacing the learned
masks with random valued parameters. We observe
identical performance with random masks, similar
to SNIPSesv and TOPesv.

Table 7: Leave-one-domain-out accuracy (%) on PACS.
DMG (rep) represents results reported in Chattopad-
hyay et al. (2020), DMG (ours) reports results from our
implementation, and DMG (rand) uses random valued
masks.

Approach Sketch Cartoon Photo  Art
DMG (rep) 71.42 69.88 87.31 64.65
DMG (ours) 67.98 67.83 84.25 63.48
DMG (rand) p  67.24 67.71 83.75 63.19
o 0.32 0.06 0.13 0.24
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Abstract

A principle behind dozens of attribution meth-
ods is to take the prediction difference between
before-and-after an input feature (here, a token)
is removed as its attribution. A popular Input
Marginalization (IM) method (Kim et al., 2020)
uses BERT to replace a token, yielding more
plausible counterfactuals. While Kim et al.
(2020) reported that IM is effective, we find this
conclusion not convincing as the Deletionggrt
metric used in their paper is biased towards IM.
Importantly, this bias exists in Deletion-based
metrics, including Insertion, Sufficiency, and
Comprehensiveness. Furthermore, our rigorous
evaluation using 6 metrics and 3 datasets finds
no evidence that IM is better than a Leave-
One-Out (LOO) baseline. We find two reasons
why IM is not better than LOO: (1) deleting
a single word from the input only marginally
reduces a classifier’s accuracy; and (2) a highly
predictable word is always given near-zero at-
tribution, regardless of its true importance to
the classifier. In contrast, making Local Inter-
pretable Model-Agnostic Explanations (LIME)
counterfactuals more natural via BERT consis-
tently improves LIME accuracy under several
RemOve-And-Retrain (ROAR) metrics.

1 Introduction

Feature attribution maps (AMs), i.e. highlights in-
dicating the importance of each input token w.r.t. a
classifier’s decision, can help improve human accu-
racy on downstream tasks including detecting fake
movie reviews (Lai and Tan, 2019) or identifying
biases in text classifiers (Liu and Avci, 2019).

Many Leave-One-Out (LOO) methods compute
the attribution of an input token by measuring the
prediction changes after substituting that token’s
embedding with zeros (Li et al., 2016; Jin et al.,
2020) or (Kim et al., 2020). That is, delet-
ing or replacing features is the underlying principle
of at least 25 attribution methods (Covert et al.,
2020).

*Adobe Research
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0.0050 rolling 0.0048 stones 0.0860 to
0.0021 casting 0.0043 point 0.0059 ,
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(b) e-SNLI — Groundtruth & target class: “contradiction”

P |A group of people prepare air| |balloons| for takeoff .
0.9997 0.9877 |air 0.9628
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Figure 1: By design, IM erroneously assigns near-
zero attribution to highly-predictable words. Color
map: , neutral 0, positive +1. Many words la-

beled important by humans such as “Istepping|’, “/stone/”

(a) or “”, “lair]” (b) are always given near-zero attri-
bution by IM (because they are highly predictable by
BERT, e.g. 0.9793 for ) regardless of the clas-
sifier. Even when randomizing the classifier’s weights
three times, the IM attribution of these words remains
unchanged at near zero (IM; to IM3). Therefore, when
marginalizing over the top-k BERT candidates (e.g.,
“stepping”, “rolling”, “casting”), the IM attribution for
low-entropy words tends to zero, leading to heatmaps
that are biased, less accurate, and less plausible than
LOOempty-

Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the
12th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 12-31
November 20-23, 2022. ©2022 Association for Computational Linguistics



Based on the evidence in computer vision
(Bansal et al., 2020; Zhang et al., 2019), prior
works in NLP hypothesized that removing a word
from an input text forms out-of-distribution (OOD)
inputs that yield erroneous AMs (Kim et al., 2020;
Harbecke and Alt, 2020) or AMs inconsistent with
human’s perception of causality (Hase et al., 2021).
To generate plausible counterfactuals, two teams
of researchers (Kim et al., 2020; Harbecke and Alt,
2020) proposed Input Marginalization (IM), i.e.
replace a word using BERT (Devlin et al., 2019)
and compute an average prediction difference by
marginalizing over all predicted words. Kim et al.
(2020) claimed that IM yields more accurate AMs
than the baselines that replace words by or
zeros but their quantitative results were reported
for only one' dataset and one evaluation metric.

In this paper, we re-assess their claim by, first,
reproducing their IM results?, and then rigorously
evaluate whether improving the realism of counter-
factuals improves two attribution methods (LOO
and LIME). On a diverse set of three datasets and
six metrics, we find that:

1. The DeletionggrT metric in Kim et al. (2020)
is biased towards IM as both use BERT to
replace words (Sec. 4). In contrast, the vanilla
Deletion metric (Arras et al., 2017) favors the
LOOempty baseline as both delete words. This
bias causes a false conclusion that IM is better
than LOO baselines in Kim et al. (2020) and
also exists in other Deletion variants, e.g.,
Insertion (Arras et al., 2017), Sufficiency, and
Comprehensiveness (DeYoung et al., 2020).

We find no evidence that IM is better than
a simple LOOgmpty on any of the follow-
ing four state-of-the-art AM evaluation met-
rics (which exclude the biased Deletion &
DeletionggrT): ROAR, ROARggrT (HoOker
etal., 2019) (Sec. 5.1), comparison against hu-
man annotations (Sec. 5.2), and sanity check
(Adebayo et al., 2018) (Sec. 5.3).

We argue that IM is not effective in practice
because: (1) deleting a single word from an in-
put has only a marginal effect on classification
accuracy (Sec. 5.4); and (2) given a perfect,
masked language model G, IM would still be
unfaithful because highly predictable words

"No quantitative results on SNLI, only SST-2.
’Code and pre-trained models are available at https:
//github.com/anguyen8/im.
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according to G, e.g. “hot”, “air” in Fig.1, are
always assigned near-zero attribution in IM
regardless of how important they are to the
classifier (Sec. B).

. To further test the main idea of IM, we inte-
grate BERT into LIME (Ribeiro et al., 2016)
to replace multiple words (instead of deleting)
in an input sequence, making LIME counter-
factuals more realistic. We find this technique
to improve LIME consistently under multiple
ROAR-based metrics, but not under compari-
son against human annotations (Sec. 6).

To our knowledge, our work is the first to thor-
oughly study the effectiveness of IM in NLP in
both settings of replacing a single word (LOO) and
multiple words (LIME). Importantly, we find im-
provement in the latter but not the former setting.

2 Methods and Related Work

Let f : R™*4 — [0, 1] be a text classifier that maps
a sequence x of n token embeddings, each of size
d, onto a confidence score of an output label. An at-
tribution function A takes three inputs—a sequence
x, the model f, and a set of hyperparameters H—
and outputs a vector a = A(f,x,H) € [-1,1]™.
Here, the explanation a associates each input token
x; to a scalar a; € [—1, 1], indicating how much z;
contributes for or against the target label.

Leave-One-Out (LOO) is a well-known method
(Lietal., 2016; Robnik—gikonja and Kononenko,
2008; Jin et al., 2020) for estimating the attribution
a; by computing the prediction-difference after a
token x; is left out of the input @, creating a shorter
sequence x_;:

a; = f(x) — f(z—) (1

Under Pearl (2009) causal framework, the attri-
bution a; in Eq. 1 relies on a single, unrealistic
counterfactual x_; and thus is a biased estimate of
the individual treatment effect (ITE):

ITE = f() — E[f(x) | do(T = 0)] ()
where the binary treatment 7', here, is to keep or
“realistically remove” the token x; (i.e. 7' = 1 or 0)
in the input @, prior to the computation of f(x).



Perturbation techniques In computer vision
(CV), earlier attribution methods erase a feature by
replacing it with (a) zeros (Zeiler and Fergus, 2014;
Ribeiro et al., 2016); (b) random noise (Dabkowski
and Gal, 2017; Lundberg and Lee, 2017); or (c)
blurred versions of the original content (Fong et al.,
2019). Yet, these perturbation methods produce
unrealistic counterfactuals that make AMs more
unstable and less accurate (Bansal et al., 2020).

Recent works proposed to simulate the do(T =
0) operator using an image inpainter. However,
they either generated unnatural counterfactuals
(Chang et al., 2019; Goyal et al., 2019) or only a
single, plausible counterfactual per example (Agar-
wal and Nguyen, 2020).

Input marginalization (IM) In NLP, IM offers
the closest estimate of the ITE. IM computes the
E[.] term in Eq. 2 by marginalizing over many plau-
sible counterfactuals generated by BERT:

E[f(z) | do(T = 0)]
=Y p(@ile) - fl_i, i)

;€Y

3

where Z; is a token suggested by BERT (e.g., “”,
“compressed”, or “open” in Fig. 1) with a likelihood
of p(Z;|x_;) to replace the masked token ;. V is
the BERT vocabulary of 30,522 tokens. f(x_;, Z;)
is the classification probability when token z; in
the original input is replaced with Z;.

IM attribution is in the log space:

apy = log-odds(f(x))
— log-odds(E[f(x) | do(T = 0)]) (4)
where log-odds(p) = log,(p/(1 — p)).

As computing the expectation in Eq. 3 over
BERT’s ~30K-word vocabulary is prohibitively
slow, IM authors only marginalized over the words
that have a likelihood > 1075. We are able to
reproduce the IM results of Kim et al. (2020) by
taking only the top-10 words. That is, using the
top-10 words or all words of likelihood > 10—5
yields slightly different numbers but the same con-
clusions (Sec. D). Thus, we marginalize over the
top-10 for all experiments. Note that under BERT,
the top-10 tokens, on average, already account for
81%, 90%, and 92% of the probability mass for
SST-2, e-SNLI, & MultiRC, respectively.

14

BERT Like Kim et al. (2020), we use a pre-
trained BERT “base”, uncased model (Devlin
et al., 2019), from Huggingface (2020), to fill in a

token to generate counterfactuals in IM.

LIME Based on the idea of IM, we also inte-
grate BERT into LIME, which originally masks
out multiple tokens at once to compute attribution.
LIME generates a set of randomly masked versions
of the input, and the attribution of a token z;, is
effectively the mean classification probability over
all the masked inputs when z; is not masked out.
On average, each vanilla LIME counterfactual has
50% of tokens taken out, yielding text often with
large syntactic and grammatical errors.

LIMEgertT We use BERT to replace multiple
masked tokens? in each masked sentence generated
by LIME to construct more plausible counterfactu-
als. However, for each word, we only use the top-1
highest-likelihood token given by BERT instead of
marginalizing over multiple tokens because (1) the
full marginalization is prohibitively slow; and (2)
the top-1 token already carries most of the weight
(p > 0.81; see Table A3).

3 Experiment framework

3.1 Three datasets

We select a diverse set of three classification
datasets that enable us to (1) compare with the
results reported by Kim et al. (2020); and (2) as-
sess AMs on six evaluation metrics (described in
Sec. 3.3). These three tasks span from sentiment
analysis (SST-2), natural language inference (e-
SNLI) to question answering (MultiRC), covering
a wide range of sequence length (~20, 24, and
299 tokens per example, respectively). SST-2 and
e-SNLI were the two datasets where Kim et al.
(2020) found IM to be superior to LOO baselines.

SST Stanford Sentiment Treebank (Socher et al.,
2013Db) is a dataset of ~12K RottenTomato movie-
review sentences, which contain human-annotated
sentiment annotations for phrases. Each phrase
and sentence in SST is assigned a sentiment score
€ [0, 1] (0 = negative, 0.5 = neutral, 1 = positive).

SST-2  has ~70K SST examples (including both
phrases and sentences) where the regression scores
per example were binarized to form a binary classi-
fication task (Socher et al., 2013b).

3We find replacing all tokens at once or one at a time to
produce similar LIMEggrT results.



e-SNLI A 3-way classification task of detect-
ing whether the relation between a premise and
a hypothesis is entailment, neutral or contradiction
(Bowman et al., 2015). e-SNLI has 569K instances
of (input, label, explanation) where the explana-
tions are crowd-sourced (Camburu et al., 2018).

MultiRC Multi-sentence Reading Comprehen-
sion (Khashabi et al., 2018) is a multiple-choice
question-answering task that provides multiple in-
put sentences as well as a question and asks the
model to select one or multiple correct answer sen-
tences. MultiRC has ~6K examples with human-
annotated highlights at the sentence level.

3.2 Classifiers

Following Kim et al. (2020); Harbecke and Alt
(2020); Hase et al. (2021), we test IM and LOO
baselines in explaining BERT-based classifiers.
For each task, we train a classifier by fine-tuning
the entire model, which consists of a classification
layer on top of the pre-trained BERT (described in
Sec. 2). The dev-set top-1 accuracy scores of our
SST-2, e-SNLI, & MultiRC classifiers are 92.66%,
90.92%, and 69.10%, respectively. On the SST
binarized dev-set, which contains only sentences,
the SST-2-trained classifier’s accuracy is 87.83%.

Hyperparameters Following the training
scheme of HuggingFace, we fine-tune all classi-
fiers for 3 epochs using Adam optimizer (Kingma
and Ba, 2015) with a learning rate of 0.00002, (31
=0.9, £ =0.999, ¢ = 1078, A batch size of 32
and a max sequence length of 128 are used for
SST-2 and e-SNLI while these hyperparameters for
MultiRC are 8 and 512, respectively. Dropout with
a probability of 0.1 is applied to all layers. Each
model was trained on an NVIDIA 1080Ti GPU.

3.3 Six evaluation metrics

As there are no groundtruth explanations in XAlI,
we use six common metrics to rigorously assess
IM’s effectiveness. For each classifier, we evaluate
the AMs generated for all dev-set examples.
Deletion is similar to “Comprehensiveness” (DeY-
oung et al., 2020) and is based on the idea that delet-
ing a token of higher importance from the input
should cause a larger drop in the output confidence
score. We take the original input and delete one
token at a time until 20% of the tokens in the input
is deleted. A more accurate explanation is expected
to have a lower Area Under the output-probability
Curve (AUC) (Arras et al., 2017).
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Deletiongert a.k.a. AUC,p in Kim et al. (2020),
is a Deletion variant where a given token is replaced
by a BERT top-1 suggestion instead of an empty
string. Deletionggrt Was proposed to minimize
the OOD-ness of samples (introduced by deleting
words in the vanilla Deletion metric), i.e. akin to
integrating BERT into LOO to create IM.
RemOve And Retrain (ROAR) To avoid a po-
tential OOD generalization issue caused by the
Deletion metric, a common alternative is to retrain
the classifier on these modified inputs (where N %
of the highest-attribution words are deleted) and
measure its accuracy drop (Hooker et al., 2019).
A more faithful attribution method is supposed to
lead to a re-trained classifier of lower accuracy as
the more important words have been deleted from
training examples. For completeness, we also im-
plement ROARggRrT, which uses BERT to replace
the highest-attribution tokens® instead of deleting
them without replacement in ROAR.

Agreement with human-annotated highlights In
both CV and NLP, a common AM evaluation metric
is to assess the agreement between AMs and human
annotations (Wiegreffe and Marasovié, 2021). The
idea is that as text classifiers well predict the human
labels of an input text, their explanations, i.e. AMs,
should also highlight the tokens that humans deem
indicative of the groundtruth label.

Because human annotators only label the tokens

supportive of a label (e.g. Fig. 2), when compar-
ing AMs with human annotations, we zero out the
values in AMs. Following Zhou et al.
(2016), we binarize a resulting AM at an optimal
threshold 7 in order to compare it with human-
annotated highlights under Precision@]1.
Sanity check (Adebayo et al., 2018) is a well-
known metric for testing insensitivity (i.e. bias) of
attribution methods w.r.t. model parameters. For
ease of interpretation, we compute the % change of
per-word attribution values in sign and magnitude
as we randomize the classification layer’s weights.
A better attribution method is expected to be more
sensitive to the classifier’s weight randomization.

4 Bias of Deletion metric and its variants

In explaining SST-2 classifiers, we successfully
reproduce the AUCe, results reported in Kim
et al. (2020), i.e. IM outperformed LOOQO,¢,, and
LOOyk, which were implemented by replacing a

“The chance that a sentence remains unchanged after
BERT replacement is low, < 1%.



word with the and token of BERT,
respectively (Table 1). However, we hypothesize
that DeletionggrT is biased towards IM as both use
BERT to replace words, yielding a false sense of
IM effectiveness reported in Kim et al. (2020).

To test this hypothesis, we add another baseline
of LOOempty, which was not included in Kim et al.
(2020), i.e. erasing a token from the input without
replacement (Eq. 1), mirroring the original Dele-
tion metric. To compare with IM, all LOO methods
in this paper are also in the log-odds space.

Results Interestingly, we find that, under Deletion,
on both SST-2 and e-SNLI, IM underperformed
all three LOO baselines and that LOOgmpty i the
highest-performing method (Table 1a). In contrast,
IM is the best method under DeletionggrT.

Re-running the same experiment but sampling
replacement words from RoBERTa (instead of
BERT), we find the same finding that LOOempty is
the best under Deletion while IM is the best under
DeletionggrT (Table 1b).

Task Metrics | IM LOOgzero LOOunk LOOempty
(a) BERT
SST2 Deletion 0.4732 0.4374 0.4464 0.4241
Deletionggrt 0.4922 0.4970 0.5047 0.5065
e-SNLI Deletion 0.3912 0.2798 0.3742  0.2506
Deletionggrt 0.2816 0.3240 0.3636 0.3328
(b) RoOBERTa
SST-2 Deletion 0.4981 0.4524 0.4595 0.4416
Deletiongert 0.4798 0.5037 0.5087 0.4998

Table 1: IM is the best method under DeletionggrT,
as reported in Kim et al. (2020), but the worst under
Deletion. Both metrics measure AUC (lower is better).

To our knowledge, our work is the first to docu-
ment this bias of the Deletion metric widely used
in the literature (Hase et al., 2021; Wiegreffe and
Marasovié, 2021; Arras et al., 2017). This bias, in
principle, also exists in other Deletion variants
including Insertion (Arras et al., 2017), Sufficiency,
and Comprehensiveness (DeYoung et al., 2020).

5 No evidence that IM is better than LOO

To avoid the critical bias of Deletion and
DeletionggrT, we further compare IM and LOO on
four common metrics that are not Deletion-based.
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5.1 Under ROAR and ROARggrT, IM is
on-par with or worse than LOO¢p,pty

A lower AUC under Deletion may be the artifact
of the classifier misbehaving under the distribution
shift when one or multiple input words are deleted.
ROAR (Hooker et al., 2019) was designed to ame-
liorate this issue by re-training the classifier on a
modified training-set (where the top N % highest-
attribution tokens in each example are deleted) be-
fore evaluating their accuracy.

To more objectively assess IM, we use ROAR
and ROARggrT metrics to compare IM vs.
LOOempty (i.e. the best LOO variant in Table 1).
Experiment For both IM and LOOg¢mpty, we gen-
erate AMs for every example in the SST-2 train
and dev sets, and remove N % highest-attribution
tokens per example to create new train and dev sets.
We train 5 models on the new training set and eval-
uate them on the new dev set. We repeat ROAR
and ROARggrT With N € {10, 20,30}.°
Results As more tokens are removed (i.e. IV in-
creases), the mean accuracy of 5 models gradually
decreases (Table 2; from 92.66% to ~67%). Under
both ROAR and ROARRgRT, the models trained on
the new training set derived from LOOgmpty AMs
often obtain lower (i.e. better) mean accuracy than
those of IM (Table 2a vs. b). At N = 10% un-
der ROAR, LOO¢mpt, outperforms IM (Table 2;
74.59 vs. 76.22), which is statistically significant
(2-sample t-test, p = 0.037). In all other cases,
the difference between IM vs. LOOegmpty is not
statistically significant.

In sum, under both ROAR and ROARggrT, IM
is not more faithful than LOOempty -

5.2 LOO¢mpty aligns significantly better with
human annotations than IM

Following Wiegreffe and Marasovi¢ (2021), to in-
crease our understanding of the differences be-
tween LOOempty and IM, we compare the two
methods against the human-annotated highlights
for SST, e-SNLI, and MultiRC.

Annotation preprocessing To control for qual-
ity, we preprocess the human annotations in each
dataset as the following. In SST, where each sen-
tence has multiple phrases labeled with a sentiment
score € [0, 1] (0.5 being the “neutral” midpoint),
we only use the phrases that have high-confidence

>We do not use N > 40 because: (1) according to SST
human annotations, only 37% of the tokens per example are
labeled “important” (Table A2c); and (2) SST-2 examples are
short and may contain as few as 4 tokens per example.



Accuracy in % (lower is better) ROAR ROARBggrT

Method N = 0% 10% 20% 30% 10% 20% 30%

(2) LOOempty 92.62£030 7459 £0.78 68.94 + 1.46 67.89+0.79 | 76.79 £0.56 71.95+£0.75 67.62 £ 1.16
(b) IM 92.62+0.30 76.22 £ 1.18 70.07 £0.69 66.54 + 1.89 | 77.36 = 0.90 71.56 £ 1.55 67.68 £ 0.96
(c) Random 92.62£0.30 89.22£0.53 87.75+0.19 85.62+0.53 | 89.38 £0.47 88.23 £0.31 85.21 £0.47
(d) t-test p-value N/A 0.0370 0.1740 0.1974 0.2672 0.6312 0.9245

Table 2: Dev-set mean accuracy (%) of 5 models trained on the new SST-2 examples where N % of highest-
attribution words per example are removed (i.e. ROAR) or replaced via BERT (i.e. ROARggRT). On average, under
both metrics, LOOempty () is slightly better, i.e. lower mean accuracy, than IM (b). Notably, LOOgy, statistically
significantly outperforms IM under ROAR at N = 10% (2-sample t-test; p = 0.037) (d). Both LOOempt, and IM
substantially outperform a random baseline (c) that considers N % random tokens important.

Metric 1 (a) SST (b)e-SNLI L2 | (c)e-SNLI L3 | (d) MultiRC
Higherisbeter  IM LOOempty | LIME LIMEggrt LIMEgert ss12| IM LOOempty| M LOOempty| IM LOOcrmpry
IoU 02377 0.2756 [0.3193 03170 03127  |0.3316 0.3415 [0.2811 0.3411 [0.0437 0.0887
precision 0.5129 0.4760 [0.4831 0.4629 04671  |0.4599 0.4867 |0.3814 0.4687 [0.1784 0.1940
recall 05245 0.6077 |0.6882  0.7000 0.6886  |0.6085 0.6158 |0.5699 0.5875 [0.0630 0.2876
FI 05186 0.5338 |0.5677 0.5573 0.5566  |0.5239 0.5437 |0.4570 0.5214 [0.0931 0.2317

Table 3: Compared to IM, LOOgmpty is substantially more consistent with human annotations over all three datasets.
Note that the gap between LOOempty and IM is ~3x wider when comparing AMs with the e-SNLI tokens that at
least three annotators label “important” (i.e. L3), compared to L2 (higher is better). LIMEggrT explanations are
slightly less consistent with human highlights than those of LIME (a) despite their counterfactuals are more realistic.

sentiment scores, i.e. < 0.3 (for “negative”) or
> 0.7 (for “positive”). Also, we do not use the an-
notated phrases that are too long, i.e., longer than
50% of the sentence length.

Each token in an e-SNLI example are labeled
“important” by between 0-3 annotators. To filter
out noise, we only use the tokens that are high-
lighted by at least two or three annotators (hereafter
“L2” and “L3” subsets, respectively).

A MultiRC example contains a question and
a paragraph where each sentence is labeled
“important” or “unimportant” to the groundtruth
answer (Fig. A10). We convert these sentence-level
highlights into token-level highlights to compare
them with the binarized AMs of IM and LOOe¢pmpty -

Experiment We run IM and LOOgmpty on the
BERT-based classifiers on the dev set of SST, e-
SNLI, and MultiRC. All AMs generated are bina-
rized using a threshold 7 € {0.05z | 0 < z <
20 and = € N}. We compute the average IoU, pre-
cision, recall, and F1 over pairs of (human binary
map, binarized AM) and report the results at the
optimal 7 of each explanation method. For both
LOOempty and IM, 7 = 0.1 on SNLI-L2 and 0.05
on both SST-2 and MultiRC. On SNLI-L3, 7 is
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0.40 and 0.45 for LOOempty and IM, respectively.
SST results We found that LOOempty aligns better
with human highlights than IM (Figs. 2 & A12).
LOOempty outperforms IM in both F1 and IoU
scores (Table 3a; 0.2756 vs 0.2377) with a notably
large recall gap (0.6077 vs. 0.5245).

SST Groundtruth & Prediction: “positive” movie review
Mr. Tsai is a very original artist in his medium ,

Input | \d What Time Is It There ?
M Mr. - is a very artist in his
#id What Time Is It
IoU: 0.17, precision: 0.33, recall: 0.25
Mr. s
LOO and What Time [I§ It There ?

IoU: 0.80, precision: 0.80, recall: 1.00

Figure 2: LOOgmpt, binarized _ align

better with human highlights than IVIHaps.

e-SNLI and MultiRC results Similarly, in both
tasks, LOOempty €xplanations are more consistent
with human highlights than IM explanations under
all four metrics (see Table 3b—d and qualitative
examples in Figs. 3 & A13-A16).

Remarkably, in MultiRC where each example is
substantially longer (~299 tokens per example)



than those in the other tasks, the recall and F1
scores of LOOempty is, respectively, 2x and 4x
higher than those of IM (see Table 3).

e-SNLI example. Groundtruth & Prediction: “entailment”
P Two men dressed in black practicing martial arts
on a gym floor .
H |Two men are doing martial arts .
[IWG mei dressed in black practicing martial arts
on a gym floor .

0 e 8 [07AE martial arts |

IoU: 0.09, precision: 0.17, recall: 0.16

dressed in black

on a gym floor .

Two [l are [IGiHg Faal arts |

IoU: 0.50, precision: 0.56, recall: 0.83

M

LOO

Figure 3: LOOempt, important [HOKE are in a
stronger agreement with human highlights than

. Each e-SNLI example contains
a pair of premise (P) and hypothesis (H).

5.3 IM is insensitive to model randomization

Adebayo et al. (2018) found that many attribution
methods can be surprisingly biased, i.e. insensitive
to even randomization of the classifier’s parame-
ters. Here, we test the degree of insensitivity of IM
when the last classification layer of BERT-based
classifiers is randomly re-initialized. We use three
SST-2 classifiers and three e-SNLI classifiers.

Surprisingly, IM is consistently worse than
LOOempty, 1.6. more insensitive to classifier ran-
domization. That is, on average, the IM attribution
of a word changes signs (from positive to negative
or vice versa) less frequently, e.g. 62.27% of the
time, compared to 71.41% for LOOgmpty on SST-
2 (Table A5a). The average change in attribution
magnitude of IM is also ~1.5x smaller than that
of LOOgempty (Table ASb).

For example, the IM attribution scores of ,

air| or in Fig. 1 remain consistently un-

changed near-zero even when the classifier is
randomized three times. That is, each of these
three words is ~100% predictable by BERT given
the other two words (Fig. 1b; IM; to IM3) and,
hence, will be assigned a near-zero attribute by IM
(by construction, via Eqn. 3 & 4) regardless of how
important these words actually are to the classifier.
Statistically, this is a major issue because across
SST, e-SNLI, and MultiRC, we find BERT to cor-
rectly predict the missing word ~49, 60, 65% of
the time, respectively (Sec. A). And that the aver-
age likelihood score of a top-1 exact-match token
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is high, ~0.81-0.86 (Sec. B), causing the highly
predicted words (e.g., ) to always be assigned
low attribution regardless of their true importance
to the classifier.

We find this insensitivity to be a major, theoret-
ical flaw of IM in explaining a classifier’s deci-
sion at the word level. By analyzing the overlap
between IM explanations and human highlights
(generated in experiments in Sec. 5.2), we find
consistent results that IM explanations have signifi-
cantly smaller attribution magnitude per token
(Sec. A) and substantially lower recall than LOO
(Sec. B).

5.4 Classification accuracy only drops
marginally when one token is deleted

Our previous results show that replacing a single
word by BERT (instead of deleting) in IM creates
more realistic inputs but actually hurts the AM qual-
ity w.r.t. LOO. This result interestingly contradicts
the prior conclusions (Kim et al., 2020; Harbecke
and Alt, 2020) and assumptions (Hase et al., 2021)
of the superiority of IM over LOO.

To understand why using more plausible coun-

terfactuals did not improve AM explainability, we
assess the A drop in classification accuracy when a
word is deleted (i.e., LOOempty samples; Fig. A17)
and the A when a word is replaced via BERT (i.e.
IM samples).
Results Across SST, e-SNLI, and MultiRC, the
accuracy scores of classifiers only drop marginally
~1-4 points (Table 4) when a single token is
deleted. See Figs. A17 & A18 for qualitative ex-
amples showing that deleting a single token hardly
changes the predicted label. Whether a word is
removed or replaced by BERT is almost unimpor-
tant in tasks with long examples such as MultiRC
(Table 4; 1.10 and 0.24). In sum, we do not find the
unnaturalness of LOO samples to substantially hurt
model performance, questioning the need raised in
(Hase et al., 2021; Harbecke and Alt, 2020; Kim
et al., 2020) for realistic counterfactuals.

6 Replacing (instead of deleting) multiple
words can improve explanations

We find that deleting a single word only marginally
affects classification accuracy. Yet, deleting ~50%
of words, i.e. following LIME’s counterfactual
sampling scheme, actually substantially reduces
classification accuracy, e.g. —16.38 point on SST
and —25.74 point on e-SNLI (Table 4c). There-



A drop in accuracy (%) SST e-SNLI MultiRC

(a) LOO (1-token deleted) 3,52 4.92 1.10
(b)y IM (1-token replaced) 220 4.86 0.24
(c) LIME (many tokens deleted) 16.38 25.74 17.85

Table 4: The dev-set accuracies on SST, e-SNLI and
MultiRC (87.83%, 90.92%, and 69.10%, respectively)
only drop marginally when a single token is deleted (a)
or replaced using BERT (b). In contrast, LIME samples
cause the classification accuracy to drop substantially
(e.g. 16.38 points on SST).

fore, it is interesting to test whether the core idea of
harnessing BERT to replace words has merits in im-
proving LIME whose counterfactuals are extremely
OOD due to many missing words.

6.1 LIMEggrT attribution maps are not more
aligned with human annotations

Similar to Sec. 5.2, here, we compare LIME and
LIMEggrt AMs with human SST annotations
(avoiding the Deletion-derived metrics due to their
bias described in Sec. 4).

Experiment We use the default hyperparame-
ters of the original LIME (Ribeiro, 2021) for both
LIME and LIMEggrT. The number of counterfac-
tual samples was 1,000 per example.

Results Although LIMEgggrT counterfactuals are
more natural, the derived AMs are surprisingly
less plausible to human than those generated by
the original LIME. That is, compared to human
annotations in SST, LIMEgggrt’s IoU, precision
and F1 scores are all slightly worse than those
of LIME (Table 3a). Consistent with the IM vs.
LOOempty comparison in Sec. 5.2, replacing one or
more words (instead of deleting them) using BERT
in LIME generates AMs that are similarly or less
aligned with humans.

To minimize the possibility that the pre-trained
BERT is suboptimal in predicting missing words
on SST-2, we also finetune BERT using the mask-
language modeling objective on SST-2 (see details
in Sec. C) and repeat the experiment in this section.
Yet, interestingly, we find the above conclusion to
not change (Table 3a; LIMEggRrT ssT2 1S worse
than LIME). In sum, for both LOO and LIME, we
find no evidence that using realistic counterfac-
tuals from BERT causes AMs to be more con-
sistent with words that are labeled “important”
by humans.
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6.2 LIMEgggrT consistently outperforms
LIME under three ROAR metrics

To thoroughly test the idea of using BERT-based
counterfactuals in improving LIME explanations,
we follow Sec. 5.1 and compare LIMEggrT and
LIME under three ROAR metrics: (1) ROAR; (2)
ROARBERT; and (3) ROARBERT_SSTZa i.e. which
uses the BERT finetuned on SST-2 to generate train-
ing data.

Experiment Similar to the previous section, we
take the dev set of SST-2 and generate a LIME
AM and a LIME-BERT AM for each SST-2 ex-
ample. For ROARBEgRT ssT2, we re-use the BERT
finetuned on SST-2 described in Sec. 6.1.

Results Interestingly, we find that LIMEggrT
slightly, but consistently outperforms LIME via all
three ROAR metrics tested (Fig. 4; dotted lines are
above solid lines). That is, LIMEgggrT tend to high-
light more discriminative tokens in the text than
LIME, yielding a better ROAR performance (i.e.
lower accuracy in Table A6). This result is con-
sistent across all three settings of removing 10%,
20%, and 30% most important words, and when
using either pre-trained BERT or BERT finetuned
on SST-2.

100
LIME (ROAR)
LIME_BERT (ROAR)
LIME (ROAR-BERT)
LIME_BERT (ROAR-BERT)

95

B HH B

90

<~ 85

3 80 AN

< \1 . : 3
P— e

70

65

0% 10% 20% 30%

% token removal

Figure 4: LIMEgggT slightly, but consistently outper-
forms LIME when evaluated under either ROAR or
ROARggrT. The each point in the y-axis shows the
mean accuracy of five different classifiers. See more
results supporting the same conclusion in Table A6.

7 Discussion and Conclusion

We find in Sec. 5.3 that IM is highly insensitive to
classifier’s changes because, by design, it always
assigns near-zero attribution to highly-predictable
words z; regardless of their true importance to a
target classifier. A solution may be to leave such



x; token out of the marginalization (Eq. 3), i.e.
only marginalizing over the other tokens suggested
by BERT. However, these other replacement to-
kens altogether have a sum likelihood of 0. That
is, replacing token x; by zero-probability tokens
(i.e. truly implausible) would effectively generate
OOD text, which, in turn is not desired (Hase et al.,
2021).

Our results in Sec. 6.2 suggests that IM might be
more useful at the phrase level (Jin et al., 2020) in-
stead of word level as deleting a set of contiguous
words has a larger effect to the classifier predic-
tions.

In sum, for the first time, we find that the popu-
lar idea of harnessing BERT to generate realistic
counterfactuals (Hase et al., 2021; Harbecke and
Alt, 2020; Kim et al., 2020) does not actually im-
prove upon a simple LOOgmpty in practice as an
LOOempty counterfactual only has a single word
deleted. In contrast, we observe more expected ben-
efits of this technique in improving methods like
LIME that has counterfactuals that are extremely
syntactically erroneous when multiple words are
often deleted.
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Appendix

A IM explanations have smaller
attribution magnitude per token and
lower word coverage

To further understand the impact of the fact that
BERT tends to not change a to-remove token
(Sec. B), here, we quantify the magnitude of at-
tribution given by IM and its coverage of important
words in an example.

Smaller attribution magnitude Across three
datasets, the average absolute values of attribution
scores (which are € [—1,1]) of IM are not higher
than that of LOOempty (Table Al). Especially in
MultiRC, IM average attribution magnitude is 4.5 x
lower than that of LOOempty (0.02 vs 0.09).

Method SST e-SNLI MultiRC
LOOempty 0.22£0.27 0.154+0.24  0.09 £ 0.09
M 0.17+ 027 0.15+£027 0.02 £ 0.09

Table Al: The average absolute value of attribution
scores per token of LOOempt, is consistently higher
than that of IM.

Lower word coverage We define coverage as
the average number of highlighted tokens per ex-
ample (e.g. Fig. 1) after binarizing a heatmap at
the method’s optimal threshold.

The coverage of LOOegmpty is much higher than
that of IM on SST (40% vs 30%) and MultiRC
examples (27% vs 6%), which is consistent with
the higher recall of LOOgmpty (Table A2; a vs.
b). For e-SNLI, although IM has higher cover-
age than LOOempty (14% vs. 10%), the coverage
of LOOgempty is closer to the human coverage (9%).
That is, IM assigns high attribution incorrectly to
many words, resulting in a substantially lower pre-
cision than LOOgmpty, according to e-SNLI L3
annotations (Table 3b; 0.3814 vs. 0.4687).

In sum, chaining our results together, we
found BERT to often replace a token z; by an exact-
match with a high likelihood (Sec. B), which sets
a low empirical upper-bound on attribution values
of IM, causing IM explanations to have smaller
attribution magnitude. As the result, after binariza-
tion, fewer tokens remain highlighted in IM binary
maps (e.g. Fig. 3).
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Explanations SST e-SNLI MultiRC
generated by L2 L3

(2) LOOempty 40% 19% 10% 27%
(b) IM 30% 21% 14% 6%
(c) Human 37% 18% 9% 16%
# tokens per example 20 24 299

Table A2: Compared to IM, the coverage of LOOempty
is closer to the coverage of human explanations.

B By design, IM always assigns near-zero
attribution to high-likelihood words
regardless of classifiers

We observe that IM scores a substantially lower
recall compared t0 LOOgmpty (e.g. 0.0630 vs.
0.2876; Table 3d). That is, IM tends to incor-
rectly assign too small of attribution to important
tokens. Here, we test whether this low-recall issue
is because BERT is highly accurate at predicting a
single missing word from the remaining text and
therefore assigns a high likelihood to such words
in Eq. 3, causing low IM attribution in Eq. 2.

Experiment For each example in all three
datasets, we replaced a single word by BERT’s
top-1 highest-likelihood token and measured its
likelihood and whether the replacement is the same
as the original word.

Results Across SST, e-SNLI, and MultiRC, the
top-1 BERT token matches exactly the original
word ~49, 60, 65% of the time, respectively (Table
A3a). This increasing trend of exact-match fre-
quency (from SST, e-SNLI — MultiRC) is consis-
tent with the example length in these three datasets,
which is understandable as a word tends to be more
predictable given a longer context. Among the
tokens that human annotators label “important”,
this exact-match frequency is similarly high (Table
A3b). Importantly, the average likelihood score
of a top-1 exact-match token is high, ~0.81-0.86
(Table A3c). See Fig. 1 & Figs. A6—-A11 for quali-
tative examples.

Our findings are aligned with IM’s low recall.
That is, if BERT fills in an exact-match x; for an
original word x;, the prediction difference for this
replacement z; will be 0 in Eq. 4. Furthermore, a
high likelihood of ~0.81 for Z; sets an empirical
upper-bound of 0.19 for the attribution of the
word z;, which explains the insensitivity of IM to
classifier randomization (Fig. 1; IM; to IM3).



% exact-match (uncased) SST e-SNLI MultiRC
(a) over all tokens 48.94 59.43 64.78
(b) over human highlights ~ 41.25 42.74 68.55
(c) Top-1 word’s likelihood 0.8229 0.8146  0.8556

Table A3: Top-1 likelihood scores (c) are the mean
likelihood given by BERT for the top-1 predicted words
that exactly match the original words (a).

The analysis here is also consistent with our ad-
ditional findings that IM attribution tends to be
smaller than that of LOOempty and therefore leads
to heatmaps of lower coverage of the words labeled
“important” by humans (see Sec. A).

C Train BERT as masked language
model on SST-2 to help filling in
missing words

Integrating pre-trained BERT into LIME helps im-
prove LIME explanations under two ROAR metrics
(Sec. 6). However, the pre-trained BERT might be
suboptimal for the cloze task on SST-2 sentences as
it was pre-trained on Wikipedia and BookCorpus.
Therefore, here, we take the pre-trained BERT, and
finetune it on SST-2 training set using the masked
language modeling objective. That is, we aim
to test whether having a more specialized BERT
would improve LIME results even further.

Training details We follow the hyperparameters
by (Huggingface, 2020) and use Adam optimizer
(Kingma and Ba, 2015) with a learning rate of
0.00005, 51 = 0.9, By = 0.999, ¢ = 1078, a batch
size of 8, max sequence length of 512 and the ratio
of tokens to mask of 0.15. We finetune the pre-
trained BERT on SST-2 (Socher et al., 2013a) train
set and select the best model using the dev set.

Results On the SST-2 test set of 1,821 exam-
ples that contain 35,025 tokens in total, the cross-
entropy loss of pre-trained BERT and BERT-SST2
are 3.50 £ 4.58 and 3.29 &£ 4.40, respectively. That
is, our BERT finetuned on SST-2 is better than pre-
trained BERT at predicting missing words in SST-2
sentences.
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D Comparison between original and
modified version of Input
Marginalization

We follow Kim et al. (2020) to reproduce results
of the original Input Marginalization (IM) (Ta-
ble Ad4a-b). To reduce the time complexity of Input
Marginalization, we propose a modified version
(IM-top10) by only marginalizing over the top-10
tokens sampled from BERT rather than using all
tokens of likelihood > a threshold o = 107°. We
find that IM-top10 has comparable performance
to that of the original IM (0.4732 vs. 0.4783; Ta-
ble A4c). Our IM-topl10 quantitative results are
also close to the original numbers reported in Kim
et al. (2020) (0.4922 vs. 0.4972; Table A4).

Metrics | a. IM (reported in b. IM c. IM-topl10
Kim et al. (2020)) (Our reproduction)

Deletion n/a 0.4783 0.4732

DeletionggrT 0.4972 0.4824  0.4922

Table A4: The approximation in of IM-top10 compared
to the original IM under two metrics on SST-2 task.
Both metrics measure AUC (lower is better).

We also find high qualitative similarity between
heatmaps produced by two versions: IM vs. IM-
top10 (Figs. A1-5). The average Pearson correla-
tion score across the SST-2 8720-example test set
is fairly high (p = 0.7224). Thus, we use IM-top10
for all experiments in this paper.

E Sanity check result

Method SST-2 e-SNLI
LOOempty 71.41 £17.12 56.07 + 21.82

Criteria

(a) % tokens
changing sign

M 62.27 £ 17.75 49.57 £20.35
(b) Average  LOOempyy 0.46 +0.18 0.26 = 0.14
absolute of
differences M 0.31 £0.12 0.16 £ 0.12

Table AS: The percentage (%) of token (a) whose at-
tribution scores change signs and (b) the average of
absolute differences in attribution magnitude after clas-
sifier randomization (higher is better). IM is consistently
more insensitive than LOOempty in both SST-2 and e-
SNLI.



SST-2 example. Groundtruth: “positive” & Prediction: “positive” (Confidence: 0.9996)

™M among the year ’s most intriguing | explorations of alientation
1.815 0.0118 | 0.54158 | 0.22394 | 1.03458 | 5.03105 1.94109 1.53783 | -0.31367 | -0.0026
M among the year s most | intriguing | explorations of alientation

modified | 5 64685 | 0.03574 | 0.34608 | 0.51827 | 1.61421 | 5.74711 4.16886 2.30276 | -0.35139 | 0.01431

Figure A1: Color map: , neutral 0, positive +1. Attribution maps derived from both versions of IM have
a high Pearson correlation p = 0.988.

SST-2 example. Groundtruth: “positive” & Prediction: “positive” (Confidence: 0.9994)

™M a solid examination of the male midlife crisis
1.07654 | 6.16288 2.91817 -0.01502 | 0.14328 | -0.40143 | 0.1654 | 1.29851 | 1.2264
M a solid examination of the male midlife crisis

modified | | g3537 | 585144 | 2.89864 | 0.00083 | 0.02024 | -0.11491 | 0.06725 | 1.11138 | 0.05947

Figure A2: Color map: , neutral 0, positive +1. Attribution maps derived from both versions of IM have
a high Pearson correlation p = 0.917.

SST-2 example. Groundtruth: “negative” & Prediction: “positive” (Confidence: 0.9868)

M rarely has leukemia | looked so shimmering and benign
6.62645 | 0.98643 | -2.15698 | -0.16744 | 0.59491 8.38053 3.50372 | 0.15773 | 0.05112
M rarely has leukemia | looked SO shimmering and benign

modified | 3 11005 | 0.58616 | -3.29759 | -0.20848 | 0.3003 8.72728 3.81542 | 0.26226 | 0.04914

Figure A3: Color map: , neutral 0, positive +1. Attribution maps derived from both versions of IM have
a high Pearson correlation p = 0.983.

SST-2 example. Groundtruth: “negative” & Prediction: “negative” (Confidence: 0.9950)

™ unfortunately s it ’s not fun unless you enjoy really bad movies
0.97455 -0.00063 | -0.00634 | -0.15033 | 0.81403 | -1.31111 | 0.76075 | -0.03599 | -0.00042 | -0.22804 | 0.27508 | 1.36045 | 0.58812 | -0.00371
M unfortunately s it ’s not fun unless you enjoy really bad movies

modified 1.6679 -0.00071 | -0.00764 | -0.35265 | 0.35085 | -1.66804 | -0.0029 | 0.37561 | 0.00036 | -0.46997 | 0.35344 | 2.41716 | 0.78194 | -0.00525

Figure A4: Color map: , neutral 0, positive +1. Attribution maps derived from both versions of IM have
a high Pearson correlation p = 0.802.

SST-2 example. Groundtruth: “positive” & Prediction: “negative” (Confidence: 0.7999)
™ documentary - is emotionally | diluted by focusing on the story ’s least interesting | subject
-7.28604 -2.3813 -4.68492 | -0.11221 0.40301 8.17448 | 1.71521 | 0.06288 | 0.00117 | 0.06125 | -0.64145 | 1.74269 | 9.00071 1.50607 | -0.22335 | -0.15134
M intriguing | documentary which is emotionally | diluted by focusing on the story ’s least interesting | subject
modified | 3 96954 -1.1229 -2.38742 | 0.27984 4.07982 11.69405 | 0.68146 | 0.88004 | -0.00308 | 0.04509 | -0.43266 | 2.63444 | 9.97514 | 2.32102 | -0.43297 | 0.03175

Figure A5: Color map: , neutral 0, positive +1. Attribution maps derived from both versions of IM have
a high Pearson correlation p = 0.950.
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Accuracy | ROAR ROARgerT ROARBERT_s5T2

Method 10% 20% 30% 10% 20% 30% 10% 20% 30%

(a) LIME 75.51 £ 0.55 75.30 + 0.80 77.45 £ 0.70{78.14 + 0.54 73.44 £ 0.65 70.57 & 0.56|78.83 £ 1.28 74.47 4 0.67 72.18 + 1.02
(b) LIMEgerT 73.99 +0.74 72.22 £ 0.73 70.82 £+ 0.86|74.13 £ 0.72 70.44 £ 0.86 70.48 + 0.63|75.78 & 0.22 71.33 + 1.04 68.76 £ 0.79
(c) LIMEggrT sst2 74.15 £ 1.26 70.85 4= 0.89 70.48 £ 0.98|76.19 + 0.91 69.77 £ 0.46 67.61 & 0.53|76.08 £ 0.46 70.92 & 0.64 71.08 + 0.34

Table A6: Dev-set mean accuracy (%) of 5 models trained on the new SST-2 examples where N % of highest-
attribution words per example are removed (i.e. ROAR), replaced via BERT (i.e. ROARgggrT) or BERT finetuned
on SST-2 to fill in a token (i.e. ROARREgRrT ssT2). The original accuracy when no tokens are removed (i.e.
N = 0%) is 92.62 £ 0.30. On average, under three metrics, LIMEggrt (b) and LIMEggrT ss12 (c) are better, i.e.
lower mean accuracy, than LIME (a).

SST example. Groundtruth: “positive”

S [may not have generated many sparks , but with his affection for Astoria and its people he has given his tale a warm glow .

S1 |may not have generated many sparks , but with his affection for Astoria and its people |he| has |given| his tale El warm glow .
0.9494 0.9105 |given 0.9632 EI
0.0103 it 0.0285 lent 0.0270 its
0.0066 0.0143  gave 0.0033  another

Figure A6: BERT often correctly predicts the masked tokens (denoted in , green|, rectangles) and assigns a

high likelihood to the tokens that are labeled important by humans in the SST “positive” example. In each panel,
we show the top-3 tokens suggested by BERT and their associated likelihoods.

SST example. Groundtruth: “negative”

S [Villeneuve spends too much time wallowing in Bibi ’s generic angst ( there are a lot of shots of her gazing out windows ) .

S1|Villeneuve spends too |much| time| wallowing [in| Bibi ’s generic angst ( there are a lot of shots of her gazing out windows ) .

0.9987 |much 0.9976 time 0.9675
0.0011  little 0.0005 money 0.0066  with
0.0001 some 0.0003  space 0.0062 on

Figure A7: BERT often correctly predicts the masked tokens (denoted in , green|, rectangles) and assigns a

high likelihood to the tokens that are labeled important by humans in the SST “negative” example. In each panel,
we show the top-3 tokens suggested by BERT and their associated likelihoods.

e-SNLI example. Groundtruth: “entailment”
P |The two farmers are working on a piece of John Deere equipment .
H |John Deere equipment is being worked on by two farmers

P; | The two farmers are working on a piece of |John| Deere |equipment
H

|J 0hn| Deere equipment is being worked on by two farmers
0.9995 [john| 09877 equipment| 0.9711 [john|
0.0000 johnny 0.0057 machinery 0.0243 the
0.0000 henry 0.0024 hardware 0.0005 a

Figure A8: BERT often correctly predicts the masked tokens (denoted in , green|, rectangles) and assigns

a high likelihood to the tokens that are labeled important by humans in the e-SNLI “entailment” example which
contains a pair of premise (P) and hypothesis (H). In each panel, we show the top-3 tokens suggested by BERT and
their associated likelihoods.
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e-SNLI example. Groundtruth: “neutral”
P |A man uses a projector to give a presentation .
H |A man is giving a presentation in front of a large crowd .

P, | A man uses a projector to give a presentation .

H, | A man is giving a presentation in [fron{ [off [ large crowd .
1.0000 [front 09999 of  0.9993

0.0000 view 0.0000 to 0.0005 the
0.0000 presence 0.0000 with 0.0001 another

Figure A9: BERT often correctly predicts the masked tokens (denoted in , green, rectangles) and assigns a
high likelihood to the tokens that are labeled important by humans in the e-SNLI “neutral” example which contains
a pair of premise (P) and hypothesis (H). In each panel, we show the top-3 tokens suggested by BERT and their
associated likelihoods.

MultiRC example. Groundtruth & Prediction: “True” (confidence: 0.98)

P | What causes a change in motion ? The application of a force . Any time an object changes motion , a force has been
applied . In what ways can this happen ? Force can cause an object at rest to start moving . Forces can cause objects to
speed up or slow down . Forces can cause a moving object to stop . Forces can also cause a change in direc-
tion . In short, forces cause changes in motion . The moving object may change its speed , its direction , or both .
We know that changes in motion require a force . We know that the size of the force determines the change in
motion . How much an objects motion changes when a force is applied depends on two things . It depends on the
strength of the force . It also depends on the objects mass . Think about some simple tasks you may regularly do . You
may pick up a baseball . This requires only a very small force .

What factors cause changes in motion of a moving object ?

The object ’s speed , direction , or both speed and direction

>0

P, | What causes a change in motion ? The application of a force . Any time an object changes motion , a force has been
applied . In what ways can this happen ? Force can cause an object at rest to start moving . Forces can cause objects to
speed up or slow down . Forces can cause a moving object to stop . Forces can also cause a change in direction . In
short , forces cause changes in motion . The object may |change| its speed , its direction , [or| both . We know
that changes in motion require a force . We know that the size of the force determines the change in motion . How
much an objects motion changes when a force is applied depends on two things . It depends on the strength of the
force . It also depends on the objects mass . Think about some simple tasks you may regularly do . You may pick up a
baseball . This requires only a very small force .

0.9927 |moving 0.9891 |change 0.9995

0.0023 moved 0.0033  alter 0.0004  and

0.0016  stationary  0.0018 affect 0.0000 etc

Qi |John Deere equipment is being worked on by two farmers

A |The object ’s speed , direction , or both speed and direction

Figure A10: BERT often correctly predicts the masked tokens (denoted in , green|, rectangles) and assigns

a high likelihood to the tokens that are labeled important by humans in the MultiRC “True” example which contains
a triplet of paragraph (P), question (Q) and answer (A). In each panel, we show the top-3 tokens suggested by BERT
and their associated likelihoods.
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MultiRC example. Groundtruth & Prediction: “False” (confidence: 0.74)

P

There have been many organisms that have lived in Earths past . Only a tiny number of them became fos-
sils . Still , scientists learn a lot from fossils . Fossils are our best clues about the history of life on Earth .
Fossils provide evidence about life on Earth .  They tell us that life on Earth has changed over time . Fossils in
younger rocks look like animals and plants that are living today . Fossils in older rocks are less like living organisms .
Fossils can tell us about where the organism lived . Was it land or marine ? Fossils can even tell us if the water was
shallow or deep . Fossils can even provide clues to ancient climates .

What are three things scientists learn from fossils ?

>0

Who lived in prehistoric times

Py

There have been many organisms that have lived in Earths past . Only a tiny number of them became fossils . Still
, scientists learn a lot from fossils . Fossils are our best clues about the history of on Earth . Fossils provide

evidence about life on Earth . They tell us that life on has changed over . Fossils in younger rocks look
like animals and plants that are living today . Fossils in older rocks are less like living organisms . Fossils can tell us
about where the organism lived . Was it land or marine ? Fossils can even tell us if the water was shallow or deep .
Fossils can even provide clues to ancient climates .

0.9984 0.9982 |earth| 0.9980 |[time
0.0004 living  0.0007 mars 0.0007  millennia
0.0002 things  0.0002 land 0.0003  history

Q

What are three things scientists learn from fossils ?

Ay

Who lived in prehistoric times

Figure A11: BERT often correctly predicts the masked tokens (denoted in , , rectangles) and assigns
a high likelihood to the tokens that are labeled important by humans in the MultiRC “False” example which contains

a triplet of paragraph (P), question (Q) and answer (A). In each panel, we show the top-3 tokens suggested by BERT

and their associated likelihoods.

SST example. Groundtruth & Prediction: “negative” (confidence: 1.00)
S [For starters , the story is just too slim .

Siv | For SEAREH , the SIOHY is julst §06 slim .

ToU: 0.33, precision: 0.50, recall: 0.50

Sioo | For starters , the story is [t {08 SHi .

ToU: 0.75, precision: 1.00, recall: 0.75

Figure A12: The set of _ given by LOOgmpty covers 75% of human highlights with higher precision
and IoU in the SST “negative” example while there are a half of _ are in correlation with
human explanations.

e-SNLI example. Groundtruth & Prediction: “contradiction” (confidence: 1.00)
P Two men are cooking food together on the corner of the street .
H The two men are running in a race .

P | Two men are cooking food together on the corner of the street .

Hpv |[Bh€ two men are FUlRING in a FicE .

ToU: 0.25, precision: 0.33, recall: 0.50

Pioo |Two men are BOOKIME food together on the corner of the street .

Hioo | The two - are - in a - .

ToU: 0.50, precision: 0.50, recall: 1.00

Figure A13: The set of _ given by LOOempty covers all highlights (higher precision and IoU) that

are important to human in the e-SNLI “contradiction” example which contains a pair of premise (P) and hypothesis

(H) while there are a half of _ are in correlation with human explanations.
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e-SNLI example. Groundtruth & Prediction: “neutral” (confidence: 1.00)
P Woman in a dress standing in front of a line of a clothing line , with clothes hanging on the line .
H Her dress is dark blue .

Py |Womai in @ @fesS standing in front of a line of a clothing line , with clothes hanging on the line .
Hiv |Her @f€SS is dark blue .
IoU: 0.00, precision: 0.00, recall: 0.00

PLoo | Woman in a - standing in front of a line of a clothing line , with clothes hanging on the line .

Hroo | G WEESH S TR BINE -

ToU: 0.33, precision: 0.33, recall: 1.00

Figure A14: The set of EXPIGMAOIYINOIAY given by LOOempe, covers all highlights (higher precision and IoU) that
are important to human in the e-SNLI “neutral” example which contains a pair of premise (P) and hypothesis (H)

while there are none [ORSHSINIGRZRIEABYIIM arc in correlation with human explanations.

MultiRC example. Groundtruth & Prediction: “True” (confidence: 0.90)

P There have been many organisms that have lived in Earths past . Only a tiny number of them became fossils . Still ,
scientists learn a lot from fossils . Fossils are our best clues about the history of life on Earth . Fossils provide evidence
about life on Earth . They tell us that life on Earth has changed over time . Fossils in younger rocks look like animals
and plants that are living today . Fossils in older rocks are less like living organisms . Fossils can tell us about where
the organism lived . Was it land or marine ? Fossils can even tell us if the water was shallow or deep . Fossils can even
provide clues to ancient climates .

Q ‘What happened to some organisms that lived in Earth ’s past ?

A They became fossils . Others did not become fossils

Py | There have been many organisms that have lived in [B&ith§ past | Only a tiny number of them [eaine fOsSil§ . Still ,
scientists learn a lot from fossils . Fossils are our best clues about the history of life on Earth . Fossils provide evidence
about life on Earth . They tell us that life on Earth has changed over time . Fossils in younger rocks look like animals
and plants that are living today . Fossils in older rocks are less like living organisms . Fossils can tell us about where
the organism lived . Was it land or marine ? Fossils can even tell us if the water was shallow or deep . Fossils can even
provide clues to ancient climates .

Quu | What happened to 8§ organisms that lived in Earth [§ past ?

A | They became fossils . - - not become fossils

IoU: 0.16, precision: 0.50, recall: 0.19

Proo | IGHS IHAVS [BESH i DRSHRISS [l Fave [ived i Eahs past | Ofly & uny AuH5e: Of JeH BECame [Ossil | S.i!
, CIBHTiSH I8&HH 2 B8 from fossils . Fossils are our [B88 clues about the history of life on Earth . Fossils Ployide

evidence about life on Earth . They tell us that life on Earth has changed over time . Fossils in younger rocks [l38K like
animals and plants that are living today . Fossils in older rocks are less like living organisms . Fossils can tell us about
where the organism lived . Was it land or marine ? Fossils can even tell us if the water was shallow or deep . Fossils
can even provide clues to ancient climates I

Quoo | IVIE RAPPEREH to SBME organisms that lived in Earth s [Jal] ?

Avoo | They became fossils | (OHiSH @il not BEEGME fossils

IoU: 0.56, precision: 0.57, recall: 0.95

Figure A15: The set of ERPIGNAIOIIWOIAY given by LOOempty, covers 95% of human highlights with higher precision
and IoU in the MultiRC “True” example which contains a triplet of paragraph (P), question (Q) and answer (A)
while there are only few tokens given by . are in correlation with human explanations.
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MultiRC example. Groundtruth & Prediction: “False” (confidence: 0.99)

P

There have been many organisms that have lived in Earths past . Only a tiny number of them became fossils . Still
, scientists learn a lot from fossils . Fossils are our best clues about the history of life on Earth . Fossils provide
evidence about life on Earth . They tell us that life on Earth has changed over time . Fossils in younger rocks look
like animals and plants that are living today . Fossils in older rocks are less like living organisms . Fossils can tell
us about where the organism lived . Was it land or marine ? Fossils can even tell us if the water was shallow or deep .
Fossils can even provide clues to ancient climates .

What is a major difference between younger fossils and older fossils ?

>0

Older rocks are rougher and thicker than younger fossils

Pim

There have been many organisms that have lived in Earths past . Only a tiny number of them became fossils . Still
, SCIBHHiSEs learn a lot from fossils . Fossils are our best BIig§ about the history of life on Earth . Fossils provide
evidence about life on Earth . They tell us that life on Earth has changed over time . Fossils in younger rocks look like
animals and plants that are living today . Fossils in older rocks . less like - organisms . Fossils can tell us about
where the organism lived . Was it J@ild or fi@Hng ? Fossils can even tell us if the water was shallow or deep . Fossils
can even provide clues to ancient climates .

QIM

What is a major difference between younger fossils and older fossils ?

A

Older FOCKS arc fOUgHeE and [HiCKe] fhah FJOumngex fossils

IoU: 0.06, precision: 0.18, recall: 0.08

PLoo

There have been many BEgaRISHE that have lived in B8RS past | Only a tiny number of them became fossils . Still
, scientists learn a lot from fossils . [F88SHE are our [&8f BIHES about the history of [if§ on |B&il | Fossils provide
evidence about life on Earth . They tell us that [ifi§ B Earth has changed over time . |[FOSSil§ [l younger FS8K§ look

ik I O N S A R | OSSN i o v rocks I e [N DN | OGS i [
S 0 O Ve | VA i A OSSN 6 980 8 s e vt was shallow or decp
OSSN 80 ovn provice SRS o NGRS GRS |

QLOO

What § a @1 difference between younger [f888il§ and older [fGSSil§

ALoo

Older [FOBKS /i€ FOUSHEH A thicker FiaN JOURNSEEH fossils

IoU: 0.22, precision: 0.25, recall: 0.67

Figure A16: The set of

given by LOOgmpt, covers two thirds of human highlights with higher

precision and IoU in the MultiRC “False” example which contains a triplet of paragraph (P), question (Q) and
answer (A) while there are two tokens given by IM are in correlation with human explanations.

SST example. Groundtruth & Prediction: “positive”
S [ Enormously entertaining for moviegoers of any age .

S1 | Enermeusly entertaining for moviegoers of any age .
S2 | Enormously entertaining for moviegoers of any age .
S3 | Enormously entertaining fer moviegoers of any age .
S4 | Enormously entertaining for meviegeers of any age .
S5 | Enormously entertaining for moviegoers of any age .
Se | Enormously entertaining for moviegoers of any age .
S7 | Enormously entertaining for moviegoers of any age .

Figure A17: When a word is remeved, the predicted labels of all resulting sentences (S; to S7) are still “positive”
with a confidence score of 1.0.
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e-SNLI example. Groundtruth: “entailment” Prediction
P | Two women having drinks and smoking cigarettes at the bar . |entailment
H [Two women are at a bar . (0.99)

P, |Fwe women having drinks and smoking cigarettes at the bar . |entailment
H; |Two women are at a bar . (0.98)

P, |Two wemen having drinks and smoking cigarettes at the bar . | neutral
H, |Two women are at a bar . (0.93)

P3 | Two women having drinks and smoking cigarettes at the bar . | entailment
H; |Two women are at a bar . (0.99)

P4 | Two women having drinks and smoking cigarettes at the bar . | entailment
Hs |Two women are at a bar . (0.99)

Ps | Two women having drinks and smoking cigarettes at the bar . | entailment
Hs | Two women are at a bar . (0.99)

Ps | Two women having drinks and smeking cigarettes at the bar . | entailment
He | Two women are at a bar . (0.99)

P; | Two women having drinks and smoking eigarettes at the bar . | entailment
H, [Two women are at a bar . (0.99)

Pg | Two women having drinks and smoking cigarettes at the bar . |entailment
Hs | Two women are at a bar . (0.98)

Py | Two women having drinks and smoking cigarettes at the bar . |entailment
Hy |Two women are at a bar . (0.98)

Pio | Two women having drinks and smoking cigarettes at the ba¥ . | entailment
Ho |Two women are at a bar . 0.97)

P11 | Two women having drinks and smoking cigarettes at the bar = |entailment
H;: | Two women are at a bar . (0.99)

P> | Two women having drinks and smoking cigarettes at the bar . |entailment

H), [Twe women are at a bar . (0.99)
P13 | Two women having drinks and smoking cigarettes at the bar . |entailment
Hi3 | Two wemen are at a bar . (0.98)
P14 | Two women having drinks and smoking cigarettes at the bar . |entailment
His [ Two women are at a bar . (0.99)
Pis | Two women having drinks and smoking cigarettes at the bar . |entailment
Hjs [Two women are at a bar . (0.84)
P16 | Two women having drinks and smoking cigarettes at the bar . |entailment
Hjs | Two women are at a bar . (0.97)
P17 | Two women having drinks and smoking cigarettes at the bar . |entailment
H;7 | Two women are at a bar . 0.54)
Pis | Two women having drinks and smoking cigarettes at the bar . |entailment
H,s | Two women are at a bar = (0.95)

Figure A18: The removal of each token in both premise and hypothesis in e-SNLI example which contains a pair of
premise (P) and hypothesis (H) infrequently change the prediction. Specifically, only the example of (P3, Hs)
shifted its prediction to “neutral” while the remaining partially-removed examples do not change their original
prediction with high confidence score in parentheses.
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Abstract

Cross-lingual transfer learning has proven use-
ful in a variety of Natural Language Process-
ing (NLP) tasks, but it is understudied in the
context of legal NLP, and not at all in Legal
Judgment Prediction (LJP). We explore transfer
learning techniques on LJP using the trilingual
Swiss-Judgment-Prediction dataset, including
cases written in three languages. We find that
cross-lingual transfer improves the overall re-
sults across languages, especially when we use
adapter-based fine-tuning. Finally, we further
improve the model’s performance by augment-
ing the training dataset with machine-translated
versions of the original documents, using a
3x larger training corpus. Further on, we per-
form an analysis exploring the effect of cross-
domain and cross-regional transfer, i.e., train a
model across domains (legal areas), or regions.
We find that in both settings (legal areas, ori-
gin regions), models trained across all groups
perform overall better, while they also have
improved results in the worst-case scenarios.
Finally, we report improved results when we
ambitiously apply cross-jurisdiction transfer,
where we further augment our dataset with In-
dian legal cases.

1 Introduction

Rapid development in Cross-Lingual Trans-
fer (CLT) has been achieved by pre-training
transformer-based models in large multilingual cor-
pora (Conneau et al., 2020; Xue et al., 2021), where
these models have state-of-the-art results in mul-
tilingual NLU benchmarks (Ruder et al., 2021).
Moreover, adapter-based fine-tuning (Houlsby
et al., 2019; Pfeiffer et al., 2020) has been pro-
posed to minimize the misalignment of multilin-
gual knowledge (alignment) when CLT is applied,
especially in a zero-shot fashion, where the target
language is unseen during training. CLT is severely
understudied in legal NLP applications except for

* Equal contribution.
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Figure 1: Incremental performance improvement
through several development steps.

Chalkidis et al. (2021) who experimented with sev-
eral methods for CLT on MultiEURLEX, a newly
introduced multilingual legal topic classification
dataset, including EU laws.

To the best of our knowledge, CLT has not been
applied to the Legal Judgment Prediction (LJP) task
(Aletras et al., 2016; Xiao et al., 2018; Chalkidis
et al., 2019; Malik et al., 2021), where the goal
is to predict the verdict (court decision) given the
facts of a legal case. In this setting, positive im-
pact of cross-lingual transfer is not as conceptually
straight-forward as in other general applications
(NLU), since there are known complications for
sharing legal definitions and interpreting law across
languages (Gotti, 2014; McAuliffe, 2014; Robert-
son, 2016; Ramos, 2021).

Following the work of Niklaus et al. (2021),
we experiment with their newly released trilin-
gual Swiss-Judgment-Prediction (SJP) dataset, con-
taining cases from the Federal Supreme Court of
Switzerland (FSCS), written in three official Swiss
languages (German, French, Italian). The dataset
covers four legal areas (public, penal, civil, and so-
cial law) and lower courts located in eight regions
of Switzerland (Zurich, Ticino, etc.), which poses

Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the
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interesting new challenges on model robustness /
fairness and the effect of cross-domain and cross-
regional knowledge sharing. In their experiments,
Niklaus et al. (2021) find that the performance in
cases written in Italian is much lower compared to
the rest, while also performance varies a lot across
regions and legal areas.

Main Research Questions

We pose and examine four main research questions:
RQ1: Is cross-lingual transfer beneficial across all
or some of the languages?

RQ2: Do models benefit or not from cross-regional
and cross-domain transfer?

RQ3: Can we leverage data from another jurisdic-
tion to improve performance?

RQ4: How does representational bias (wrt. lan-
guage, origin region, legal area) affect model’s
performance?

Contributions

The contributions of this paper are fourfold:

* We explore, for the first time, the application of
cross-lingual transfer learning in the challenging
LJP task in several settings (Section 3.3). We
find that a pre-trained language model fine-tuned
multilingually, outperforms its monolingual coun-
terparts, especially when we use adapter-based
fine-tuning and augment the training data with
machine-translated versions of the original doc-
uments (3x larger training corpus) with larger
gains in a low-resource setting (Italian).

We perform cross-domain and cross-regional
analyses (Section 3.4) exploring the effects of
cross-domain and cross-regional transfer, i.e.,
train a model across domains, i.e., legal areas
(e.g., civil, penal law), or regions (e.g., Zurich,
Ticino). We find that in both settings (legal ar-
eas, regions), models trained across all groups
perform overall better and more robustly; while
always improving performance in the worst-case
(region or legal area) scenario.

We also report improved results when we apply
cross-jurisdiction transfer (Section 3.5) , where
we further augment our dataset with Indian legal
cases originally written in English.

We release the augmented dataset (incl. 100K
machine-translated documents) and our code for
replicability and future experimentation.

"https://huggingface.co/datasets/swis
s_judgment_prediction
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The cumulative performance improvement
amounts to 7% overall and 16+% in the low-
resource Italian subset, compared to the best re-
ported scores in Niklaus et al. (2021), while using
cross-lingual and cross-jurisdiction transfer we im-
prove for 2.3% overall and 4.6% for Italian over
our strongest baseline (NativeBERTSs).

2 Dataset and Task description

2.1 Swiss Legal Judgment Prediction Dataset

We investigate the LJP task on the Swiss-Judgment-
Prediction (SJP) dataset (Niklaus et al., 2021).
The dataset contains 85K cases from the Federal
Supreme Court of Switzerland (FSCS) from the
years 2000 to 2020 written in German, French,
and Italian. The court hears appeals focusing on
small parts of the previous (lower court) decision,
where they consider possible wrong reasoning by
the lower court. The dataset provides labels for a
simplified binary (approval, dismissal) classifica-
tion task. Given the facts of the case, the goal is to
predict if the plaintiff’s request is valid or partially
valid (i.e., the court approved the complaint).
Since the dataset contains rich metadata, such
as legal areas and origin regions, we can conduct
experiments on the robustness of the models (see
Section 3.4). The dataset is not equally distributed;
in fact, there is a notable representation disparity
where Italian have far fewer documents (4K), com-
pared to German (50K) and French (31K). Repre-
sentation disparity is also vibrant with respect to
legal areas and regions. We refer readers to the
work of Niklaus et al. for detailed dataset statistics.

2.2 Indian Legal Judgment Prediction Dataset

The Indian Legal Documents Corpus (ILDC)
dataset (Malik et al., 2021) comprises 30K cases
from the Indian Supreme Court in English. The
court hears appeals that usually include multiple pe-
titions and rules a decision (accepted vs. rejected)
per petition. Similarly to Niklaus et al. (2021),
Malik et al. released a simplified version of the
dataset with binarized labels. In effect, the two
datasets (SJP, ILDC) target the very same task (par-
tial or full approval of plaintiff’s claims), nonethe-
less in two different jurisdictions (Swiss Federation
and India). Our main goal, when we use ILDC as
a complement of SJP, is to assess the possibility
of cross-jurisdiction transfer from Indian to Swiss
cases (see Section 3.5), an experimental scenario
that has not been explored so far in the literature.



2.3 NMT-based Data Augmentation

In some of our experiments, we perform data aug-
mentation using machine-translated versions of the
original documents, i.e., translate a document orig-
inally written in a single language to the other two
(e.g., from German to French and Italian). We per-
formed the translations using the EasyNMT? frame-
work utilizing the many-to-many Neural Machine
Translation (NMT) model of Fan et al. (2020).> A
preliminary manual check of some translated sam-
ples showed sufficient translation quality to pro-
ceed forward. We release the machine-translated
additional dataset for future consideration on cross-
lingual experiments or quality assessment.

To the best of our knowledge, machine transla-
tion for data augmentation has not been studied
in legal Natural Language Processing (NLP) ap-
plications, while it is generally a straight-forward,
though under-studied idea. As we show in the
experiments (see Section 3.3), the translations
are effective, leading to an average improvement
of 1.6% macro-F1 for standard fine-tuning and
0.8% for adapter-based one (see Table 1). For the
low-resource Italian subset, the improvement even
amounts to 3.2% and 1.6%, respectively.

3 Experiments

3.1 Hierarchical BERT

Since the examined dataset (SJP) contains many
documents with more than 512 tokens (90% of
the documents are up to 2048), we use Hierarchical
BERT models (Chalkidis et al., 2019; Niklaus et al.,
2021; Dai et al., 2022) to encode up to 2048 tokens
per document (4 x512 blocks).

We split the text into consecutive blocks of 512
tokens and feed the first 4 blocks to a shared
standard BERT encoder. Then, we aggregate the
block-wise CLS tokens by passing them through
another 2-layer transformer encoder, followed by
max-pooling and a final classification layer.

We re-use and expand the implementation re-
leased by Niklaus et al. (2021),* which is based on
the Hugging Face library (Wolf et al., 2020). No-
tably, we first improve the masking of the blocks.
Specifically, when the document has less than the

https://github.com/UKPLab/EasyNMT

3The one-to-one OPUS-MT (Tiedemann and Thottingal,
2020) models did not have any model available from French
to Italian (fr2it) at the time of the experiments.

*https://github.com/JoelNiklaus/Swiss
JudgementPrediction
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maximum number (4) of blocks, we pad with ex-
tra sequences of PAD tokens, without the use of
special tokens (CLS, SEP), as was previously per-
formed. This minor technical improvement seems
to affect the model’s performance at large (group
A1 Prior SotA vs. NativeBERTs — Table 1).

We experiment with monolingually pre-trained
BERT models (aka NativeBERTSs) and the multilin-
gually pre-trained XLM-R of Conneau et al. (2020).
Specifically, for monolingual experiments (Native
BERTS), we use German-BERT (Chan et al., 2019)
for German, CamemBERT (Martin et al., 2020)
for French, and UmBERTo (Parisi et al., 2020) for
Italian, similar to Niklaus et al. (2021).

In our multilingual experiments, we also as-
sess the effectiveness of adapter-based fine-tuning
(Houlsby et al., 2019; Pfeiffer et al., 2020), in com-
parison to standard full fine-tuning. In this setting,
adapter layers are placed after all feed-forward lay-
ers of XLM-R and are trained together with the
parameters of the layer-normalization layers. The
rest of the model parameters remain untouched.

3.2 Experimental Set Up

We follow Niklaus et al. (2021) and report
macro-averaged F1 score to account for the high
class-imbalance in the dataset (approx. 20/80 ap-
proval/dismissal ratio). We repeat each experi-
ment with 3 different random seeds and report
the average score and standard deviation across
runs (seeds). We perform grid-search for the learn-
ing rate and report test results, selecting the hyper-
parameters with the best development scores.’

3.3 Cross-lingual Transfer

We first examine cross-lingual transfer, where the
goal is to share (transfer) knowledge across lan-
guages, and we compare models in three main set-
tings: (a) Monolingual (see Section 3.3.1): fine-
tuned per language, using either the documents
originally written in the language, or an augmented
training set including the machine-translated ver-
sions of all other documents (originally written in
another language), (b) Cross-lingual (see Section
3.3.2): fine-tuned across languages with or without
the additional translated versions, and (c) Zero-shot
cross-lingual (see Section 3.3.3): fine-tuned across
a subset of the languages excluding the target lan-
guage at a time. We present the results in Table 1.

5 Additional details on model configuration, training, and
hyper-parameter tuning can be found in Appendix A.



Model #D #M | German? Frencht Italiant | AllT  (Diff. |)
Al. Monolingual: Fine-tune on the tgt training set (src = tgt) — Baselines

Prior SotA (Niklausetal) ~ 3-35K N | 68516 702x11 57.1x04 |652x08 (13.1)
NativeBERT's 3-35K N 69.6+04 72.0x05 682+13]699+16 (3.8)
XLM-R 3-35K N 68.2+03 699+1.6 659+12|68.0+20 (4.0)
A2. Monolingual: Fine-tune on the tgt training set incl. machine-translations (src = tgt)
NativeBERT's 60K N | 70.0+07 71.0+13 71.9+25|71.0+x08 (0.9)
XLM-R 60K N 68.8+14 70.7x21 719=x26 | 704+13 (L.1)
B1. Cross-lingual: Fine-tune on all training sets (src C tgt)

XLM-R 60K 1 68.9+03 71.1x03 689+14 ] 69.7+1.0 (2.2)
XLM-R + Adapters 60K 1 69.9+06 71.8+07 70.7+18 | 70.8+x08 (0.9)
B2. Cross-lingual: Fine-tune on all training sets incl. machine-translations (src C tgt)

XLM-R 180K 1 70.2+05 71511 72112 | 71.3x07 (19)
XLM-R + Adapters 180K 1 70.3+09 721+08 723+21|71.6+08 (2.0)
C. Zero-shot Cross-lingual: Fine-tune on all training sets excl. tgt language (src # tgt)

XLM-R 25-57K 1 584+12 587+08 68.1+02]|61.7+45 (9.7)
XLM-R + Adapters 25-57K 1 62.5+06 58.8+15 67.5+22| 62837 (8.7)

Table 1: Test results for all training set-ups (monolingual w/ or w/o translations, multilingual w/ or w/o translations,
and zero-shot) w.r.t source (src) and target (tgt) language. Best overall results are in bold, and best per setting
(group) are underlined. #D is the number of training documents used. #M is the number of models trained/used.
The mean and standard deviation are computed across random seeds and across languages for the last column.
Diff. shows the difference between the best and the worst performing language. The adapter-based multilingually
fine-tuned XLM-R model including machine-translated versions (3 x larger corpus) has the best overall results.

3.3.1 Mono-Lingual Training

We observe that the baseline of monolingually pre-
trained and fine-tuned models (NativeBERT's) have
the best results compared to the multilingually
pre-trained but monolingually fine-tuned XLM-R
(group Al — Table 1). Representational bias across
languages (Section 2.1) seems to be a key part
of performance disparity, considering the perfor-
mance of the least represented language (Italian)
compared to the rest (3K vs. 21-35K training docu-
ments). However, this is not generally applicable,
i.e., French have better performance compared to
German, despite having approx. 30% less training
documents.

Translating the full training set provides a 3 X
larger training set (approx. 180K in total) that
“equally” represents all three languages.® Augment-
ing the original training sets with translated ver-
sions of the documents (group A2 — Table 1), orig-
inally written in another language, improves per-

SRepresentational equality with respect to number of train-
ing documents per language, but possibly not considering text
quality, since we use NMT to achieve that goal.
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formance in almost all (5/6) cases (languages per
model). Interestingly, the performance improve-
ment in Italian, which has the least documents
(less than 1/10 compared to German), is the largest
across languages with 3.7% for NativeBERT (68.2
to 71.9) and 6% for XLM-R (65.9 to 71.9) making
Italian the best performing language after augmen-
tation. Data augmentation seems more beneficial
for XLM-R, which does not equally represent the
three examined languages.’

3.3.2 Cross-Lingual Training

We now turn to the cross-lingual transfer setting,
where we train XLM-R across all languages in
parallel. We observe that cross-lingual transfer
(group B1 —Table 1) improves performance (+4.5%
p-p.) across languages compared to the same
model (XLM-R) fine-tuned in a monolingual set-
ting (group Al — Table 1). This finding suggests
that cross-lingual transfer (and the inherited benefit
of using larger multilingual corpora) has a signifi-

"Refer to Conneau et al. (2020) for resources per language
used to pre-train XLM-R (50% less tokens for Italian).



Origin Region #D #L ZH ES CS NWS EM RL TI FED | Al
Region-specific fine-tuning with MT data augmentation
Ziirich (ZH) 264K de 655 656 63.7 682 620 579 632 548 | 62.6
Eastern Switzerland (ES) 17.1K  de 629 669 628 652 622 602 578 551 |61.6
Central Switzerland (CS) 144K de 625 655 632 651 607 578 60.5 559 | 614
Northwestern Switzerland (NWS) 17.1K de 66.0 68.6 652 679 61.6 570 57.1 555|624
Espace Mittelland (EM) 249K de,fr 64.1 66.6 633 667 64.0 668 632 584 | 64.1
Région Lémanique (RL) 40.2K fr,de 61.0 647 602 637 634 698 67.6 543 | 63.1
Ticino (TI) 69K it 550 563 532 545 56.0 547 66.0 53.1 |56.1
Federation (FED) 39K defrit | 57.5 59.6 568 589 550 56.5 535 549 | 56.6
Cross-regional fine-tuning w/o MT data augmentation
XLM-R 60K de.frit | 685 713 67.7 712 69.0 714 674 64.6 | 689
XLM-R + Adapters 60K de,frit | 69.2 739 679 726 690 721 70.1 642 | 699
Cross-regional fine-tuning with MT data augmentation
NativeBERTS 180K defrit | 69.0 72.1 68.6 720 699 719 688 64.8 | 69.6
XLM-R 180K defrit | 69.2 729 683 733 699 717 704 65.0 | 70.1
XLM-R + Adapters 180K defrit | 69.2 733 699 73.0 703 721 709 638 |70.3

Table 2: Test results for models trained per region or across all regions. Best overall results are in bold, and in-
domain are underlined. #D is the total number of training examples. #L are the languages covered. Cross-regional
transfer is beneficial for all regions and has the best overall results. The shared multilingual model trained
across all languages and regions slightly outperforms the baseline (NativeBERTs).

cant impact, despite the legal complication of shar-
ing legal definitions across languages. Augment-
ing the original training sets with the documents
translated across all languages, further improves
performance (group B2 — Table 1).

3.3.3 Zero-Shot Cross-Lingual Training

We also present results in a zero-shot cross-lingual
setting (group C — Table 1), where XLM-R is
trained in two languages and evaluated in the third
one (unseen in fine-tuning). We observe that Ger-
man has the worst performance (approx. 10%
drop), which can be justified as German is a Ger-
manic language, while both French and Italian are
Romance and share a larger part of the vocabulary.
Contrarily, in case of Italian, the low-resource
language in our experiments, the model strongly
benefits from zero-shot cross-lingual transfer, lead-
ing to 2.2% p.p. improvement, compared to the
monolingually trained XLM-R. In other words,
training XLM-R with much more (approx 20x)
out-of-language (57K in German and French) data
is better compared to training on the limited (3K)
in-language (Italian) documents (68.1 vs. 65.9).

3.3.4 Fine-tuning with Adapters

Across all cross-lingual settings (groups B-C — Ta-
ble 1), the use of Adapters improves substantially
the overall performance. The multilingual adapter-
based XLM-R in group B1 (Table 1) has compa-
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rable performance to the NativeBERTs models of
group A2, where the training dataset has been ar-
tificially augmented with machine translations. In
a similar setting (group B2 — Table 1), the multi-
lingual adapter-based XLM-R in group B2 has the
best overall results, combining the benefits of both
cross-lingual transfer and data augmentation.

With respect to cross-lingual performance par-
ity, the adapter-based XILM-R model has also the
highest performance parity (least diff. in the last
column of Table 1), while augmenting the dataset
with NMT translations leads to both the worst-case
(language) performance and best performance for
the least represented language (Italian).

In conclusion, cross-lingual transfer with an
augmented dataset comprised of the original and
machine-translated versions of all documents, has
the best overall performance with a vibrant im-
provement (3% compared to our strong baselines —
second part of Group Al in Table 1) in Italian, the
least represented language.

3.4 Cross-Domain/Regional Transfer Analysis

Further on, we examine the benefits of transfer
learning (knowledge sharing) in other dimensions.
Hence, we analyze model performance with respect
to origin regions and legal areas (domains of law).



Legal Area #D | Public Law Civil Law Penal Law Social Law All
Domain-specific fine-tuning with MT data augmentation

Public Law 456K | 564 +22 52220  59.7+49 60.1 £5.8 57.1+32

Civil Law 345K | 444+79 64206 455=+x13.1 43.6 £5.2 494 £8.6

Penal Law 354K | 40.8+101 55829 84.5=x13 61.1+75 | 60.6+15.7

Social Law 29.1K | 52.6+42 56.6£20  69.0+55 70.2 £2.0 62.1£76
Cross-domain fine-tuning w/o MT data augmentation

XLM-R 60K | 57.4+20 66.1 3.1 814=+14 70.8 £2.0 68.9 £8.7

XLM-R + Adapters 60K | 58.4+25 66.1 +24 83.1+12 T1.1+14 69.7 £9.0
Cross-domain fine-tuning with MT data augmentation

NativeBERTs 180K | 58.1+3.0 645+37 83.0=x13 71.1+43 69.2+9.2

XLM-R 180K | 58.0+3.0 67.2+16 84402 70.2+£13 70.0 £9.5

XLM-R + Adapters 180K | 58.6 2.7 66.8+£28 83.1%13 713 +24 69.9 +8.8

Table 3: Test results for models (XLM-R with MT unless otherwise specified) fine-tuned per legal area (domain)
or across all legal areas (domains). Best overall results are in bold, and in-domain are underlined. The mean and
standard deviations are computed across languages per legal area and across legal areas for the right-most column.
#D is the total number of training examples. Cross-domain transfer is beneficial for 3 out of 4 legal areas and has
the best overall results. The shared multilingual model trained across all languages and legal areas outperforms the

baseline (monolingual BERT models).

3.4.1 Origin Regions

In Table 2 we present the results for cross-regional
transfer. In the top section of the table, we present
results with region-specific multilingual (XLM-R)
models evaluated across regions (in-region on the
diagonal, zero-shot otherwise). We observe that
the cross-regional models (two lower groups of Ta-
ble 2) always outperform the region-specific mod-
els. Moreover, cross-lingual transfer is beneficial
across cases, while adapter-based fine-tuning fur-
ther improves results in 5 out of 8 cases (regions).
Data augmentation is also beneficial in most cases.

In the top part of Table 2, in 60% of the cases
(regions: ZH, ES, CS, NWS, TI), a “zero-shot”
model, i.e., trained in the cases of another region,
slightly outperforms the in-region model. In other
words, in almost every case (target region), there
is another monolingual region-specific model that
outperforms the in-region one.

We consider two main factors that may explain
these results: (a) the region-wise representational
bias considering the number of cases per region,
and (b) the cross-regional topical similarity of the
training and test subsets across different regions.
To approximate the cross-regional topical similar-
ity, we consider the distributional similarity (or
dissimilarity) w.r.t. legal areas (Table 6 in Ap-
pendix C). None of these factors can fully explain
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the results. Although in 3 out of 5 cases, the best
performing (out-of-region) model has been trained
on more data compared to the in-region one. There
are also other confounding factors (e.g., language),
i.e., models trained on the cases of either Espace
Mittelland (EM) or Région Lémanique (RL), both
bilingual with 8-10K cases, have the best results
across all single-region models, hence a further
exploration of the overall dynamics is needed.

3.4.2 Legal Areas

In Table 3 we present the results for cross-domain
transfer between legal areas (domains of law). The
results on the diagonal (underlined) are in-domain,
i.e., fine-tuned and evaluated in the same legal
area. We observe that for each domain, the models
trained on in-domain data have the best results in
the respective domain compared to the rest.

Interesting to note is that the best results (bold)
are achieved in the cross-domain setting in 3 out of
4 legal areas. Such an outcome is not anticipated
based on the current trends in law industry, where
legal experts (judges, lawyers) over-specialize and
excel in specific legal areas, e.g., criminal defense
lawyers. Penal law poses the only exception where
the domain-specific model is on par with the cross-
domain model. Again, the results per area do not
correlate with the volume of training data (cross-



Model Training Dataset #D | GermanT French? Italian 1 ‘ All (Dift. |)
Cross-lingual fine-tuning w/ or w/o MT data augmentation
XLM-R Original 60K | 68903 71.1+03 689x14 | 69710 (22)
XLM-R + Adapters ~ Original 60K | 699+06 71.8+07 70.7+18 | 70.8+08 (0.9)
XLM-R + MT Swiss 180K | 70.2+05 71511 721+12|713+x07 (1.9)
XLM-R + Adapters + MT Swiss 180K | 70.3+08 72.1+08 72.1+12 | 71.5+09 (1.8)
Cross-jurisdiction fine-tuning w/ MT data augmentation
XLM-R + MT {Swiss, Indian} 276K | 70.5+04 71.8+03 73.5+14 | 72.0+09 (3.0)
XLM-R + Adapters + MT {Swiss, Indian} 276K | 71.0+04 73.0+06 72.6+1.1 | 722+12 (2.0)
Cross-jurisdiction zero-shot fine-tuning w/ MT data augmentation
XLM-R MT Indian 9K | 50415 479+10 495+13|493x10 (2.9)
XLM-R + Adapters MT Indian 96K | 51.6+29 49.7+14 50.1+14 |505+10 (1.9)

Table 4: Test results for cross-jurisdiction transfer. We present results in four settings: standard (Original) augmented
(+ MT Swiss), further augmented incl. cross-jurisdiction (+ MT Swiss + MT Indian) and zero-shot (MT Indian).
Best results are in bold. Diff. shows the difference between the best performing language and the worst performing
language (max - min). Further augmenting with translated Indian cases is overall beneficial.

domain representational bias), and suggest that
other qualitative characteristics (e.g., the idiosyn-
crasies of criminal law) affect the task complexity.
Similarly to the cross-regional experiments,
the shared multilingual model (XLM-R) trained
across all languages and legal areas with an aug-
mented dataset outperforms the NativeBERTs mod-
els trained in a similar setting, giving another in-
dication that the performance gains from cross-
lingual transfer and data augmentation via machine
translation are robust across domains as well.

3.5 Cross-Jurisdiction Transfer

We, finally, “ambitiously” stretch the limits of trans-
fer learning in LJP and we apply cross-jurisdiction
transfer, i.e., use of cases from different legal sys-
tems, another form of cross-domain transfer. For
this purpose, we further augment the SJP dataset
of FSCS cases, with cases from the Supreme Court
of India (SCI), published by Malik et al. (2021).8
We consider and translate all (approx. 30K) Indian
cases ruled up to the last year (2014) of our training
dataset, originally written in English, to all target
languages (German, French, and Italian).’

In Table 4, we present the results for two cross-
jurisdiction settings: zero-shot (Only MT Indian),
where we train XLM-R on the machine-translated

8 Although the SCI rules under the Indian jurisdiction (law),
while the FSCS under the Swiss one, we hypothesize that the
fundamentals of law in two modern legal systems are quite
common and thus transferring knowledge could potentially
have a positive effect. We discuss this matter in Section 5.

“We do not use the original documents written in English,
as English is not one of our target languages.
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version of Indian cases, and further augmented
(Original + MT Swiss + MT Indian), where we
further augment the (already augmented) training
set of Swiss cases with the translated Indian ones.
While zero-shot transfer clearly fails; interestingly,
we observe improvement for all languages in the
further augmented setting. This opens a fascinating
new direction for LJP research.

Similar to our results in Section 3.3 with respect
to cross-lingual performance parity, the standard
adapter-based XLM-R model has also the highest
performance parity (least diff. on Table 4), while
the same model trained on the fully augmented
dataset leads to the worst-case (language; German)
performance and best performance for the least
represented language (Italian).

The cumulative improvement from all applied en-
hancements adds up to 7% macro-F1 compared to
the XLM-R baseline and 16% to the best method by
Niklaus et al. (2021) in the low-resource Italian sub-
set, while using cross-lingual and cross-jurisdiction
transfer we improve for 2.3% overall and 4.6% for
Italian over our strongest baseline (NativeBERTS).

Since our experiments present several incremen-
tal improvements, we assess the stability of the
performance improvements with statistical signif-
icance testing by comparing the most crucial set-
tings in Appendix B.

4 Related Work

Legal Judgment Prediction (LJP) is the task,
where given the facts of a legal case, a system



has to predict the correct outcome (legal judge-
ment). Many prior works experimented with some
forms of LJP, however, the precise formulation of
the LJP task is non-standard as the jurisdictions
and legal frameworks vary. Aletras et al. (2016);
Medvedeva et al. (2018); Chalkidis et al. (2019)
predict the plausible violation of European Con-
vention of Human Rights (ECHR) articles of the
European Court of Human Rights (ECtHR). Xiao
et al. (2018, 2021) study Chinese criminal cases
where the goal is to predict the ruled duration of
prison sentences and/or the relevant law articles.

Another setup is followed by Sulea et al. (2017);
Malik et al. (2021); Niklaus et al. (2021), which
use cases from Supreme Courts (French, Indian,
Swiss, respectively), hearing appeals from lower
courts relevant to several fields of law (legal areas).
Across tasks (datasets), the goal is to predict the
binary verdict of the court (approval or dismissal
of the examined appeal) given a textual description
of the case. None of these works have explored
neither cross-lingual nor cross-jurisdiction trans-
fer, while the effects of cross-domain and cross-
regional transfer are also not studied.

Cross-Lingual Transfer (CLT) is a flourish-
ing topic with the application of pre-trained
transformer-based models trained in a multilingual
setting (Devlin et al., 2019; Lample and Conneau,
2019; Conneau et al., 2020; Xue et al., 2021) ex-
celling in NLU benchmarks (Ruder et al., 2021).
Adapter-based fine-tuning (Houlsby et al., 2019;
Pfeiffer et al., 2021) has been proposed as an anti-
measure to mitigate misalignment of multilingual
knowledge when CLT is applied, especially in a
zero-shot fashion, where the target language is un-
seen during training (or even pre-training).
Meanwhile, CLT is understudied in legal NLP
applications. Chalkidis et al. (2021) experiment
with standard fine-tuning, while they also examined
the use of adapters (Houlsby et al., 2019) for zero-
shot CLT on a legal topic classification dataset com-
prising European Union (EU) laws. They found
adapters to achieve the best tradeoff between ef-
fectiveness and efficiency. Their work did not ex-
amine the use of methods incorporating translated
versions of the original documents in any form, i.e.,
translate train documents or test ones. Recently, Xe-
nouleas et al. (2022) used an updated, unparalleled
version of Chalkidis et al. dataset to study NMT
-augmented CLT methods. Other multilingual le-
gal NLP resources (Galassi et al., 2020; Drawzeski
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et al., 2021) have been recently released, although
CLT is not applied in any form.

5 Motivation and Challenges for
Cross-Jurisdiction Transfer

Legal systems vary from country to country. Al-
though they develop in different ways, legal sys-
tems also have some similarities based on histor-
ically accepted justice ideals, i.e., the rule of law
and human rights. Switzerland has a civil law legal
system (Walther, 2001), i.e., statutes (legislation)
is the primary source of law, at the crossroads be-
tween Germanic and French legal traditions.

Contrary, India has a hybrid legal system with
a mixture of civil, common law, i.e., judicial deci-
sions have precedential value, and customary, i.e.,
Islamic ethics, or religious law (Bhan and Rohatgi,
2021). The legal and judicial system derives largely
from the British common law system, coming as
a consequence of the British colonial era (1858-
1947) (Singh and Kumar, 2019).

Based on the aforementioned, cross-jurisdiction
transfer is challenging since the data (judgments)
abide to different law standards. Although the
Supreme Court of India (SCI) rules under the In-
dian jurisdiction (law), while the Federal Supreme
Court of Switzerland (FSCS) under the Swiss one,
we hypothesize that the fundamentals of law in two
modern legal systems are quite common and thus
transferring knowledge could potentially have a
positive effect, and thus it is an experiment worth
considering, while we acknowledge that from a
legal perspective equating legal systems is deeply
problematic, since the legislation, the case law, and
legal practice are different.

Our empirical work and experimental results
shows that cross-jurisdiction transfer in this spe-
cific setting (combination of Swiss and Indian de-
cisions) has a positive impact in performance, but
we cannot provide any profound hypothesis neither
we are able to derive any conclusions on the impor-
tance of this finding on legal literature and practice.
We leave these questions in the hands of those who
can responsibly bear the burden, the legal scholars.

6 Conclusions and Future Work

6.1 Answers to the Research Questions

Following the experimental results (Section 3), we
answer the original predefined research questions:

RQ1: Is cross-lingual transfer beneficial across
all or some of the languages? In Section 3.3, we



find that vanilla CLT is beneficial in a low-resource
setting (Italian), with comparable results in the rest
of the languages. Moreover, CLT leveraging NMT
-based data augmentation is beneficial across all lan-
guages. Overall, our experiments lead to a single
multi-lingual cross-lingually “fairer” model.

RQ2: Do models benefit or not from cross-regional
and cross-domain transfer? In Section 3.4, we
find that models benefit from cross-regional trans-
fer across all cases, since they are exposed to
(trained in) many more documents (cases). We
believe cross-regional diversity is not a significant
aspect, compared to the importance of the increased
data volume and language diversity. Cross-domain
transfer is beneficial in three out of four cases (legal
areas), with comparable results on penal (criminal)
law, where the application of law seems to be more
straight-forward / standardized (higher performing
legal area). Cross-regional and cross-domain trans-
fer lead to more robust models.

RQ3: Can we leverage data from another juris-
diction to improve performance? In Section 3.5,
we find that cross-jurisdiction transfer in our spe-
cific setup, i.e., very similar LJP tasks, is beneficial.
Again, we believe that this is mostly a matter of ad-
ditional unique data (cases), rather than a matter of
jurisdictional similarity. Cross-jurisdiction transfer
leads to a better performing model.

RQ4: How does representational bias (wrt. lan-
guage, origin region, legal area) affect model’s
performance? We observe that representational
bias — in non-extreme cases (e.g., w.r.t. language)
— does not always explain performance disparities
across languages, regions, or domains, and other
characteristics also need to be considered.

6.2 Conclusions - Summary

We examined the application of Cross-Lingual
Transfer (CLT) in Legal Judgment Prediction (LJP)
for the very first time, finding a multilingually
trained model to be superior when augmenting
the dataset with NMT. Adapter-based fine-tuning
leads to even better results. We also examined
the effects of cross-domain (legal areas) and cross-
regional transfer, which is overall beneficial in both
settings, leading to more robust models. Cross-
jurisdiction transfer by augmenting the training set
with machine-translated Indian cases further im-
proves performance.
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6.3 Future Work

In future work, we would like to explore the use
of a legal-oriented multilingual pre-trained model
by either continued pre-training of XLM-R, or pre-
training from scratch in multilingual legal corpora.
Legal NLP literature (Chalkidis et al., 2022; Zheng
et al., 2021) suggests that domain-specific language
models positively affect performance.

In another interesting direction, we will consider
other data augmentation techniques (Feng et al.,
2021; Ma, 2019) that rely on textual alternations
(e.g., paraphrasing, etc.). We would also like to
further investigate cross-jurisdictional transfer, ei-
ther exploiting data for similar LJP tasks, or via
multi-task learning on multiple LJP datasets with
dissimilar task specifications.

7 Ethics Statement

The scope of this work is to study LJP to broaden
the discussion and help practitioners to build assist-
ing technology for legal professionals and layper-
sons. We believe that this is an important appli-
cation field, where research should be conducted
(Tsarapatsanis and Aletras, 2021) to improve legal
services and democratize law, while also highlight
(inform the audience on) the various multi-aspect
shortcomings seeking a responsible and ethical
(fair) deployment of legal-oriented technologies.

In this direction, we study how we could better
exploit all the available resources (from various
languages, domains, regions, or even different ju-
risdictions). This combination leads to models that
improve overall performance — more robust models
—, while having improved performance in the worst-
case scenarios across many important demographic
or legal dimensions (low-resource language, worst
performing legal area and region).

Nonetheless, irresponsible use (deployment) of
such technology is a plausible risk, as in any other
application (e.g., online content moderation) and
domain (e.g., medical). We believe that similar
technologies should only be deployed to assist hu-
man experts (e.g., legal scholars in research, or
legal professionals in forecasting or assessing legal
case complexity) with notices on their limitations.

The main examined dataset, Swiss-Judgment-
Prediction (SJP), released by Niklaus et al. (2021),
comprises publicly available cases from the FSCS,
where cases are pre-anonymized, i.e., names and
other sensitive information are redacted. The same
applies for the second one, Indian Legal Docu-
ments Corpus (ILDC) of Malik et al. (2021).
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5, 3e-5, 4e-5, 5e-5} as suggested by Devlin et al.
(2019). However, like reported by Mosbach et al.

43

(2020), we also found RoBERTa-based models to
exhibit large training instability with learning rate
3e-5, although this learning rate worked well for
BERT-based models. le-5 worked well enough for
all models. To avoid either over- or under-fitting,
we use Early Stopping (Caruana et al., 2001) on
development data. To combat the high class im-
balance, we use oversampling, following (Niklaus
et al., 2021).

We opted to use the standard Adapters of
Houlsby et al. (2019), as the language Adapters in-
troduced by Pfeiffer et al. (2020) are more resource-
intensive and require further pre-training per lan-
guage. We tuned the adapter reduction factor in
{2x, 4%, 8x, 16x } and got the best results with
2x and 4 x; we chose 4 x for the final experiments
to favor less additional parameters. We tuned the
learning rate in {1e-5, Se-5, 1e-4, Se-4, 1e-3} and
achieved the best results with Se-5.

We additionally applied label smoothing
(Szegedy et al., 2015) on cross-entropy loss. We
achieved the best results with a label smoothing
factor of 0.1 after tuning with {0, 0.1, 0.2, 0.3}.

Model Type M1l M2 M3 M4
M1: NativeBERTSs 1.0 1.0 1.0 1.0
M2: NativeBERTs + MTCH 00 1.0 1.0 1.0
M3: XLM-R + MT CH 00 00 10 1.0
M4: XIM-R+MTCH+IN 0.0 0.0 00 1.0

Table 5: Almost stochastic dominance (e, < 0.5)
with ASO. + MT CH stands for augmentation with
machine translation inside the Swiss dataset and + MT
CH+IN is the code for augmentation with machine-
translations with the Swiss and Indian dataset.

B Statistical Significance Testing

Since our experiments present several incremen-
tal improvements, we assessed the stability of the
performance improvements with statistical signif-
icance testing by comparing the most crucial set-
tings. Using Almost Stochastic Order (ASO) (Dror
et al., 2019) with a confidence level o =0.05, we
find the score distributions of the core models (Na-
tiveBERTSs, w/ and w/o MT Swiss, XLM-R w/ and
w/o MT Indian and/or Swiss) stochastically dom-
inant (émin = 0) over each other in order. We
compared all pairs of models based on three ran-
dom seeds each using ASO with a confidence level
of o = 0.05 (before adjusting for all pair-wise
comparisons using the Bonferroni correction). Al-
most stochastic dominance (€pin < 0.5) is indi-



cated in Table 5 in Appendix A. We use the deep-
significance Python library of Ulmer (2021).

C Distances Between Legal Area
Distributions per Origin Regions

ZH ES CS NWS EM RL TI FED
ZH .02 .02 .03 .02 .01 .02 .05 12
ES .03 .03 .04 .03 .02 .01 .06 .11
CS .02 .01 .01 .02 .01 .04 .06 13
NWS .05 .04 .06 04 04 03 .04 .09
EM .03 .03 .04 .02 .03 .03 .04 .10
RL .06 .05 .07 05 05 .05 .04 .07
TI .07 .07 .08 .05 .07 .08 .02 .06
FED .10 .10 .12 .09 .10 .10 .06 .02

Table 6: Wasserstein distances between the legal area
distributions of the training and the test set per origin
region across languages. The training sets are in the
columns and the test sets in the rows.

In Table 6 we show the Wasserstein distances
between the legal area distributions of the training
and the test sets per origin region across languages.
Unfortunately, this analysis does not explain why
the NWS model (zero-shot) outperforms the ZH
model (in-domain) on the ZH test set, as found in
Table 2.

D Additional Results

In Tables 7, 8, 9 and 10 we present detailed re-
sults for all experiments. All tables include both
the average score across repetitions, as reported in
the original tables in the main article, but also the
standard deviations across repetitions.

E Responsible NLP Research

We include information on limitations, licensing
of resources, and computing foot-print, as sug-
gested by the newly introduced Responsible NLP
Research checklist.

E.1 Limitations

In this appendix, we discuss core limitations that
we identify in our work and should be considered
in future work.

Data size fluctuations We did not control for
the sizes of the training datasets, which is why we
reported them in the Tables 2, 3 and 4. This mimics
a more realistic setting, where the training set size
differs based on data availability. Although we
discussed representational bias in RQ4, we cannot
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completely rule out different performance based on
simply more training data.

Mismatch in in/out of region model performance
As described in Section 3.4.1, certain zero-shot
evaluations outperform in-domain evaluations. Al-
though we try to find an explanation for this in
Section 3.4, and Appendix C, it remains an open
question since there are many confounding factors.

Re-use of Indian cases Although we have empir-
ical results confirming the statistically significant
positive effect of training with additional translated
Indian cases, we do not have a profound legal justi-
fication or even a hypothesis for this finding at the
moment.

E.2 Licensing

The SJP dataset (Niklaus et al., 2021) we mainly
use in this work is available under a CC-BY-4 li-
cense. The second dataset, ILDC (Malik et al.,
2021), comprising Indian cases is available upon
request. The authors kindly provided their dataset.
All used software and libraries (EasyNMT, Hug-
ging Face Transformers, deep-significance, and sev-
eral other typical scientific Python libraries) are
publicly available and free to use, while we always
cite the original work and creators. The artifacts
(i.e., the translations and the code) we created, tar-
get academic research and are available under a
CC-BY-4 license.

E.3 Computing Infrastructure

We used an NVIDIA GeForce RTX 3090 GPU
with 24 GB memory for our experiments. In to-
tal, the experiments took approx. 80 GPU days,
excluding the translations. The translations took
approx. 7 GPU days per language from Indian to
German, French, and Italian. The translation within
the Swiss corpus took approx. 4 GPU days in total.



Legal Area #D Public Law Civil Law Penal Law Social Law All

Public Law 45.6K 564 +22 522 +20 59.7 +49 60.1 +5.8 57.1+32
Civil Law 345K 444+79 64.2+06 455=+13.1 43.6 +52 494 +8.6
Penal Law 354K  40.8 £10.1 55.8+29 84.5+13 61.1+75 | 60.6+15.7
Social Law 29.1K  52.6+42 56.6+20 69.0+55 70.2 £2.0 62.1 £7.6

All 60K  58.0+3.0 67.2+16 84.4+:02 70.2+1.3 70.0 £9.5
All (w/o MT) 60K 574 =+20 66.1 +3.1 8l14+14 70.8 £2.0 68.9 +8.7

All (Native) 60K  58.1+3.0 64.5 +3.7 83.0+13 71.1 +43 69.2 £9.2

Table 7: Test results for models (XLM-R with MT unless otherwise specified) fine-tuned per legal area (domain)
or across all legal areas (domains). Best overall results are in bold, and in-domain are underlined. Cross-domain
transfer is beneficial for 3 out of 4 legal areas and has the best overall results. The shared multilingual model
trained across all languages and legal areas outperforms the baseline (monolingual BERT models). The mean and
standard deviations are computed across languages per legal area and across legal areas for the right-most column.
#D is the number of training examples per legal area.

Legal Area #D Public Law Civil Law Penal Law Social Law All

Public Law 45.6K  57.2=+138 53.8+2.1 589 +52 61.7 +4.1 57.9+29
Civil Law 345K 414 +66 57.6+1.1 42.8 +9.1 43.0 +4.1 46.2 +6.6
Penal Law 354K 374128 564+20 86.3=+0.1 61.6+67 | 60.4+174
Social Law 20.1K 514 +538 54.8 +2.8 73.9+19 70.3 £22 62.6 +9.7

All 60K  58.6 +2.7 66.8 +2.8 83.1+13 71.3 +2.4 69.9 + 3838
All (w/lo MT) 60K  58.4zx25 66.1+24  83.1x12 71.1+14 69.7 £9.0

Table 8: Test results for models (XLM-R with MT unless otherwise specified) adapted per legal area (domain)
or across all legal areas (domains). Best overall results are in bold, and in-domain are underlined. The mean and
standard deviations are computed across languages per legal area and across legal areas for the right-most column.
#D is the number of training examples per legal area.
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Region #D #L ZH ES CS NWS EM RL TI FED All

ZH 264K de 655400 65.6+0.0 63.7+00 682+00 62029 57.9+67 63.2+00 54851 |62.6x+41
ES 17.1K  de 629400 669+00 62.8+00 652+00 622+11 602+53 57.8+00 55.1+63 | 61.6+36
CS 144K de 62.5+£00 655+00 63200 65100 60716 57.8+37 60.5+00 5590561431
NWS 17.1K  de 66.0+£00 68.6+0.0 65200 67.9+00 61.6+17 57.0+£49 57.1+£00 555+57|62.4+49
EM 249K de,fr 64.1£00 66.6+0.0 63300 66700 64.0+07 668+29 63.2+00 584+03|64.1+26
RL 40.2K fr,de 61.0+£00 64.7+00 60200 63.7+00 634+33 69.8+27 67.6+00 543+72|63.1+44
TI 6.9K it 55.0+0.0 563+00 532+00 545+00 56.0+04 54709 66.0+00 53.1+64 | 56.1+39
FED 39K  defrit 57.5+00 59.6+00 56.8+00 58900 550+10 56.5+1.1 53.5+00 54.9%29 | 56.6+19
All 60K defrit 69.2+00 729+00 683+00 73.3+00 699+16 71.7+28 70.4+00 65.0+39 | 70.1+25
All (w/o MT) 60K defrit 68.5+00 71.3+00 67.7+00 71.2+00 69.0+15 71.4+03 674200 64.6+52 | 68.9=+22

All (Native) 60K defrit 69.0+00 72.1+00 68.6+00 72.0+00 69916 71.9+0.7 68.8+00 64870 \ 69.6+23

Table 9: Test results for models (XLM-R with MT unless otherwise specified) fine-tuned per region (domain) or
across all regions (domains). Best overall results are in bold, and in-domain are underlined. The mean and standard
deviations are computed across languages per origin region and across origin regions for the right-most column.
The regions where only one language is spoken thus show std 0. #D is the number of training examples per origin
region. #L are the languages covered.

Region #D #L ZH ES CS NWS EM RL TI FED All

ZH 264K de 65.4+00 687+00 639+00 68.2+00 63.6+35 61.0+28 664+00 563+18 | 64.2+38
ES 17.1K  de 64.2+00 694+00 639+00 66.0£00 61.7+23 594+46 61.2+00 56561 | 62.8+3.7
CS 144K de 63.1+£00 665+00 64.1+00 650+00 61.0+26 575+21 622+00 56.7+25 | 62.0+32
NWS 17.1K de 65.8+00 69.0+0.0 63.8+00 67.4+00 599+33 58.6=+1.1 589+00 542+27 |622+48
EM 249K de.fr 63.9+00 67.5+00 644+00 668+00 64705 69.1+17 664+00 59.5+1.0 | 65327
RL 40.2K fr,de 62.3+£00 66.2+00 62.0+00 647+00 652+42 70.8+68 655+00 56.9+60 | 64.2+37
TI 69K it 56.4+00 62.1+00 53.7+00 56300 551+02 574+11 683+00 50.5+23 |57.5=+51
FED 39K defrit 52.7+00 52.7+00 51.3+00 53.1+00 52.8+07 52023 528x00 50.0+40|522+1.0
All 60K defrit 69.2+00 733200 69.9+00 73.0+00 703+19 72107 709x00 638=+61|703+28
All (w/o MT) 60K defrit 69200 73.9x00 67.9+00 72600 69.0+2.1 72103 70.1x00 642+46|699=+29

Table 10: Test results for models (XLM-R with MT unless otherwise specified) adapted per region (domain) or
across all regions (domains). Best overall results are in bold, and in-domain are underlined. The mean and standard
deviations are computed across languages per origin region and across origin regions for the right-most column.
The regions where only one language is spoken thus show std 0. #D is the number of training examples per origin
region. #L are the languages covered.
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Abstract

Though recent works have focused on model-
ing high resource languages, the area is still un-
explored for low resource languages like Ben-
gali and Hindi. We propose an end-to-end train-
able memory efficient CNN architecture named
CoCNN to handle specific characteristics such
as high inflection, morphological richness, flex-
ible word order and phonetical spelling errors
of Bengali and Hindi. In particular, we intro-
duce two learnable convolutional sub-models
at word and at sentence level that are end-
to-end trainable. We show that state-of-the-
art (SOTA) Transformer models including pre-
trained BERT do not necessarily yield the best
performance for Bengali and Hindi. CoCNN
outperforms pretrained BERT with 16X less
parameters and achieves much better perfor-
mance than SOTA LSTMs on multiple real-
world datasets. This is the first study on the ef-
fectiveness of different architectures from Con-
volution, Recurrent, and Transformer neural
net paradigm for modeling Bengali and Hindi.

NLP tasks such as word prediction and sentence
completion in major languages such as English and
Chinese (Athiwaratkun et al., 2018; Takase et al.,
2019; Pham et al., 2016; Gao et al., 2002; Cai and
Zhao, 2016; Yang et al., 2016). To the best of our
knowledge, none of the existing study investigates
the efficacy of recent LMs in the context of Bengali
and Hindi. We conduct an in-depth analysis of ma-
jor deep learning architectures for LM and propose
an end-to-end trainable memory efficient CNN ar-
chitecture to address the unique characteristics of
Bengali and Hindi.

Root Word Inflected Variations
Y (repay) “Af3comy (pay back), AfSemer (revenge), cnfEs (purified)
BT (trend) Lic] (current), BTETP (driver), BETNIN (moving)

R4 (lose) =z (leave), =R (prize), TG (competition)

High Inflection: different types of words derived from same root word

Valid Sentence Samples Compound | Component
IS T SRR Character Charact(js
WG R0 ST & FHtO
5 SIS ST (1CeT = T+ +¥
(The president will come this afternoon) = T++7
BT W+ + O+ +J

Pﬂ@ SR w6 syferr

e R
=

(The police have arrested five people because
of murder suspicion)

Morphological Richness: Around 170
compound characters in Bengali each
consisting of 3-5 simple characters

Code and data related to this research are avail-
able at: https://bit.ly/3MkQUuI

1 Introduction

Bengali and Hindi are the fourth and sixth most
spoken language in the world, respectively. Both
of these languages originated from Sanskrit (Staal,
1963) and share some unique characteristics that
include (i) high inflection, i.e., each root word may
have many variations due to addition of different
suffixes and prefixes, (ii) morphological richness,
i.e., there are large number of compound letters,
modified vowels and modified consonants, and (iii)
flexible word-order, i.e., the importance of word
order and their positions in a sentence are loosely
bounded (Examples shown in Figure 1). Many
other languages such as Nepali, Gujarati, Marathi,
Kannada, Punjabi and Telugu also share these char-
acteristics. Neural language models (LM) have
shown great promise recently in solving several key
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Flexible Word-Order: Each of the three sentences are
valid and carry the same meaning, but their word order
is very different from one another

Figure 1: Bengali language unique characteristics

State-of-the-art (SOTA) techniques for LM can
be categorized into three sub-domains of deep
learning: (i) convolutional neural network (CNN)
(Pham et al., 2016; Wang et al., 2018) (ii) recurrent
neural network (Bojanowski et al., 2017; Mikolov
etal.,2012; Kimet al., 2016; Gerz et al., 2018), and
(ii1) Transformer attention network (Al-Rfou et al.,
2019; Vaswani et al., 2017; Irie et al., 2019; Ma
et al., 2019). Long Short Term Memory (LSTM)
(Hochreiter and Schmidhuber, 1997) based models,
which are suitable for learning sequence and word
order information, are not effective for modeling
Bengali and Hindi due to their flexible word order
characteristic. On the other hand, Transformers use

Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the
12th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 47-56
November 20-23, 2022. ©2022 Association for Computational Linguistics



dense layer based multi-head attention mechanism.
They lack the ability to learn local patterns in sen-
tence level, which in turn puts negative effect on
modeling languages with loosely bound word order.
Most importantly, neither LSTMs nor Transform-
ers use any suitable measure to learn intra-word
level local pattern necessary for modeling highly
inflected and morphologically rich languages.

We observe that learning inter (flexible word or-
der) and intra (high inflection and morphological
richness) word local patterns is of paramount im-
portance for Bengali and Hindi LM. To accommo-
date such characteristics, we design a novel CNN
architecture, namely Coordinated CNN (CoCNN)
that achieves SOTA performance with low train-
ing time. In particular, CoCNN consists of two
learnable convolutional sub-models: word level
(Vocabulary Learner (VL)) and sentence level (Ter-
minal Coordinator (TC)). VL is designed for sylla-
ble pattern learning, whereas 7C serves the purpose
of word coordination learning while maintaining
positional independence, which suits the flexible
word order of Bengali and Hindi. CoCNN does
not explicitly incorporate any self attention mecha-
nism like Transformers; rather it relies on 7C for
emphasizing on important word patterns. CoOCNN
achieves significantly better performance than pre-
trained BERT for Bengali and Hindi LM with 16X
less parameters. We further enhance CoCNN by
introducing skip connection and parallel convolu-
tion branches in VL and TC, respectively. This
modified architecture (with negligible increase in
parameter number) is named as CoCNN+. We val-
idate the effectiveness of CoCNN+ on a number
of tasks that include next word prediction in erro-
neous setting, text classification, sentiment analysis
and spell checking. CoCNN+ shows superior per-
formance than contemporary LSTM based models
and pretrained BERT.

In summary, the contributions of this paper are
as follows:

¢ An end-to-end trainable CoCNN model based
on the coordination of two CNN sub-models

* In-depth analysis and comparison on different
SOTA LMs in three paradigms: CNN, LSTM,
and Transformer

* Some simple modifications in CoCNN to
achieve even better performance

* Using VL sub-model of CoCNN+ as an effec-
tive spell checker for Bengali
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2  Our Approach

Traditional CNN based approaches (Pham et al.,
2016) represent the entire input sentence/ para-
graph using a matrix of size Sy x Sy, where Sy
and Sy represent number of characters in the sen-
tence/ paragraph and the character representation
vector size, respectively. In such character based
approach, the model does not have the ability to
consider each word in the sentence as a separate
entity. However, it is important to understand the
contextual meaning of each word and to find out re-
lationship among those words for sentence seman-
tics understanding. Coordinated CNN (CoCNN)
is aimed to achieve this feat. Figure 2 illustrates
CoCNN that has two major components. Vocabu-
lary Learner component works at word level, while
Terminal Coordinator component works at sen-
tence/ paragraph level. Both of these components
are 1D CNN based sub-model at their core and are
trained end-to-end.

2.1 Vocabulary Learner

Vocabulary Learner (VL) is used to transform each
input word into a vector representation called CN-
Nvec. We represent each input word Word; by a
matrix W;. W; consists of m vectors each of size
lenc. These vectors C_"l, C}, ... C:n represent one
hot vector of character C, Cy, . . . C,,, respectively
of Word;. Representation detail has been depicted
in the bottom right corner of Figure 2. Applying
1D convolution (conv) layers on matrix W; helps in
deriving key local patterns and sub-word informa-
tion of Word;. After passing W; matrix through
the first conv layer, we obtain feature matrix Wil.
Passing W} through the second conv layer pro-
vides us with feature matrix VVZ-Q. So, the L' cony
layer provides us with feature matrix W%, VL sub-
model consists of such 1D conv layers standing
sequentially one after the other. Conv layers near
matrix W; are responsible for identifying key sub-
word patterns of Word;, while conv layers further
away focus on different combinations of these key
sub-word patterns. Such word level local pattern
recognition plays key role in identifying semantic
meaning of a word irrespective of inflection or pres-
ence of spelling error. Each intermediate conv layer
output is batch normalized. The final conv layer
output matrix W} is flattened and formed into a
vector F; of size lenp. F; is the CNNvec represen-
tation of Word;. We obtain CNNvec representation
from each of our input words in a similar fashion
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Figure 2: 1D CNN based CoCNN architecture

applying the same CNN sub-model.

2.2 Terminal Coordinator

Terminal Coordinator (TC) takes the CNNvecs ob-
tained from VL as input and returns a single Coordi-
nation vector as output which is used for final pre-
diction. For n words Wordy, Words, ... Word,;
we obtain n such CNNvecs ﬁl, F’g, . F:L respec-
tively. Each CNNvec is of size leny. Concate-
nating these CNNvecs provide us with matrix M
(details shown in the middle right portion of Figure
2). Applying 1D conv on matrix M facilitates the
derivation of key local patterns found in input sen-
tence/ paragraph which is crucial for output predic-
tion. A sequential 1D CNN sub-model with design
similar to VL having different sets of weights is
employed on matrix M. Conv layers near M are
responsible for identifying key word clusters, while
cony layers further away focus on different com-
binations of these key word clusters important for
sentence or paragraph level local pattern recogni-
tion. The final output feature matrix obtained from
the 1D CNN sub-model of 7C is flattened to obtain
the Coordination vector, a summary of important
information obtained from the input word sequence
in order to predict the correct output.
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Figure 3: CoCNN+ architecture with its modified VL
(left) and TC (right). Convy, means L*" conv layer,
whereas Conv_A means a conv layer with filter size A.

2.3 Extending CoCNN

We perform two simple modifications in CoCNN to
form CoCNN+ architecture with minimal increase
in parameter number (see Figure 3).

First, we modify the CNN sub-model of VL. We
add the output feature matrix of the first conv layer
Conwv; with the output feature matrix of the last
conv layer C'onvy,. We pass the resultant feature
matrix on to subsequent layers (same as CoCNN)



for CNNvec formation of Word;. Such modifica-
tion helps in two cases - (i) it eliminates the gradi-
ent vanishing problem of the first conv layer of VL
and (ii) it gives CNNvec access to both low level
and high level features of the corresponding input
word.

Second, we modify the CNN sub-model of TC by
passing matrix M simultaneously to three 1D CNN
branches. The conv filter sizes of the left, middle
and right branches are A, B and C, respectively;
where, A < B and B < C. The outputs from the
three branches are concatenated channel-wise and
are then passed on to the final conv layer having
filter size A. The output feature matrix is passed on
to subsequent layers (same as CoCNN) for Coor-
dination vector formation. Multiple conv branches
with different filter sizes help in learning both short
and long range local patterns, especially when the
input sentence or document is long.

3 Experimental Setup

3.1 Dataset Specifications

Bengali dataset consists of articles from online pub-
lic news portals such as Prothom-Alo (Rahman,
2017), BDNews24 (Khalidi, 2015) and Nayadi-
ganta (Mohiuddin, 2019). The articles encompass
domains such as politics, entertainment, lifestyle,
sports, technology and literature. The Hindi dataset
consists of Hindinews (Pandey, 2018), Livehin-
dustan (Shekhar, 2018) and Patrika (Jain, 2018)
newspaper articles available open source in Kag-
gle encompassing similar domains. Nayadiganta
(Bengali) and Patrika (Hindi) datasets have been
used only as independent test sets. Detailed statis-
tics of the datasets are provided in Table 1. Top
words have been selected such that they cover at
least 90% of the dataset. For each Bengali dataset,
we have created a new version of the dataset by
incorporating spelling errors using a probabilis-
tic error generation algorithm (Sifat et al., 2020),
which enables us to test the effectiveness of LMs
for erroneous datasets.

3.2 Performance Metric

We use perplexity (PPL) to assess the performance
of the models for next word prediction task. Sup-
pose, we have sample inputs I1, I, . .., I, and our
model provides probability values Py, P, ..., P,
respectively for their ground truth output tokens.
Then the PPL score of our model for these samples
can be computed as:
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PPL = exp(—% Yoy In(Py))

For text classification and sentiment analysis, we
use accuracy and F1 score as our performance
metric.

3.3 Model Optimization

For model optimization, we use SGD optimizer
with a learning rate of 0.001 while constraining
the norm of the gradients to below 5 for exploding
gradient problem elimination. We use Categorical
Cross-Entropy loss for model weight update and
dropout (Hinton et al., 2012) with probability 0.3
between the dense layers for regularization. We
use Relu (Rectified Linear Unit) as hidden layer
activation function. We use a batch size of 64. As
we apply batch normalization on CNN intermediate
outputs, we do not use any other regularization
effect such as dropout on these layers (Luo et al.,
2018).

We use Anaconda 3 with Python 3.8 version and
Tensorflow 2.6.0 framework (Abadi et al., 2016)
for our implementation. We use two GPU servers
for training our models: (i) 12 GB Nvidia Titan Xp
GPU, Intel(R) Core(TM) i7-7700 CPU (3.60GHz)
processor model (ii) 32 GB RAM with 8 cores 24
GB Nvidia Tesla K80 GPU, Intel(R) Xeon(R) CPU
(2.30GHz) processor model

3.4 CoCNN Hyperparameters

3.4.1 Vocabulary Learner Details

Vocabulary Learner sub-model consists of a char-
acter level embedding layer producing a 40 size
vector from each character, then four consecutive
layers each consisting of 1D convolution (batch nor-
malization and Relu activation between each pair
of convolution layers) and finally, a 1D global max-
pooling in order to obtain CNNvec representation
from each input word. The four 1D convolution lay-
ers consist of (32, 2), (64, 3), (64, 3), (128,4) con-
volution, respectively. Here the first and second
element of each tuple denote number of convolu-
tion filters and kernel size, respectively. As we
can see, the filter size and number of filters of the
convolution layers are monotonically increasing
as architecture depth increases. It is because deep
convolution layers need to learn the combination of
various low level features which is a more difficult
task compared to the task of shallow layers that
include extraction of low level features.



Datasets .No. of ] No. of No. of ] _No. of ] No. of
Unique words | Unique Characters | Top Words | Training Samples | Validation Samples

Prothom-Alo 260 K 75 13K 59M 740 K
BDNews24 170K 72 14 K 29M 330K
Nayadiganta 44 K 73 _ _ 280K
Hindinews 37K 74 55K 87K 10K
Livehindustan 60 K 73 45K 210K 20K
Patrika 28 K 73 _ _ 307 K

Table 1: Dataset details (K and M denote 103 and 10° multiplier, respectively)

3.4.2 Terminal Coordinator Details

The Terminal Coordinator sub-model
used in CoCNN architecture uses Six
convolution  layers  which  consist  of

(32,2),(64,3), (64, 3), (96, 3), (128,4), (196, 4)
convolution. Its design is similar to that of
Vocabulary Learner sub-model. The final output
feature matrix obtained from this CNN sub-model
is flattened to get the Coordination vector. After
passing this vector through a couple of dense
layers, we use Softmax activation function at the
final output layer to get the predicted output.

3.5 CoCNN+ Hyperparameters

The CNN sub-model of Vocabulary Learner in
CoCNN+ is the same as CoCNN except for one
aspect (see Figure 3) - we change the first convo-
lution layer to have 128 filters of size 2 instead of
32 filters. This is done to respect the matrix dimen-
sionality during skip connection based addition.

Instead of providing a sequential 1D CNN sub-
model in Terminal Coordinator, we provide three
parallel branches each consisting of four convolu-
tion layers (see Figure 3) where the filter numbers
are 32, 64, 96 and 128. The filter size of the left-
most, middle and the rightmost branch are 3, 5
and 7, respectively. All convolution operations are
dimension preserving through the use of padding.
The feature matrices of all three of these branches
are concatenated channel-wise and finally, this con-
catenated matrix is passed on to a final convolution
layer with 196 filters of size 3.

4 Results and Discussion

4.1 Comparing CoCNN with Other CNNs

We compare CoCNN with three other CNN-based
baselines (see Figure 4a). CNN_Van is a simple se-
quential 1D CNN model of moderate depth (Pham
et al., 2016). It considers the full input sentence/
paragraph as a matrix. The matrix consists of char-
acter representation vectors. CNN_DI uses dilated
cony in its CNN layers which allows the model to
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have a larger field of view (Roy, 2019). Such a
change in cony strategy shows slight performance
improvement. CNN_Bn has the same setting as of
CNN_Van, but uses batch normalization on inter-
mediate conv layer outputs. Such a measure shows
significant performance improvement in terms of
loss and PPL score. Proposed CoCNN surpasses
the performance of CNN_Bn by a wide margin. We
believe that the ability of CoCNN to consider each
word of a sentence as a separate meaningful entity
is the reason behind this drastic improvement.

4.2 Comparing CoCNN with SOTA LSTMs

We compare CoCNN with four LSTM-based mod-
els (see Figure 4b). Two LSTM layers are stacked
on top of each other in all four of these mod-
els. We do not compare with LSTM models that
use Word2vec (Rong, 2014) representation as this
representation requires fixed size vocabulary. In
spelling error prone setting, vocabulary size is the-
oretically infinite. We start with LSTM_FT, an
architecture using sub-word based FastText repre-
sentation (Athiwaratkun et al., 2018; Bojanowski
et al., 2017). Character aware learnable layers
per LSTM time stamp form the new generation
of SOTA LSTMs (Mikolov et al., 2012; Kim et al.,
2016; Gerz et al., 2018; Assylbekov et al., 2017).
LSTM_CA acts as their representative by introduc-
ing variable size parallel conv filter output con-
catenation as word representation. The improve-
ment over LSTM_FT in terms of PPL score is al-
most double. Instead of unidirectional many to
one LSTM, we introduce bidirectional LSTM in
LSTM_CA to form BiLSTM_CA which shows slight
performance improvement. We introduce Bahdanu
attention (Bahdanau et al., 2014) on BiLSTM_CA to
form BiLSTM_CA_Attn architecture. Such measure
shows further performance boost. CoCNN shows
almost four times improvement in PPL score com-
pared to BiLSTM_CA_Att. If we compare Figure
4b and 4a, we can see that CNNs perform rela-
tively better than LSTMs in general for Bengali
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Figure 4: Comparing CoCNN with SOTA architectures from CNN, LSTM and Transformer paradigm on Prothom-
Alo validation set. The score shown beside each model name denotes that model’s PPL score on Prothom-Alo
validation set after 15 epochs of training. Note that this dataset contains synthetically generated spelling errors.

LM. LSTMs have a tendency of learning sequence
order information which imposes positional depen-
dency. Such characteristic is unsuitable for Bengali
and Hindi with flexible word order.

4.3 Comparing CoCNN with SOTA
Transformers

We compare CoCNN with four Transformer-based
models (see Figure 4c). We use popular FastText
word representation with all compared transform-
ers. Our comparison starts with Vanilla_Tr, a single
Transformer encoder (similar to the Transformer
designed by Vaswani et al. (2017)). In BERT, we
stack 12 transformers on top of each other where
each Transformer encoder has more parameters
than the Transformer of Vanilla_Tr (Kenton and
Toutanova, 2019; Irie et al., 2019). BERT with its
large depth and enhanced encoders almost double
the performance shown by Vanilla_Tr. We do not
pretrain this BERT architecture. We follow the
Transformer architecture designed by Al-Rfou et al.
(2019) and introduce auxiliary loss after the Trans-
former encoders situated near the bottom of the
Transformer stack of BERT to form BERT Aux. In-
troduction of such auxiliary losses shows moderate
improvement of performance. BERT _Pre is the pre-
trained version of BERT. We follow the word mask-
ing based pretraining scheme of Liu et al. (2019).
The Bengali pretraining corpus consists of Prothom
Alo (Rahman, 2017) news articles dated from 2014-
2017 and BDNews24 (Khalidi, 2015) news articles
dated from 2015-2017. The performance of BERT
jumps up more than double when such pretraining
is applied. CoCNN without utilizing any pretrain-
ing achieves marginally better performance than
BERT Pre. Unlike Transformer encoders, conv
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imposes attention with a view to extracting impor-
tant patterns from the input to provide the correct
output. Furthermore, VL of CoCNN is suitable for
deriving semantic meaning of each input word in
highly inflected and error prone settings.

4.4 Comparing BERT Pre, CoCNN and

CoCNN+
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(a) Plot on Bengali dataset

5.2
A —a— BERT_Pre (65)
5.0 \\ —e— COCNN (57)
i —v— CoCNN+ (42)
4.8 \5;%
%46 iy
S ® ‘ﬁ
4.4 I N
: b
R Y
4.2 \\ b y
T T
4.0 Riad el SN
0 5 10 15 20 25 30

(b) Plot on Hindi dataset

Figure 5: Comparing BERT_Pre, CoCNN and CoCNN+
on Bengali (Prothom-Alo) and Hindi (Hindinews and
Livehindustan merged) validation set. The score shown
beside each model name denotes that model’s PPL score
after 30 epochs of training on corresponding training
set.

BERT Pre is the only model showing perfor-



Table 2: PPL Score Comparison

mance close to CoCNN in terms of validation loss
and PPL score (see Figure 4). We compare these
two models with CoCNN+. We train the mod-
els for 30 epochs on several Bengali and Hindi
datasets and obtain their PPL scores on correspond-
ing validation sets (training and validation set were
split at 80%-20% ratio). Bengali datasets include
Prothom-Alo, BDNews24; while Hindi dataset in-
cludes Hindinews, Livehindustan. We use Nayadi-
ganta and Patrika dataset for Bengali and Hindi
independent test set, respectively. The Hindi pre-
training corpus consists of Hindi Oscar Corpus
(Thakur, 2019), preprocessed Wikipedia articles
(Gaurav, 2019), HindiEnCorp05 dataset (Bojar
et al., 2014) and WMT Hindi News Crawl data
(Barrault et al., 2019). From the graphs of Figure
5 and PPL score comparison Table 2, it is evident
that CoCNN marginally outperforms its nemesis
BERT Pre in all cases, while CoCNN+ outper-
forms both CoCNN and BERT_Pre by a significant
margin. There are 8 sets of PPL scores in Table
2 for the three models on eight different dataset
settings. We use these scores to perform a one-
tailed paired t-test in order to determine whether
the reduction of PPL score seen in CoCNN+ is
statistically significant when P-value threshold is
set to 0.05. The test shows that the improvement
is indeed significant compared to both BERT_Pre
and CoCNN. Number of parameters of BERT_Pre,
CoCNN and CoCNN+ are 74 M, 4.5 M and 4.8
M, respectively. Though the parameter number of
CoCNN+ and CoCNN is close, CoCNN+ has 15X
fewer parameters than BERT_Pre.

4.5 Comparison in Downstream Tasks

We have compared BERT _Pre and CoCNN+ in
three different downstream tasks:
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Datasets | Error? BERT_ | Co- Co- Dataset | BERT_Pre | CoCNN+
) Pre CNN | CNN+ Question 0.905 0.926
Prothom Yes 152 147 122 Classify ) :
Alo No 117 114 99 Product
BDNews | Yes | 201 | 193 | 170 Review | 0o 0.86
24 No 147 141 123 Hate
Hindinews Speech 0.77 0.781
. No 65 57 42
Hindustan
Naya Yes 169 162 143 Table 3: Performance comparison between BERT_Pre
Diganta No 136 133 118 and CoCNN+ in three downstream tasks (F1 score)
Patrika No 67 57 44

(1) Bengali Question Classification (QC): This
task consists of six classes (entity, numeric, hu-
man, location, description and abbreviation type
question). The dataset has 3350 question samples
(Islam et al., 2016).

(2) Hindi Product Review Classification: The
task is to classify a review into positive or negative
class where the dataset consists of 2355 sample
reviews (Kakwani, 2020).

(3) Hindi Hate Speech Detection: The task is to
identify whether a provided speech is a hate speech
or not. The dataset consists of 3654 speeches
(HASOC, 2019).

We use five fold cross validation while perform-
ing comparison on these datasets (see mean results
in Table 3) in terms of F1 score. One tailed in-
dependent t-tests with a P-value threshold of 0.05
has been performed on the 5 validation F1 scores
obtained from five fold cross validation of each of
the two models. Our statistical test results vali-
date the significance of the improvement shown by
CoCNN+ for all three of the mentioned tasks.

Spell Checker Synthetic | Real
Algorithm Error Error
Vocabulary Learner 71.1% 61.1%
Phonetic Rule 61.5% 32.5%
Clustering Rule 51.8% 43.8%

Table 4: Bengali spelling correction (accuracy)

We also investigate the potential of VL of
CoCNN+ as a Bengali spell checker (SC). Both
CoCNN and CoCNN+ model use VL for producing
CNNvec representation from each input word. We
extract the CNN sub-model of VL from our trained
(on Prothom-Alo dataset) CoCNN+ model. We pro-
duce CNNvec for all 13 K top words of Prothom-
Alo dataset. For any error word, W,, we can gen-
erate its CNNvec V, using VL. We can calculate
cosine similarity, C'os; between V, and CNNvec



V; of each top word W;. Higher cosine similarity
means greater probability of being the correct ver-
sion of W,.. We have discovered such approach to
be effective for correct word generation. Recently,
a phonetic rule based approach has been proposed
by Saha et al. (2019), where a hybrid of Soundex
(UzZaman and Khan, 2004) and Metaphone (Uz-
Zaman and Khan, 2005) algorithm has been used
for Bengali word level SC. Another SC proposed in
recent time has taken a clustering based approach
(Mandal and Hossain, 2017). We compare our pro-
posed VL based SC with these two existing SCs
(see Table 4). Both the real and synthetic error
dataset consist of 20k error words formed from the
top 13 K words of Prothom-Alo dataset. The real
error dataset has been collected from a wide range
of Bengali native speakers using an easy to use web
app. Results show the superiority of our proposed
SC over existing approaches.

5 Related Works

Although a significant number of works for LM of
high resource languages like English and Chinese
are available, very few researches of significance
for LM in low resource languages like Bengali and
Hindi exist. In this section, we mainly summarize
major LM related research works.

Sequence order information based statistical
RNN models such as LSTM and GRU have been
popular for LM tasks (Mikolov et al., 2011). Sun-
dermeyer et al. (2012) showed the effectiveness of
LSTM for English and French LM. The regular-
izing effect on LSTM was investigated by Merity
et al. (2017). SOTA LSTM models learn sub-word
information in each time stamp. Bojanowski et al.
(2017) proposed a morphological information ori-
ented character N-gram based word vector repre-
sentation. It was improved by Athiwaratkun et al.
(2018) and is known as FastText. Mikolov et al.
(2012) proposed a technique for learning sub-word
level information from data, while such an idea
was integrated in a character aware LSTM model
by Kim et al. (2016). Takase et al. (2019) further
improved word representation by combining ordi-
nary word level and character-aware embedding.
Assylbekov et al. (2017) showed that character-
aware neural LMs outperform syllable-aware ones.
Gerz et al. (2018) evaluated such models on 50
morphologically rich languages.

Self attention based Transformers have become
the SOTA mechanism for sequence to sequence
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modeling in recent years (Vaswani et al., 2017).
Some recent works have explored the use of such
models in LM. Deep Transformer encoders outper-
form stacked LSTM models (Irie et al., 2019). A
deep stacked Transformer model utilizing auxiliary
loss was proposed by Al-Rfou et al. (2019) for char-
acter level language modeling. The multi-head self
attention mechanism was replaced by a multi-linear
attention mechanism with a view to improving LM
performance and reducing parameter number (Ma
et al., 2019). Bengali and Hindi language, having
unique characteristics, remain open as to what strat-
egy to use for model development in such domains.

One dimensional version of CNNs have been
used recently for text classification oriented tasks
(Wang et al., 2018; Moriya and Shibata, 2018; Le
et al., 2018). Pham et al. (2016) studied CNN
application in LM showing the ability of CNNs to
extract LM features at a high level of abstraction.
Furthermore, dilated conv was employed in Bengali
LM with a view to solving long range dependency
problem (Roy, 2019).

6 Conclusion

We have proposed Coordinated CNN (CoCNN) that
introduces two 1D CNN based key concepts: word
level VL and sentence level TC. Detailed inves-
tigation in three deep learning paradigms (CNN,
LSTM and Transformer) shows the effectiveness
of CoCNN in Bengali and Hindi LM. We have
also shown a simple but effective enhancement of
CoCNN by introducing skip connection and paral-
lel conv branches in the VL and T'C portion, respec-
tively. Future research may incorporate interesting
ideas from existing SOTA 2D CNNs in CoCNN.
Over-parametrization and innovative scheme for
CoCNN pretraining are expected to increase its LM
performance even further. Code has been provided
as supplementary material. Dataset will be made
publicly available upon acceptance.
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Abstract

Recent language generative models are mostly
trained on large-scale datasets, while in some
real scenarios, the training datasets are often
expensive to obtain and would be small-scale.
In this paper we investigate the challenging task
of less-data constrained generation, especially
when the generated news headlines are short
yet expected by readers to keep readable and in-
formative simultaneously. We highlight the key
information modeling task and propose a novel
duality fine-tuning method by formally defining
the probabilistic duality constraints between
key information prediction and headline gen-
eration tasks. The proposed method can cap-
ture more information from limited data, build
connections between separate tasks, and is suit-
able for less-data constrained generation tasks.
Furthermore, the method can leverage various
pre-trained generative regimes, e.g., autoregres-
sive and encoder-decoder models. We conduct
extensive experiments to demonstrate that our
method is effective and efficient to achieve im-
proved performance in terms of language mod-
eling metric and informativeness correctness
metric on two public datasets.

1 Introduction

In an age of information explosion, headline gen-
eration becomes one fundamental application in
the natural language process (NLP) field (Tan et al.,
2017; Lietal.,2021). Currently, the headline gener-
ation is usually regarded as a special case of general
text summarization. Therefore, many cutting-edge
techniques based on pre-trained models and fine-
tuning methods can be directly adapted by feeding
headline generation datasets (Zhang et al., 2020b;
Gu et al., 2020). Actually, compared with those
textual summaries, headline generation aims at gen-
erating only one sentence or a piece of short texts
given a long document (e.g., a news article). It
is challenging to guarantee the generated headline
readable and informative at the same time, which
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is important to attract or inform readers especially
for news domain (Matsumaru et al., 2020).

Recently, some works find that neglecting the
key information would degrade the performance
of generative models which only consider captur-
ing natural language (Nan et al., 2021b). Then
many works about modeling different kinds of key
information have been studied to enhance the infor-
mation correctness of generative summaries. For
example, overlapping salient words between source
document and target summary (Li et al., 2020), key-
words (Li et al., 2018), key phrases (Mao et al.,
2020) and named entities (Nan et al., 2021a) are
involved to design generative models. However,
those works are mostly either trained on large-scale
datasets or targets for long summaries (Ao et al.,
2021). In some real applications, it is expensive
to obtain massive labeled data. Thus it becomes a
much more challenging task that how to generate
short headlines which should be both readable and
informative under less-data constrained situations.

To model the key information, existing works
often follow the assumption that a generated sum-
mary essentially consists of two-fold elements: the
natural language part and the key information part.
The former focuses on language fluency and read-
ability, while the later is for information correct-
ness. For this reason, an additional task of key
information prediction is leveraged and the multi-
task learning method is employed (Li et al., 2020;
Nan et al., 2021a). Figure 1 can illustrate the intu-
itive idea more clearly, and the bold parts can be
treated as the key information (overlapping salient
tokens), which should be modeled well to inform
correct and sufficient information for readers.

To achieve the above motivation, technically, ap-
plying existing fine-tuning and multi-task learn-
ing methods to headline generation can be a nat-
ural choice. However they have some drawbacks.
Firstly, single-task normal fine-tuning methods can-
not explicitly model the key information well and
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The European commission announced
on Friday that it was providing 11
million euros (about 11.1 million U.S.
dollars) for the united nations high
commissioner for refugees (UNHCR)

EU donates 11 million
a dollars to UNHCR
Headline generation task

to support programs in the fields of
protection , registration and staff
security in refugee - hosting countries ,
especially in Africa.

(o T

Key information prediction task

Source document

Figure 1: An example of multi-task decomposition for
headline generation. The bold parts are salient tokens.

hence reduce the informative correctness of gen-
erated headlines. Secondly, multi-task fine-tuning
methods should improve the model ability by shar-
ing the encoder and tailing two classifiers for key
information prediction task and headline generation
task, respectively. In fact, due to the limited dataset
scale, the shared encoder could not be trained well
to significantly distinguish the tasks or enhance
each other mutually. As a result, vanilla multi-
task methods could achieve little benefit for gen-
eration tasks (Nan et al., 2021a; Magooda et al.,
2021). Our empirical experiments later can also
show this point. Therefore, existing single-task
or multi-task fine-tuning methods cannot perform
well under less-data constrained situations.

In this paper, we set out to address the above
mentioned issues from the following two aspects.
On the one hand, to explicitly model the key in-
formation, we still adopt the multi-task paradigm,
while the two tasks utilize their own models. Then
we argue that the two tasks have probabilistic con-
nections and present them in dual forms. In this
way, the key information is explicitly highlighted,
and setting two separate models to obey duality
constraints cannot only make the model more capa-
ble to distinguish tasks but also capture the relation
between tasks. On the other hand, to capture more
data knowledge from limited dataset, besides the
source document, headlines and key tokens are ad-
ditionally used as input data for the key information
prediction task and headline generation task respec-
tively. We call this method as duality fine-tuning
which obeys the definition of dual learning (He
et al., 2016; Xia et al., 2018). Moreover, we de-
velop the duality fine-tuning method to be compati-
ble with both autoregressive and encoder-decoder
models (LM).

To evaluate our method, we collect two datasets
with the key information of overlapping salient to-
kens! in two languages (English and Chinese), and

"We expect our method to be orthogonal to specific key
information definition.
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leverage various representative pre-trained models
(BERT (Devlin et al., 2019), UniLM (Dong et al.,
2019) and BART (Lewis et al., 2020)). The ex-
tensive experiments significantly demonstrate the
effectiveness of our proposed method to produce
more readable (on Rouge metric) and more in-
formative (on key information correctness metric)
headlines than counterpart methods, which indi-
cates that our method is consistently useful with
various pre-trained models and generative regimes.
In summary, the main contributions include:

* We study a new task that how to improve per-
formance of headline generation under less-
data constrained situations. We highlight to
model the key information and propose a
novel duality fine-tuning method. To our best
knowledge, this is the first work to integrate
dual learning with fine-tuning paradigm for
the task of headline generation.

The duality fine-tuning method which should
model multiple tasks to obey the probabilistic
duality constraints is a new choice suitable for
less-data constrained multi-task generation,
in terms of capturing more data knowledge,
learning more powerful models to simultane-
ously distinguish and build connections be-
tween multiple tasks, and being compatible
with both autoregressive and encoder-decoder
generative pre-trained models.

We collect two small-scale public datasets in
two languages. Extensive experiments prove
the effectiveness of our method to improve
performance of readability and informative-
ness on Rouge metric and key information
accuracy metric.

2 Related Work

Usually, headline generation is regarded as a spe-
cial task of general abstractive text summarization,
and the majority of existing studies could be easily
adapted to headline generation by feeding headline
related datasets (Matsumaru et al., 2020; Yamada
et al., 2021). For example, sequence-to-sequence
based models are investigated for text summariza-
tion, which emphasizes on generating fluent and
natural summaries (Sutskever et al., 2014; Nallapati
et al., 2016; Gehring et al., 2017; See et al., 2017).
In recent years, the large-scale transformer-based
models (Devlin et al., 2019; Dong et al., 2019;



Lewis et al., 2020) and the two-stage (pre-training
and fine-tuning) learning paradigm (Zhang et al.,
2019; Gehrmann et al., 2019; Rothe et al., 2020)
have greatly promoted the performance of most
NLP tasks. And headline generation can also bene-
fit from those works.

Since the length of headlines is often short and
almost ‘every word is precious’, compared to gen-
eral text summarization, modeling the key informa-
tion is better worth of paying attention (Li et al.,
2020; Mao et al., 2020; Zhu et al., 2021b; Nan
et al., 2021a; Zhu et al., 2021a). However, to our
knowledge, little work focuses on this problem for
headline generation, especially under the less-data
constrained situations, and mostly they focus on
low-resource long text summarization (Parida and
Motlicek, 2019; Bajaj et al., 2021; Yu et al., 2021).

Recent years witness the rapid development of
transformers-based pre-trained models (Wolf et al.,
2020) and two kinds of regimes of natural language
generation (NLG) are prevalent (Li and Liang,
2021). One is based on autoregressive language
models which have a shared transformer encoder
structure for encoding and decoding (Devlin et al.,
2019; Dong et al., 2019; Zhuang et al., 2021),
while the other is based on the standard trans-
former framework which has two separate encoder-
decoder structures (Lewis et al., 2020; Zhang et al.,
2020a). Fine-tuning and multi-task learning on
them to reuse the ability of pre-trained models are
widely studied for various tasks (Liu and Lapata,
2019; Rothe et al., 2020; Gururangan et al., 2020).
Our work can also align with this research line and
we propose a new multi-task fine-tuning method.

We leverage the core idea of dual learning, which
can fully mine information from limited data and
well model multiple tasks by designing duality con-
straints (He et al., 2016; Xia et al., 2018). This
learning paradigm has been successfully applied
to many fields, such as image-to-image transla-
tion (Yi et al., 2017), recommendation system (Sun
et al., 2020), supervise and unsupervised NLU and
NLG (Su et al., 2019, 2020). Those works have
demonstrated that duality modeling is suitable for
small-scale training situations.

3 Problem Definition

In this section, we formally present our problem.
The training set is denoted as X = (D, H,K),
where D and H are the sets of source documents
and target headlines. K is the set of key informa-
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tion, which indicates the overlapping salient tokens
(stopwords excluded) in each pair of document
and headline. A training sample is denoted as

a tuple (d, h, k). d = {fﬂl ,ﬂvgd)a---axizd)}, h =

h k k
{zg ) l‘g ),...,xm bk o= {331 ,asg ),...,azl( )},
where a:f )i

is a token of document, headline or
key information, and n, m, [ are the lengths of
respective token sequences.

3.1 Definition of Dual Tasks

Given the input data 2z = (d, h, k), we define our
problem in a dual form, which contains two tasks.
Formally, the key information prediction task aims
at finding a function f : (d, h) — k, which maxi-
mizes the conditional probability p(k|d, h; 0) of the
real key information k. Correspondingly, the head-
line generation task targets at learning a function
g : (d, k) — h, which maximizes the conditional
probability p( ) of real headline h. The two
tasks can be defined as follows:

f(d, h;0) £ argmax [ p(kld, h;6),

reX

9(d, k; ) £ argmax [ p(h|d, k; ).

TeEX
3.2 Probabilistic Duality Constraints

Based on the principle of dual learning
paradigm (He et al., 2016), we treat the key
information prediction task as primary task and the
headline generation task as secondary task. Ideally,
if the primary model and secondary model are both
trained optimally, the probabilistic duality between
the two tasks should satisfy the following equation:

X) =[] P(d.k,h) = [] p(d)p(hld; ¢)p(k|d, h; 0)
TeEX zeX
= [ p(@)p(kld; O)p(hid, k; ).
reX

p(k|d, h; 0) and p(hl|d, k; ) are the target mod-
els to learn, while p(k|d; 0) and p(h|d; @) denote
the marginal distribution models. By integrating
the above probabilistic duality equation and further
dividing the common term p(d), our problem can
be formally defined to optimize the objectives:

Objective 1 : min |X\ Z L (f(d, h;0), k),

TzeX

Objective 2 : min |X\ Z l2(g(d, k; ), h),

zeX
st. [ [ p(hld; @)p(kld, h; 0) = ] p(kld; O)p(hld, k; ¢),
TEX TEX

()]
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(c) Duality fine-tuning

Figure 2: The overview of different fine-tuning methods. (a) is normal fine-tuning for single-task headline generation.
(b) is multi-task fine-tuning which has an additional task of predicting the salient tokens among inputs with the
encoder. (c) is the proposed duality fine-tuning which owns two separate models and more information as input
by sticking to probabilistic duality constraints. Note that all the paired pre-trained encoder and decoder can be
instanced as autoregressive LM (e.g., UniLM) or encoder-decoder (e.g., BART) regimes.

where [; is the loss function for key information
prediction and /5 is that for headline generation.

4 Duality Fine-tuning Methodology

4.1 Overview

Before introducing the duality fine-tuning method,
we would review the normal fine-tuning and multi-
task fine-tuning methods. As shown in Figure 2,
the (a) normal fine-tuning method is single-task and
optimizes the generative model with new dataset by
leveraging the same structure of pre-trained mod-
els. To explicitly model the key information, (b)
multi-task fine-tuning method would use an addi-
tional task to binarily predict salient tokens, where
1 means key information and 0 means not. Here
the two tasks share the common encoder.
Different from the above two methods, although
the (c) duality fine-tuning method is also a multi-
task paradigm, however it shows totally different
structure and process in terms of the following three
aspects. Firstly, the two tasks own their respective
encoder and decoder pairs inherited from a con-
sistent pre-trained model structure. Secondly, the
each model can be fed with more input information
than normal and multi-task fine-tuning, i.e. key
information prediction task can further utilize the
headline data while headline generation task can
extra utilize the data of key tokens. Thirdly, the
two tasks should stick to the probabilistic duality
constraints to build connections between the two
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tasks by Eq. 1.

Note that all the three methods in Figure 2 are
compatible with autoregressive language models
(the encoder and decoder are integrated in one trans-
former encoder like UniLM) and encoder-decoder
models (standard transformer structure like BART).

4.2 Model for Key Information Prediction

Given the pair of source document and target head-
line as inputs, we expect the model to predict the
key information and learn the pattern that the in-
formation is present at both sides. We regard the
prediction task as binary classification for every to-
ken: §®) = p(k|d, h;0) = p(y® |2, 2M; ) =
{0,1}™*™. The last hidden state layers of encoder
and decoder are tailed with the multi-layer percep-
tion (MLP) to make binary predictions by using
sigmoid classifier.

If the relied pre-trained model is autoregressive,
the encoder and decoder would belong to a shared
transformer encoder structure, and if the encoder-
decoder pre-trained model is leveraged, there can
be a standard transformer structure. The objective
function /; of Objective 1 in Eq. 1 can be rewritten
by using the cross entropy loss function:

n+m

D @ 1og(3) + (1-y) log(1-51)). )

z=1
4.3 Model for Headline Generation

Given the source document and key information,
we expect the model to learn that the tokens put

L=-—



ahead source document are explicitly highlighted
and they are important to generate headlines. The
generation process of headline is by once a to-
ken and generating current token is based on at-
tending the key information, source document
and already generated tokens. The formal cal-

culation of predicting the j-th token is: gj](.h) =

p(y](h)|x(d),x(k) y(<h),<p) The last hidden state
layer of the decoder is connected by a softmax
function to generate tokens one by one. The de-
tails of generation process can be referred from the
original literatures of adopted pre-trained models.

Similar to the corresponding key information
prediction task, the same transformer encoder struc-
ture is adopted for autoregressive LMs and the stan-
dard transformer structure is for encoder-decoder
LMs. The objective function l2 of Objective 2 in
Eq. 1 can be formally rewritten by using the cross
entropy loss function:

Zy(h)log ).

4.4 Training & Testing by Duality Fine-tuning

3

To optimize the Objective 1 and Objective 2 under
the duality constraints in Eq. 1, we transform the
constraint as a calculable regularization term:

lauatity = Y _ [log p(h|d; ¢) + log p(k|d, h; 0)
TEX

“

— log p(k|d; 0) —log p(h|d, k; ¢)]?,

where p(k|d; 9) and p(h|d; o) are the marginal
distribution models for key information prediction
and headline generation respectively.

Marginal Distribution Models We define the
marginal distribution models to calculate the du-
ality regularization term lgyqity- The marginal
models can be obtained by just simplifying
their corresponding dual models. For example,
marginal key information prediction model is
single-task token classification and only adopts the
encoder part as p(K|D; 0) = | I ) p(xgd)),
while marginal headline generation is the nor-
mal fine-tuning task by calculating p(H|D; @) =
[Lea T Py 2@, %)),

Since the two marginal distribution models are
only involved in the calculation of regularization
term gyq1ity and will not be updated during the pro-
cess of training dual models, they could be offline
trained in advance. So in order to save the mem-
ory cost during duality fine-tuning, the predicted
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marginal key information, generated marginal head-
lines and their losses for each training sample can
be calculated and stored beforehand.

Dual Model Training After defining the dual-
ity regularization term and marginal models, we
can obtain the calculable loss functions for dual-
ity fine-tuning by combining Eq.1 and Eq.4 as the
following:

n+m
) Jog (5%
Ly = \X| Z Z 0g(9:"") )
reEX z=1
+ (1 =y log(1 — ) + Milauatiry),

Lo = mln X Z Zy(h) log(y (}L) ) + Aelduatity ),
| ‘IEX Jj=1
(6)

where A1 and Ao denote the weights of the dual-
ity terms to control the impact of the duality con-
straints on the model optimization. The detailed
algorithm for training is described in Algorithm 1.
Line 1-2 denote the model pre-training and param-
eter initialization. Line 5-12 are the one-step opti-
mization for a mini-batch of training data, and the
model should compute (or retrieve) the marginal
losses and model losses (/1 and l2) successively.

Algorithm 1: Training for Duality Fine-tuning

Input: The training dataset X = [D, H, K]
Output: Dual model parameters 6 and ¢
1 Pre-train marginal models p(k|d; @) and p(h|d; §);
Initialize all trainable parameters of p(k|d, h; 6) and
p(hld, k; @), sett = 1;
while ¢t < T do
foreach mini-batch [d,h,k] do
Compute (or retrieve) marginal losses;
Compute model losses with Eq.2 and Eq.3;
Update dual model losses by Eq.5 and Eq.6;
Optimize 6 for dual model p(k|d, h; 6);
Optimize ¢ for dual model p(hl|d, k; ¢);

~

o’ N B W

end
end
return optimized 6 and ¢.

10
11
12

Dual Model Testing In the testing stage, we only
have the documents as input and do not have the
real key information and headlines. In order to
save the run-time memory and computing resource
cost, we use an open tool spaCy? to extract the key
information from the source document to approxi-
mate the tokens predicted by the dual key informa-
tion prediction model, and therefore only one dual
model, i.e., the dual headline generation model, is
loaded into memory for making generation.

Zhttps://spacy.io/



Pre-trained  Fine-tune micro macro
Model Method Rouge-1 Rouge-2 Rouge-L || prec, recall; F1; prec, recall; F1;
Normal 0.3598 0.1626 0.3421 44.06 5276 48.02 | 4478 53.19 48.63
BERT Normal+ 0.3594 0.1483 0.3411 56.94 46.15 5098 | 58.67 49.08 53.45
Multi-task ~ 0.3672 0.1775 0.3500 4523 5279 4872 | 4578 5279  49.03
Duality 0.3692 0.1627 0.3469 51.20 5136 51.28 | 51.50 5144 51.47
Normal 0.3663 0.1739 0.3489 42.10 5355 47.14 | 42.80 5390 47.71
UniLM Normal+ 0.3524 0.1450 0.3285 53.57 4849 5090 | 5443 51.57 5296
Multi-task ~ 0.3557 0.1631 0.3365 40.10 54.00 46.03 | 41.21 5445 4691
Duality 0.4025 0.1896 0.3774 45.12  60.88 51.82 | 4750 61.09 5345
Normal 0.4798 0.2753 0.4496 53.05 67.67 5948 | 5457 6851 60.75
BART Normal+ 0.5005 0.2829 0.4711 56.71 7024 6275 | 58.72 70.67 64.14
Multi-task ~ 0.4765 0.2699 0.4491 5292 6681 59.06 | 54.05 67.54 60.04
Duality 0.5372 0.3097 0.4999 62.12 79.57 69.77 | 63.73 79.79 70.86
Table 1: Comparison of Rouge and key information accuracy (%) on Gigaword-3k dataset.
Pre-trained  Fine-tune micro macro
Model Method Rouge-1 Rouge-2 Rouge-L || prec, recalls F1. prec, recall; F1:
Normal 0.4109 0.2722 0.3891 56.68 5020 53.24 | 56.71 49.62 5293
BERT Normal+ 0.4164 0.2471 0.3893 71.85 4593 56.04 | 7245 4576  56.09
Multi-task ~ 0.4277 0.2835 0.4045 59.30 51.89 5535 | 59.20 51.37 55.00
Duality 0.5279 0.3321 0.4807 73.64 59.68 6593 | 7424 59.53 66.07
Normal 0.4137 0.2806 0.3905 56.37 51.06 53.58 | 5598 50.16 5291
UniLM Normal+ 0.4152 0.2502 0.3875 68.13 48.15 5642 | 69.15 4793 56.62
Multi-task ~ 0.4147 0.2788 0.3909 52.68 5351 53.09 | 53.28 52.54 52091
Duality 0.5128 0.3324 0.4636 69.72 5871 63.74 | 70.56 58.22 63.80
Normal 0.4301 0.2943 0.3992 49.68 5693 53.06 | 50.62 56.02 53.18
BART Normal+ 0.5176 0.3338 0.4332 6443 6037 6233 | 67.34 60.06 63.49
Multi-task ~ 0.4239 0.2882 0.3937 49.76  55.81 52.61 | 50.73 5496 52.76
Duality 0.6636 0.4720 0.5766 7498 79.73 7729 | 7543 79.16 77.25

Table 2: Comparison of Rouge and key information accuracy (%) on THUCNews-3k dataset.

S Experiments

5.1 Datasets

To evaluate the duality fine-tuning’s effectiveness,
we collect two public corpora, Gigaword (Rush
et al., 2015) and THUCNews (Li and Sun, 2007).
The overlapping words (stop-words excluded) be-
tween each pair of source document and target
headline are regarded as the key information.

Gigaword is in English and collected from news
domain. We randomly extract 3,000/500/500 sam-
ples for model training/validating/testing from the
original corpus®, to approximate a less-data con-
strained situation. Here all the samples must con-
tain key information.

THUCNews is in Chinese and collected from
the Sina News website*. Each sample contains a
headline and a news article. We pre-process this
dataset by also randomly extracting 3,000/500/500
training/validating/testing samples and all of them
contain key information.

*https://github.com/harvardnlp/sent-summary
“http://thuctc.thunlp.org/
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5.2 Baselines and Metrics

We compare the duality fine-tuning (Duality) with
normal fine-tuning (Normal) and multi-task fine-
tuning methods (Multi-task). Additionally, the
Normal method has a variant (Normal+) that re-
places the original input (source document) with
key-token-enhanced input (key tokens+source doc-
ument). We adopt base-scale versions of BERT,
UniLLM and BART as pre-trained models which are
all representative either for autoregressive LMs or
encoder-decoder regimes among NLG tasks.

We use the F1-version Rouge (Lin, 2004) to mea-
sure the comprehensive performance of language
modeling on both the token-level precision and re-
call factors. To evaluate the informativeness accu-
racy, macro and micro prec,, recall;, and F1; (Nan
et al., 2021a) (denoting precision, recall, and F1
between generated and ground-truth salient tokens)
are used. Readers can refer to the literature for
details of calculating formulas.

5.3 Experimental Settings

In all experiments, we keep the consistent default
parameters with the pre-trained models during fine-
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Figure 3: Performance of Rouge-1 and Micro-F1 on different sizes of THUCNews and Gigaword training datasets.

Gigaword THUCNews

Method Read. Info. Read. Info.
Reference 4.40 4.29 4.79 478
Normal 3.75 3.44 341 3.06
Multi-task ~ 3.67 3.58 3.97 3.29
Duality 3.77 4.00 390 3.51

Table 3: Human evaluation results on readability (Read.)
and informativeness (Info.) of generated headlines.

tuning. All the models are trained for at least 10
epochs, and the experimental results are the average
values from 5 runs of modeling learning. The batch
size is set as 64 for normal/multi-task/marginal
training and 16 for duality training, since dual
learning would occupy more memory to reflect
two models. However, during validating and test-
ing phases, all the methods would spend the similar
memory and computing resources. The learning
rate is set le-5 for English dataset and Se-5 for
Chinese dataset. The max lengths of document and
headline tokens for Gigaword is set 192 and 64,
and those for THUCNews are 512 and 30. The
beam search size for testing is set 5. Empirically
by trying a grid search strategy, we set A\ = 0.2,
A2 = 0.8 to emphasize the dual task of headline
generation. Other detailed parameters can refer to
the original literature of pre-trained models.

5.4 Automatic Evaluation

Performance on 3K datasets We adopt the data
size of 3,000 (3K) to approximate the less-data
constrained situation, because usually it is easy
to hand-crafted label 3K (or comparable quantity)
samples. Table 1 and Table 2 present the perfor-
mance of generation (left part) and key information
accuracy (right part) on Gigaword-3k dataset and
THUCNews-3k dataset, respectively. From the
left part in Table 1, we find Duality fine-tuning
method can achieve the superior scores almost with
all the pre-trained models. From the right part for
key information accuracy (micro and macro prec,,
recall; and F1; ), duality fine-tuning method can
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also greatly enhance the informative correctness,
especially using BART as pre-trained models.

From the left part of Table 2, Duality fine-tuning
method performs much better than Normal (and
Normal+) fine-tuning and Multi-task fine-tuning
methods. The table’s right part also suggests the
consistent effectiveness that duality method can
generate more informative and accurate headlines
with small-scale training datasets. Comparing with
Table 1 and Table 2, the results may indicate that
duality fine-tuning should be more suitable for Chi-
nese than English datasets due to the more stable
and higher observed improvement with different
pre-trained models.

The two tables could reflect some observations.
First, our duality fine-tuning method is generally
and effectively applied to various generative pre-
trained models, e.g. autoregressive LM (BERT
and UniLM) and encoder-decoder (BART) regimes.
Then, our method performs much better on BART
than on the others, we think, because encoder-
decoder models have separate transformer net-
works instead of only adopting the encoder struc-
ture, providing the more powerful model ability
and larger model scale, which is friendly for less-
data constrained situations. Moreover, the results
in the two tables can also demonstrate that Duality
fine-tuning method is effective to capture more data
knowledge from limited data by using two sepa-
rate dual models corresponding to tasks, and the
designed probabilistic duality constraints are effec-
tive to build connections and enhance generation.

Performance on various sizes of datasets To
investigate more less-data situations, from the orig-
inal large-scale corpora, we randomly collect dif-
ferent sizes of training datasets ranging from 1,000
(1K) to 10,000 (10K) with a interval of 1,000. Thus
we have ten training sets for Gigaword and THUC-
News respectively. Figure 3 illustrates the Rouge-1
and Micro-F1 scores correspondingly on language
modeling metric and informative correctness on



Cases from the Gigaword dataset

Ground Truth

Normal

Multi-task

Duality

german union urges
members to down
tools friday in iraq protest

german industrial
union urges workers
to stop work

german’s largest
industrial union urges
workers to stop work

german labor union
urges workers to stop
work over iraq war

bourdais beats tracy
in champ car opener

newman - haas wins
toyota grand prix

newman - haas wins
toyota grand prix

bourdais beats tracy
to win toyota grand prix

iran deal to ship
uranium abroad meets
skepticism

iran says it will
continue enrichment

iran agrees to big
power demand

iran agrees to nuclear
enrichment but insists
it will continue enrich uranium

rockets fired at suspected

rockets fired at

rockets fired at

rockets fired at us base

us base in pakistan pakistan base northwest pakistan base in pakistan
israeli army destroys israeli troops operate israeli army tanks israel starts operation in
palestinian homes in rafah in rafah operate in rafah palestinian - controlled rafah

Cases from the THUCNews dataset

Translation: at&t’s performance
is not significantly affected by
Verizon’s launch of iPhone

Translation: at&t added
1.6 million non-mobile
internet-connected devices
in the first quarter

Translation: at&t added
1.6 million non-mobile
internet-connected devices
in the first quarter

Ground Truth Normal Multi-task Duality
at&oll 4 £ verizonffEiphone | |at&t - REHTH 1607 at&t 55— HHI1607 at&et 5 —FE M BE %
EER=Au] ETFALIR M 75 ETFALR RS #| verizonff H! iphone /M

Translation: at&t’s first-
quarter performance were not
affected by Verizon’s launch
of the iPhone

2gbN17320gbfF £ B8

b460el X 26997C
Translation: 2gb memory 320gb
hard disk Lenovo b460el only

gtit3500.6% BkAEb460el

-tth{X & 26997
Translation: gt core t3500
core Lenovo b460el-tth

i3:05t3500:0 BXAEb460el

-tth{X & 26997C
Translation: i3 core t3500
core Lenovo b460el-tth

13500 320gbfi #EHAE

b460el 7 26997T
Translation: t3500 core
320gb hard drive Lenovo

Translation: Shanghai Composite
Index fell to close at 3019.18 points
ChiNext went red against the trend
across the board

Translation: ChiNext went
red against the trend,
Shanghai index fell 1.23%,
decline slightly contracted
in the afternoon

Translation: Shanghai
Composite Index fell as low
as 3012 points in the
afternoon, decline narrowed
slightly

2699 yuan only 2699 yuan only 2699 yuan b460el notebook 2699 yuan
e TR 3019.18 5 BNV IR LTI 2k WP e BREEZE30124 I 27 f5 HR123019.18,5
BIMILAR 4 48 S5BAT 1.23%2F I EX DR LT I BRI W BN 24T

Translation: Shanghai
Composite Index closed

at 3019.18 points, ChiNext
was red across the board

RE W 20105 £ERTE LI
N ¥4535 2355(23%7T

Translation: report says global
wireless device revenue to reach

isupplifilit20114F &BRIELE
BRI Fik271312 7T

Translation: isuppli expects
global wireless equipment
revenue to reach $271.3

isupplifiiit| &BkTELak &l
A ER2011ERHE2713(C3E T

Translation: isuppli expects
global wireless equipment
revenue to reach $271.3

isuppliF 20105 £ERTEL
BRI Rk 2355123 TT
Translation: isuppli says
global wireless equipment
revenue will reach $235.5

Translation: 100 real estate in
50 cities issued consumer coupons
interests of house buyers lost

Translation: SouFun.com
issuer of consumer coupons
is exposed by the media

all over the country

Translation: real estate
industry hyped, issuer of
consumer coupons is the media

EEESEgeilion in EER billion in 2011 billion by 2011 billion in 2010
SO31008E AL & i M B HEM WEERE %72 | BRI EREZZE | 50 4 Bk 142 185
Tt THEER A= EEES N T KATE 2 EESMEER | HTF B 100 £

Translation: 50 cities issued
consumer coupons covering
more than 100 real estate

from all over the country

Table 4: Case study on generated headlines with Gigaword and THUCNews datasets. Gray parts are key information.
The translation is supported by using Google Translate.

Gigaword-3k

THUCNews-3k

Method Train Test Train Test
Normal 89s 160s 75s 109s
Normal+ 90s 149s 72s 101s
Multi-task 91s 158s 72s 112s
Duality 496s  167s  376s 115s

Table 5: Time cost of model training for one epoch and
inferring the testing sets with BART as the backbones.

pre-trained BART. We can see the Duality and Nor-
mal+ methods can significantly improve the perfor-
mance along with the increasing of data size, while
Normal and Multi-task methods can obtain slight
improvement. It is probably evident that leveraging
the key information is beneficial for headline gener-
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ation under less-data situations, and explicit model-
ing the information like Duality fine-tuning, instead
of just putting key tokens ahead source document
(i.e. Normal+), can capture more data knowledge
especially when the dataset scale is small.

5.5 Human Evaluation

Human Grading We perform human evaluation
from the perspectives of readability and informa-
tiveness, which is to assess if the generated head-
lines are whether readable and informative for hu-
mans. We randomly sample 100 samples from the
test sets of Gigaword and THUCNews datasets.
We choose the generated headlines by using pre-



trained BART models. Then the source documents,
reference headlines, and generated headlines are
randomly shuffled and shown to a group of peo-
ple for evaluation. They cannot see the sources of
headlines, i.e., from reference or inference. They
need to judge the two aspects of readability and
informativeness by giving an integer score in the
range of 1-5, with 5 being perfect. Each sample is
assessed by 5 people, and the average scores are
used as the final score. To keep the labeling quality
and further reduce bias, we normalize the scores of
each people by z-score normal distribution.

As shown in Table 3, we find that the Duality
gets best or best -comparable readability scores
among the three evaluated methods. For the in-
formativeness, Duality method can significantly
perform best, which demonstrates its effectiveness
to generate informative headlines. Comparing the
scores of generated headlines and ground-truth ref-
erences, there is still a large gap between model-
generated and human-composed headlines, espe-
cially on the Chinese dataset THUCNews.

Case Study We analyze 50 test samples from
the Gigaword and THUCNews, and compare the
generated headlines with different methods. Ta-
ble 4 shows the results of respective five samples.
The ground-truth or generated key information are
marked by gray highlights. We find that Duality
performs better than other methods in most cases.
For example, in the second and fifth cases of Giga-
word cases in Table 4, Duality can generate more
key information tokens than others, as well as the
examples from THUCNews cases. We also observe
that Dulity could perform better on Chinese data,
perhaps because Chinese headlines have higher ra-
tio of key tokens among the token sequence.

Error Analysis From the above 50 test sam-
ples, we also observe some bad cases generated
by our method. We categorize them to several com-
mon types of error: incomplete key information (8
cases), repeats (5 cases), wrong key information (4
cases), and not coherent language (8 cases). And
they should be investigated in the future work.

5.6 Computational Cost Analysis

During the model training phase, since Duality fine-
tuning method should learn two separate dual mod-
els for each task, i.e. one more than the other base-
lines, it is inevitable that Duality method would
spend more computing time and twice memory
space. During the testing phase, since we only use
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one model to generate headlines, the computing
cost of Duality method is comparable to the oth-
ers. Table 5 shows the computing time cost of each
method with BART as pre-trained models on 3k
training datasets and 500 testing datasets via one
32G-V100 GPU. We can see that although train-
ing one-epoch dual models would spend more time
than other methods, the absolute spent time is still
acceptable and efficient considering the less-data
situations and the performance improvement.

6 Conclusion

In this paper, we introduce a novel task that how to
improve the performance of less-data constrained
headline generation. We highlight to explicitly ex-
ploit the key information, and propose a novel dual-
ity fine-tuning method which firstly integrates dual
learning paradigm and fine-tuning paradigm for
less-data generation. The proposed method should
obey the probabilistic duality constraints, which
are critical to model multiple tasks. Therefore, the
method can model more supervised information,
learn more knowledge, and train more powerful
generative models. Our method can also be gen-
erally applied to both autoregressive and encoder-
decoder generative regimes. We collect various
sizes of small-scale training datasets from two pub-
lic corpora in English and Chinese, and the exten-
sive experimental results prove our method effec-
tively improve the readability and informativeness
of generated headlines with different pre-trained
models.
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Abstract

Mitigating bias in training on biased datasets is
an important open problem. Several techniques
have been proposed, however the typical evalu-
ation regime is very limited, considering very
narrow data conditions. For instance, the effect
of target class imbalance and stereotyping
is under-studied. To address this gap, we
examine the performance of various debiasing
methods across multiple tasks, spanning binary
classification (Twitter sentiment), multi-class
classification (profession prediction), and
regression (valence prediction). Through
extensive experimentation, we find that
data conditions have a strong influence on
relative model performance, and that general
conclusions cannot be drawn about method
efficacy when evaluating only on standard
datasets, as is current practice in fairness
research. Our code is available at: https:
//github.com/HanXudong/Systematic

Evaluation of Predictive Fairness.

1 Introduction and Background

Naively-trained models have been shown to en-
code and amplify biases in the training dataset, and
exhibit performance disparities across author de-
mographics (Hovy and Sggaard, 2015; Li et al.,
2018; Wang et al., 2019). Various methods have
been proposed to mitigate such biases, such as bal-
anced training (Zhao et al., 2018; Han et al., 2022a),
adversarial debiasing (Elazar and Goldberg, 2018;
Han et al., 2021), and null-space projection (Ravfo-
gel et al., 2020, 2022). However, experiments have
largely been conducted on a handful of benchmark
datasets such as Moji sentiment analysis (Blodgett
et al., 2016) and Bios biography classification (De-
Arteaga et al., 2019), under a narrow set of data
conditions.

In this paper, we systematically explore the im-
pact of data conditions on model accuracy and

*This work was done when Aili Shen was at The Univer-
sity of Melbourne.
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fairness, synthesising the following data condi-
tions over real-world datasets: (1) target label
(im)balance; (2) protected attribute (im)balance; (3)
target label—protected attribute (im)balance (also
known as “stereotyping”); and (4) target label arity.
Consistent with the literature on fairness in NLP,
we primarily focus on classification tasks, but also
include preliminary text regression experiments.
In doing so, we develop a novel framework for
comprehensively evaluating the performance of de-
biasing methods under a range of data conditions,
and use it to evaluate eight widely-used debiasing
methods.

Our experimental results show that there is no
single best model. Debiasing methods that account
for both class disparities and demographic dispar-
ities are generally more robust, but are less effec-
tive in multi-class settings. For the regression task,
our experiments indicate that existing debiasing
approaches can substantially improve fairness, and
that simple linear debiasing outperforms more com-
plex methods.

2 Related Work

In this section, we first describe different fairness
criteria, then examine work which has evaluated the
effectiveness of debiasing methods from different
perspectives.

Fairness Criteria Studies in the fairness litera-
ture have proposed several definitions of fairness
capturing different types of discrimination, such
as group fairness (Hardt et al., 2016; Zafar et al.,
2017a; Cho et al., 2020; Zhao et al., 2020), in-
dividual fairness (Sharifi-Malvajerdi et al., 2019;
Yurochkin et al., 2020; Dwork et al., 2012), and
causality-based fairness (Wu et al., 2019; Zhang
and Bareinboim, 2018a,b). In this work, we focus
on group fairness, where a model is considered to
be fair if it performs identically across different
demographic subgroups.

Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the
12th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 68—81
November 20-23, 2022. ©2022 Association for Computational Linguistics



To quantify how predictions vary across differ-
ent demographic subgroups, demographic parity
(Feldman et al., 2015; Zafar et al., 2017b; Cho
et al., 2020), equal opportunity (Hardt et al., 2016;
Madras et al., 2018), and equalized odds (Cho et al.,
2020; Hardt et al., 2016; Madras et al., 2018) are
widely-used notions. We present these in a set-
ting where there are exactly two protected attribute
labels (a “privileged” and “under-privileged” sub-
population), consistent with how they are tradi-
tionally defined. Demographic parity ensures that
models achieve the same positive prediction rate
for the two demographic subgroups, not taking the
ground-truth target label into consideration. Equal
opportunity requires that models achieve the same
true positive rate across the two subgroups for in-
stances with a positive label. Equalized odds goes
one step further in requiring that models achieve
not only the same level of true positive rate but also
the same level of false positive rate across the two
groups.

Aligned with key applications such as loan ap-
provals, most fairness metrics assume binary clas-
sification and focus on one label (e.g., loan ap-
proved.) When turning attention to a multi-class
classification scenario, equal opportunity is a nat-
ural choice, as it can be easily reformulated by
assigning the positive class to each candidate class
under a 1-vs-rest formulation.

Effectiveness of Debiasing Methods Beyond
the standard definitions of fairness, a number of
studies have examined the effectiveness of various
debiasing methods in additional settings (Gonen
and Goldberg, 2019; Meade et al., 2021; Lamba
et al., 2021; Baldini et al., 2022; Chalkidis et al.,
2022). For example, Meade et al. (2021) not
only examine the effectiveness of various debias-
ing methods but also measure the impact of debi-
asing methods on a model’s language modeling
ability and downstream task performance. Webster
et al. (2020) find that existing pretrained models
encode different degrees of gender correlations, de-
spite their performance on target tasks being quite
similar, motivating the need to consider different
metrics when performing model selection. A simi-
lar effect is also observed by Baldini et al. (2022).
Chalkidis et al. (2022) examine the effectiveness
of debiasing methods over a multi-lingual bench-
mark dataset consisting of four subsets of legal
documents, covering five languages and various
sensitive attributes. They find that methods aim-
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ing to improve worse-case performance tend to fail
in more realistic settings, where both target label
and protected attribute distributions vary over time.
Lamba et al. (2021) perform an empirical com-
parison of various debiasing methods in solving
real-world problems in high-stakes settings, all of
which take the form of binary classification tasks.
However, the effectiveness of debiasing methods
under different data distributions (in terms of target
class and protected attribute) has not been system-
atically investigated.

3 Methods

Here we describe the methods employed to manipu-
late the dataset distributions for classification tasks,
and then describe how we adopt debiasing methods
to a regression setting.

3.1 Notation Preliminaries

Experiments are based on a dataset consisting of
n instances D = {(x;,y;,z;)}|-,, where x; is an
input vector, y; € {c}_, represents target class
label, and z; € {g}g:1 is the group label, such as
gender. n., denotes the number of instances in a
subset with target label ¢ and protected label g, i.e.,
Deo = {(®i,y;,2i)y; = ¢,z; = g};—;. The corre-
sponding empirical probability of combination of
y and z values is P(y = ¢,z = g) = "&£,

3.2 Manipulating Label Distributions

To investigate the effectiveness of debiasing meth-
ods under different data distributions, we need
the ability to create synthetic datasets D’ that
follow arbitrary distributions P’(y,z). Intu-
itively, given m instances and the joint probability
P'(y = ¢,z = g), we can create each of the subsets
D, , by sampling mP'(y = ¢,z = g) instances
with replacement from D, ,. However, each P’ has
C x G parameters, rendering a systematic analysis
infeasible. Instead, we propose to control the joint
distribution in an interpretable way, via a single
parameter, and report results as graphs: Given a
particular rate 0 < o < 1, we define the arbitrary
distribution P’(y, z) as the interpolation between
the empirical distribution P(y, z) and a distribution
of interest Q(y, z):

Pl(y7z) = (1 - a)P(y,Z) + aQ(sz)'

Next, we adopt two balanced training objec-
tives (Han et al., 2022a) as our () distributions,
and discuss their relationship to fairness.



Conditional Balance (CB) follows the notion
of equal opportunity and emphasises the balance
of demographics within each class, i.e., Qcp(z =
gly=c¢) = é,Vg € {1,...,G},y € {1,...,C}.
The resulting interpolation is:

Peg(y,z) = P(y)[(1 — a)P(zly) + aQcs(zly)]

where the overall class distribution P(y) does not
change with the value of a.

Joint Balance (JB) goes one step further in tak-
ing both class balance and demographic balance
into account, resulting in Qjz(z = g,y = ¢)
. Vg € {1,...,G},y € {1,...,C}. The inter-
polation

P_{B(Y? Z) = (1 - a)P(Y7 Z) + OCQJB(BH Z)

ensures both class and demographic labels are more
balanced with a larger «.

Inverting the Bias o = 0 and o = 1 result in
the original distribution and a balanced distribu-
tion, respectively. We extend the space of possible
distributions, by also considering scenarios with
a > 1, which result in “anti-stereotypical” distri-
butions where majority classes and demographics
are swapped to minorities.

Although the sum of adjusted probabilities is
guaranteed to be 1, it is possible to generate neg-
ative probabilities or values that are larger than 1
after interpolation. In Appendix B, we describe the
normalisation strategies to get a valid probability
table. In this paper, we consider « € [0, 2] for our
dataset interpolations. Taking the CB interpola-
tion as an example, given P(Female|Nurse) = 0.9
(Appendix A.2), « = 0,1, and 2 result in the ad-
justed P’(Female|Nurse) = 0.9,0.5, and 0.1, re-
spectively. Consistent adjustments will be applied
to other professions in the training dataset.

ey

3.3 Debiasing for Regression Tasks

Regression models predict a real-valued target vari-
able, rather than discrete values as in classification.
Many existing fairness metrics and debiasing meth-
ods assume discrete target (and protected attribute)
labels, and are thus not directly applicable to regres-
sion tasks, such as the equal opportunity criteria
which measures disparities across demographics
within each class (Roh et al., 2021; Shen et al.,
2022).

As a first step towards applying debiasing meth-
ods to text regression tasks, we map the continu-
ous target variables y into discrete values by ap-
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proximating the real-valued outputs with quantile-
based proxy labels y. Specifically, let y denote the
proxy label, such that the dataset for regression is
D = {(wi,y;,2i,y;) }1-1, where y € R is the con-
tinuous target label. Given a particular number of
quantiles C, y is converted into equal-sized buckets
based on sample quantiles, resulting in categori-
cal proxy labels y € {c}S_,. Two typical choices
for C are 10 and 4, corresponding to deciles and
quartiles, respectively.

In model training, we calculate losses based on
real labels y, and identify protected groups based
on y. Appendix E presents further details for adopt-
ing debiasing methods to regression tasks.

4 Experiments

In this section we describe general settings across
all experiments. In Appendix A, we provide full
experimental details and dataset statistics.

4.1 Debiasing Methods

Our focus in this work is to examine the effec-
tiveness of various debiasing methods on different
dataset compositions and their applicability to re-
gression tasks. As such, we take a representative
sample of debiasing methods, populating the spec-
trum of pre-processing, in-processing, and post-
processing approaches.

Vanilla: The model is trained naively with cross-
entropy loss, without taking bias mitigation into
consideration (Vanilla).

Pre-processing: perform downsampling or
reweighting of the dataset before model training.

1. Downsampling (DS: Han et al. (2022a)): Bias
mitigation is achieved by downsampling the
dataset, by balancing it w.r.t. the protected
attribute within each target class while pre-
serving the original target class ratio.
Reweighting (RW: Han et al. (2022a)): Bias
mitigation is achieved by assigning differ-
ent weights to instances in the dataset, by
reweighting based on the (inverse) of the joint
distribution of the protected attribute and tar-
get classes.

In-processing: perform adversarial training or
directly optimise w.r.¢. fairness criteria by either dy-
namically adjusting the sampling rate or penalising
groups of instances.
1. Adversarial training (ADV: Elazar and Gold-
berg (2018); Li et al. (2018)) jointly trains



a discriminator to predict the protected at-
tribute, leading to representations agnostic to
protected attributes.

Diverse adversarial training (DADV: Han
et al. (2021)) trains multiple discriminators
as above, with a pairwise orthogonality con-
straint over discriminators to encourage learn-
ing of different representational aspects.

Fair batch selection (FairBatch: Roh et al.
(2021)) dynamically adjusts the instance re-
sampling probability during training w.r.t. a
given target class and protected attribute value,
based on the equal opportunity criterion.
Equal opportunity (EO: Shen et al. (2022))
directly optimises for equal opportunity by
penalising loss differences across protected
groups via a regularisation term. We adopt
two versions of optimising equal opportu-
nity: enforcing equal opportunity by aligning
group-wise losses within each class (EOcr,4),
and enforcing equal opportunity globally by
aligning class- and group wise loss with the
overall model performance (EOqyp).

Post-processing: manipulate the learned repre-
sentations to achieve fairness.

1. Tterative null-space projection (INLP: Ravfo-
gel et al. (2020)) first learns dense represen-
tations with a cross-entropy loss, and then
iteratively projects the representations to the
null-space of discriminators for the protected
attributes.

4.2 Evaluation Metrics

To evaluate model performance, we adopt Accu-
racy in our classification experiments, and Pearson
correlation for the regression task.

To measure bias, following previous studies
(De-Arteaga et al., 2019; Ravfogel et al., 2020;
Shen et al., 2022), we adopt root mean square
of true positive rate gap over all classes (GAP),

which is defined as GAP = \/ L3, (GAPIPRY,

Here, GAPJ'® = |TPR,,, — TPRy /|, Vy, and
TPRy,, = P{y = yly, z}, indicating the percent-
age of correct predictions among instances with
the target class y and protected attribute label z.
GAP;FPR measures the absolute performance dif-
ference between demographic subgroups condi-
tioned on target label y, and a value of 0 indicates
that the model makes predictions independent of
the protected attribute. To be consistent with our
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performance evaluation metrics (the higher the bet-
ter), we define Fairness as 1—GAP, where a value
of 1 indicates there is no predictive bias.

4.3 Experimental Setup

For each dataset, we vary training set distributions
while keeping the test set fixed. Document rep-
resentations are first obtained from the given pre-
trained model without finetuning. Then document
representations are fed into two feed-forward lay-
ers with a hidden size of 300, each followed by the
tanh activation function. We use Adam (Kingma
and Ba, 2014) to optimise the model for at most
100 epochs with early stopping, where training is
stopped if no improvement is observed over the dev
set for 5 epochs. All models are trained and eval-
uated on the same dataset splits, and models are
selected based on their performance on the devel-
opment set, as described in Section 4.4. All experi-
ments are conducted with the fairlib library (Han
et al., 2022c¢).

4.4 Model Selection

Simultaneously optimising models for performance
and fairness is a multi-objective problem, making
model selection a non-trivial task. In this work,
following Han et al. (2022a), we perform model
selection based on Distance to the Optimal point
(DTO), where the optimal point represents the high-
est theoretical performance and fairness level any
model can achieve. DTO supports the comparison
of models by aggregating performance and fairness
into a single figure of merit, where lower is better.

5 Binary Classification

The task is to predict the binary sentiment (HAPPY
and SAD) of a given English tweet, as determined
by the (redacted) emoji used in the tweet. Each
tweet is also associated with a binary protected
attribute, reflecting the ethnicity of the tweet author,
as captured in the register of the English: Standard
American English (SAE) and African American
English (AAE).

We use the widely-used Twitter emoji dataset
(Blodgett et al., 2016; Ravfogel et al., 2020;
Shen et al.,, 2022), denoted as Moji. The
training dataset is balanced in terms of both
sentiment and ethnicity in general, but skewed
in terms of sentiment—ethnicity combinations,
P(AAE|HAPPY) = P(SAE|sAD) = 0.8.! Due

'"The dev and test set are balanced in terms of senti-
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Figure 1: Results for Moji when varying

P'(AAE|HAPPY) with P'(HAPPY) = P/(SAD).

to the fact the the original dataset has been bal-
anced with respect to targets and demographics,
the CB interpolation is exactly the same as the JB
interpolation (Section 3.2).

For ease of comparison with previous work (Sub-
ramanian et al., 2021b), we refer to the CB inter-
polation as varying “stereotyping” (P’(z|y)) with
balanced target class distribution. To explore the
effects of target class distribution and stereotyp-
ing, we further experiment in various controlled
settings: (1) varying class ratio (P’(y)) without
stereotyping (P’(z|y) = 0.5); (2) varying stereo-
typing with imbalanced target class distribution;
and (3) varying class ratio with stereotyping. Fi-
nally, we summarise our findings with respect to the
effectiveness and robustness of various debiasing
methods over different class-stereotyping composi-
tions.

5.1 Varying Stereotyping with Balanced Class
Distribution (CB Interpolation)

Here, both sentiment and ethnicity are balanced,
but skewed in terms of P'(AAFE|HAPPY) and
P'(SAE|sAD), ranging from 0.2 to 0.8. For exam-
ple, when the ratio of AAE is 0.2, the training data
composition is 10% HAPPY—AAE, 40% HAPPY—
SAE, 40% SAD-AAE, and 10% SAD-SAE.
Figure 1 shows model performance in terms of

ment—ethnicity combination.
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Figure 2: Results for Moji when varying P’(HAPPY)
with P'(AAFE|HAPPY) = P/(SAE|SAD) = 0.5.

Accuracy, Fairness, and DTO. All models except
for Vanilla and INLP perform similarly over vary-
ing degrees of stereotyping across metrics, indicat-
ing that most models are robust to different degrees
of stereotyping using the proposed model selec-
tion approach. Turning to Vanilla, we find that
Accuracy, Fairness, and DTO all vary greatly as
we increase the degree of stereotyping, indicating
that stereotyping affects naively-trained models in
terms of both performance and fairness.

5.2 Varying Class Ratio with no Stereotyping

In this setting, P'(AAE|y) = P'(SAEly),Vy,
and we vary P(y HAPPY) from 0.2 to 0.8.
For example, when the ratio of HAPPY is 0.2,
the training dataset contains 10% HAPPY—-AAE,
10% HAPPY-SAE, 40% SAD—AAE, and 40% SAD—
SAE.

From Figure 2, we can see that most models are
sensitive to the target class distribution, especially
in terms of Accuracy and DTO. RW and EOqy5
are exceptions, and are clearly superior methods
when the dataset is free of stereotyping, no matter
the target class distribution. The Fairness achieved
by all models in this setting does not vary greatly
(ranging from approximately 0.82 to 0.90), indicat-
ing that target class distributions with no stereotyp-
ing have limited effect in biasing naively-trained
models.
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Figure 3: Results of varying P'(AAFE|HAPPY) with
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5.3 Varying Stereotyping with Imbalanced
Class Distributions

In this setting, the target class distribution is im-
balanced, in that P'(HAPPY) = 0.9 in the train-
ing dataset. P'(AAFE|HAPPY) and P'(SAE|SAD)
varies from 0.1 to 0.9. For example, when the ratio
of AAE is 0.2, the training dataset contains 18%
HAPPY-AAE, 72% HAPPY-SAE, 8% SAD-AAE,
and 2% SAD-SAE, respectively.

From Figure 3, we can see that RW and EO¢15
consistently achieve the best performance in terms
of Accuracy and DTO. Fairness for DS, RW, and
EOqLp is robust to varying degrees of AAE stereo-
typing, while the remaining methods are sensitive
to stereotyping.

5.4 Varying Class Ratio with Stereotyping

In this setting, the ethnicity distribution is
imbalanced, in that P’'(AAFE|HAPPY)
P'(SAE|sAD) = 90%. P’'(HAPPY) varies from
0.1 to 0.9. For example, when the ratio of
HAPPY is 0.2, the training dataset consists of 18%
HAPPY-AAE, 2% HAPPY-SAE, 8% SAD-AAE,
and 72% SAD-SAE, respectively.

From Figure 4, we can see that both RW and
EO¢Lp consistently achieve the best performance
in terms of Accuracy and DTO, while the remain-
ing methods are quite sensitive to the target class
distribution in terms of Accuracy and DTO, and
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Figure 4: Results for Moji when varying P’(HAPPY)
with P'(AAE|HAPPY) = P'(SAE|sAD) = 0.9.

all models except for Vanilla and INLP achieve
relatively consistent Fairness.

5.5 Summary

In this section, we have performed various experi-
ments on the Twitter sentiment analysis task with
varying dataset composition. Looking at results
from Sections 5.1 and 5.3, we can see that all mod-
els except for Vanilla and INLP are quite consistent
with respect to Accuracy, Fairness, and DTO, with
RW and EOgp consistently achieving competi-
tive performance in terms of Accuracy, Fairness,
and DTO. Comparing results from Sections 5.2 and
5.4, the performance of all models except for RW
and EOqp vary with respect to the target class dis-
tribution in terms of Accuracy and DTO, while all
models perform consistently in terms of Fairness.

6 Multi-class Classification

We next turn to our second dataset, which is a multi-
class classification task with natural imbalance in
both target labels and protected groups.

The dataset consists of online biographies, la-
beled with one of 28 occupations (target labels)
and binary author gender (protected label), and the
task is to predict the occupation from the biography
text (Bios, De-Arteaga et al. (2019)).
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Figure 5: Results for Bios when varying the interpola-
tion ratio under JB. Target classes and demographics
are jointly balanced at o« = 1.

6.1 Results

Figures 5 and 6 present results for JB and CB inter-
polation over Bios. As introduced in Section 3.2,
JB jointly adjusts the extent of stereotyping and tar-
get class imbalance, and CB focuses on the stereo-

typing.

JB Interpolation: As the value of « increases
from O to 1, the training distribution becomes more
balanced for both class and protected attributes,
resulting in fairness improvements. As the perfor-
mance is measured as the overall accuracy, which
is essentially a micro-average and oblivious to class
balance, the overall performance does not improve
with a more balanced class distribution.

With the o value further increasing from 1 to
2, both class and protected attribute distributions
are biased in the opposite direction, i.e., majority
groups become minority groups. As a result, the
fairness for Vanilla decreases substantially. Re-
call that the fest dataset distribution is unchanged
throughout the experiments (and has an identical
distribution to the @ = 0 setting), leading to large
drops in performance of models trained on anti-
biased class distributions.

Consistent with Sections 5.3 and 5.4, EOq1
outperforms other debiasing methods when the
class and protected attributes are both imbalanced,
as it explicitly mitigates both biases simultane-

—&— Vanilla @ RW FairBatch EOqis
DS -#- INLP  -4- DAdv  -#- EOca

0.80

e

~

©
f

Performance
ad
g
o
|

0.74 4

0.925 A

0.900 1

Fairness
o
1)
<
w
|

0.850

0.825 1

0.28 -

0.26 -
o

DT

0.24 A

0.22

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
a

Figure 6: Results for Bios when varying the interpola-
tion ratio under CB. Stereotyping ratios are balanced for
the the o = 0 setting.

ously.

We notice that FairBatch relies on a large num-
ber of instances per class/group combination for
effective resampling, and as a result is highly vul-
nerable to input data bias, which can be seen in
the fact that there are no results for FairBatch in
imbalanced settings (o« = 1.75 and 2).2

CB Interpolation: When focusing on stereotyp-
ing, different methods achieve similar performance
except for DS, due to the simple sampling strategy
substantially reducing the training dataset size.

In terms of Fairness, debasing approaches except
for INLP are robust to different stereotyping levels.
EOq1p achieves worse performance than EO¢p A
because it additionally considers class imbalance.
As ADV and DADV mitigate biases without taking
the class into account, their debiasing results are
not affected by the number of classes and perform
best for this data set.

7 Regression

We finally turn to the regression setting. The task is
to predict the valence (sentiment) of a given Face-
book post, where each post is assigned a valence
score by two trained annotators in the range 1-9
and the task is to predict the average of the two
scores (Preotiuc-Pietro et al., 2016). Additionally,

2See Section 8 for further discussion.



Models Pearson 1 Fairness T DTO |
Vanilla 63.38+£2.48  85.18+0.40 39.50
RW 63.69+£1.50 84.73+£0.91 39.39
INLP 70.46+0.00 88.54+0.00 31.68
ADV 69.41+£0.39 85.81+0.33 33.72
DADV 69.02+0.85  85.66+0.63 34.14
FairBatch 68.254+1.47 85.18+0.62 35.04
EOcLa 65.88+£0.89  85.05+0.40 37.25
EOcLB 65.37+£1.29  85.03+0.39 37.73

Table 1: Experimental results on the Valence test set.

each post is associated with a binary authorship
gender label.® In our experiments, results are re-
ported based on 5-fold cross-validation.

7.1 Results

Instead of measuring fairness with GAP based on
TPR scores for classification tasks, we focus on the
Pearson correlation disparities across demographic
groups. From Table 1 we can see that all models
improve over Vanilla. Overall, INLP is the best de-
biasing method, which we hypothesise is because
its linear structure is more appropriate for the small
data set, while the deeper methods appear to overfit.

8 General Discussion and
Recommendations

So far, we have shown that there is no single best
model across different data conditions, and data
conditions should be a key consideration in fairness
evaluation. In this section, we divide debiasing
methods into three families, and summarize their
robustness to skewed training data distributions.

Balancing demographics in the training dataset
DS and RW are representatives of this family, and
are simple and effective. In addition, such methods
are flexible as the training dataset is pre-processed
before model training, and any candidate models on
the original dataset can be applied to the debiased
dataset.

However, DS methods are sensitive to group
sizes. Considering an extreme setting where the
smallest subset in the training dataset has 0 in-
stances, i.e., Dy = (), DS will result in an empty
training set. For instance, the group size distribu-
tion is highly skewed for the regression task, and
DS resulted in 7 = 0 Pearson correlation (Table 4

This dataset is also annotated with arousal scores but
corresponding results are less biased, and as a result, we focus
on bias mitigation for valence predictions. Results for arousal
predictions are included in Appendix F.
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in Appendix). Similar problems are associated with
up-sampling methods, which can increase the train-
ing set size dramatically.

In addition, when considering multiple protected
attributes, such as intersectional groups and ger-
rymandering groups (Subramanian et al., 2021a),
the number of groups increases exponentially with
the number of protected attributes to be considered.
As a result, the joint distributions can be highly
skewed, and these two families of methods (re-
sampling and reweighting) may not be appropriate
choices.

Lastly, skewed protected label distributions in
the training dataset is not the only source of
bias (Wang et al., 2019). For example, as shown in
Figure 1 the Vanilla model trained over balanced
versions (P'(AAE|HAPPY) = 0.5) of the Moji
dataset is less fair than the Vanilla model trained
over a biased dataset where P'(AAE|HAPPY) =
0.4.

Learning fair hidden representations ADV,
DADV, and INLP represent a family of methods
that learn fair representations through unlearning
discriminators. Since the training and unlearning of
discriminators do not take into account target class
information, these methods are robust to the num-
ber of classes and naturally generalize to regression
tasks.

However, these methods are not capable of mod-
elling conditional independence for the equal op-
portunity criterion without taking target class into
consideration, resulting in worse DTO than other
debiasing methods over Moji (Section 5). To
achieve equal opportunity fairness, different dis-
criminators can be trained for each target class to
capture conditional independence (Ravfogel et al.,
2020; Han et al., 2022b). But training target-
specific discriminators assumes target labels to be
discrete, which is sensitive to the number of classes.

Another limitation of this family of methods
is associated with the discriminator learning: the
discriminator can also suffer from long-tail learn-
ing problems, i.e. skewed demographics, and lead
to biased estimations of protected information.
The unlearning of biased discriminators limits the
method’s contribution to bias mitigation, which can
be seen from Figures 3 and 4 in Section 5.

Minimising loss disparities across demographic
groups FairBatch, EO¢y s, and EOqy g provide
a practical approximation of expected fairness in



using empirical risk-based objectives, and directly
optimize for empirical risk parity during training.

Similar to balanced training approaches, resam-
pling and reweighting are also used in mitigating
loss disparities, where FairBatch adjusts resam-
pling probabilities for batch selection, and EO¢p A
and EOg g assign instances different weights de-
pending on the demographic group they belong
to. However, minimising loss disparities can be
more flexible than balanced training — for exam-
ple, instance weights are dynamically adjusted by
EOc¢p,a and EO¢y g, and can take on negative val-
ues to aggressively reduce a bias towards favouring
of over-represented groups.

Conversely, drawbacks associated with resam-
pling and reweighting also apply to this family. For
example, FairBatch indeed broke down (an error
raised) when D, = () for the minority group in
a particular minibatch for a Bios dataset variant
where the smallest group size is close to 0 (Sec-
tion 6).

Minimising loss difference is also less efficient
in multi-class settings, as it adjusts weights based
on class information during training, making opti-
misation harder.

9 Conclusion

In this work, we presented a novel framework for
investigating different classification dataset distri-
butions with a single parameter, and used it to
systematically examine the effectiveness of debi-
asing methods in binary classification and multi-
classification settings based on real-world datasets.
We also presented preliminary analysis of debi-
asing methods in a regression setting, including
proposing a method for adapting existing debiasing
methods to regression tasks. Based on extensive
experimentation over three datasets, we found that
there was no single best model. Debiasing meth-
ods that account for both class and demographic
disparities are generally more robust, but are less
efficient at achieving fairness in multi-class set-
tings. For the regression task, we demonstrated
that existing debiasing approaches can substantially
improve fairness, and that the simple linear debias-
ing method outperforms more complex techniques.
In summary, there is no universal best debiasing
method across all tasks, and data conditions have
a large impact on different models. As such, we
propose that future research adopts our evaluation
framework as a means of more comprehensively
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evaluating debiasing methods.
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Limitations

This paper focuses on fairness evaluation w.rt.
equal opportunity fairness. While a more compre-
hensive study should include a diversity of fairness
objectives, we note that previous work (Han et al.,
2021) has shown that evaluation results w.rz. differ-
ent fairness criteria are highly correlated.

Consistent with previous work, we restrict our
experiments to categorical protected attributes (bi-
nary gender, ethnicity) acknowledging that other
relevant attributes (such as age) are more naturally
modeled as a continuous variable. Since the aim
of this paper is a systematic evaluation of exist-
ing debiasing methods, which were all developed
specifically for categorical protected attributes, the
extension to continuous variables is beyond the
scope of this paper. A simple adaptation to contin-
uous demographic labels like age is discretization,
which we leave as a promising direction for future
work.

For similar reasons, we use established data sets
as provided by the original authors and used in rel-
evant prior work, and acknowledge the simplified
treatment of gender as a binary variable which re-
flects neither the diversity nor the fluidity of the
underlying concept (Dev et al., 2021).

Ethical Consideration

In this work, we focus on examining the effective-
ness of various debiasing methods on both classi-
fication and regression tasks, where the protected
attribute is either ethnicity or gender. However,
their effectiveness in reducing bias towards other
protected attributes is not necessarily guaranteed.
Furthermore, the protected attributes examined in
our work are limited to binary labels, whose effec-
tiveness in debiasing /V-ary protected attributes are
left to future work.
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Profession Total ~ Male Female Ratio
dietitian 2567 183 2384 0.929
nurse 12316 1127 11189  0.908
paralegal 1146 173 973 0.849
yoga_teacher 1076 166 910 0.846
model 4867 840 4027 0.827
interior_designer 949 182 767  0.808
psychologist 11945 4530 7415 0.621
teacher 10531 4188 6343  0.602
journalist 12960 6545 6415 0.495
physician 26648 13492 13156  0.494
poet 4558 2323 2235 0.490
painter 5025 2727 2298  0.457
personal_trainer 928 505 423 0.456
professor 76748 42130 34618 0.451
attorney 21169 13064 8105 0.383
accountant 3660 2317 1343 0.367
photographer 15773 10141 5632 0.357
dentist 9479 6133 3346 0.353
filmmaker 4545 3048 1497  0.329
chiropractor 1725 1271 454 0.263
pastor 1638 1245 393 0.240
architect 6568 5014 1554  0.237
comedian 1824 1439 385  0.211
composer 3637 3042 595 0.164
software_engineer 4492 3783 709  0.158
surgeon 8829 7521 1308  0.148
dj 964 828 136 0.141
rapper 911 823 88 0.097

Table 2: Statistics of the Bios training dataset. Ratio
stands for the percentage of female individuals for each
profession

A Datasets and Implementation Details

Al Moji

Following previous studies (Ravfogel et al., 2020;
Han et al., 2021), the original training dataset is bal-
anced with respect to both sentiment and ethnicity
but skewed in terms of sentiment—ethnicity com-
binations (40% HAPPY-AAE, 10% HAPPY-SAE,
10% sAD-AAE, and 40% SAD-SAE, respectively).
Note that the dev and test set are balanced in terms
of sentiment—ethnicity combinations. The dataset
contains 100K/8K/8K train/dev/test instances.

When varying training set distributions, we keep
the 8k test instances unchanged.

We use DeepMoji (Felbo et al., 2017) to ob-
tain Twitter representations, where DeepMoji is a
model pretrained over 1.2 billion English tweets
and DeepMoji is fixed during model training. For
all models, the learning rate is 3e-3, and the batch
size is 1,024. Hyperparameter tuning for each
model is described in Appendix C.1.

A.2 Bios

‘We denote the data set as Bios, and use the same
split as prior work (Ravfogel et al., 2020; Shen
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et al., 2022) of 257k train, 40k dev and 99k test
instances. Table 2 shows the number of instances
of each profession, the number of male and female
individuals of each profession, and the ratio of
female individuals for each profession in the Bios
training dataset. As the target label distribution is
highly skewed, we adjust the distribution over Bios
dataset with 30K training instances, such that each
profession contains about 1K instances, which is
similar to the size of the smallest target group.

We use the “CLS” token representation of the
pretrained uncased BERT-base (Devlin et al., 2019)
to obtain text representations, where BERT-base
is fixed during model training, aligning with pre-
vious studies (Ravfogel et al., 2020; Shen et al.,
2022). Hyperparameter settings for all models are
available in Appendix D.1.

A.3 Valence

The dataset contains 2,883 posts, of which male
and female authors account for 51% and 49% re-
spectively.

We use the “CLS” token representation of the
pretrained uncased BERT-base (Devlin et al., 2019)
to obtain post representations, where BERT-base
is fixed during model training. Hyperparameter
settings are described in Appendix F.1.

For this task, we use Pearson, mean absolute er-
ror (MAE), and root mean square error (RMSE) to
evaluate model performance; and we use the Pear-
son difference (Pearson-GAP), MAE difference
(MAE-GAP), and RMSE difference (RMSE-GAP)
between male and female groups to evaluate model
bias.

B Normalization For Probability Table

To make sure the resulting probability table P’ is
valid, we normalize the table by replacing neg-
ative values with 0, and normalize the sum to
1. Specifically, let S = > >, P'(y,z) denote
the sum of probabilities. The normalization is
P'(y,z) = P,(y’z),Vy, z.

C Twitter Sentiment Analysis

S

C.1 Hyperparameters

For all models except for Vanilla, DS, and RW,
where no extra hyperparameters are introduced, we
tune the most sensitive hyperparameters through
grid search. For INLP, following Ravfogel et al.
(2020), we use 300 linear SVM classifiers. For
ADV, we tune \,qy from le-3 to 1e3 with 60 trials.



Models Accuracy T Fairness T DTO |
Vanilla 72.4940.18 60.79+1.12  47.90
DS 75.924+0.32 86.88+1.08 27.43
RW 75.96+0.28 86.1840.97 27.73
INLP 73.1840.00 82.044+0.00  32.28
ADV 75.12+0.83 90.40+1.75 26.67
DADV 75.654+0.12  89.944+0.50 26.34
FairBatch 74.96+0.41 90.49+0.49 26.79
EOcra 75.09+£0.25 90.70+0.87 26.59
EO¢cLB 75.60+0.17 89.83+0.60 26.43

Table 3: Experimental results on the Moji test set (av-
eraged over 5 runs); Bold = Best Performance; = the
higher the better; |= the lower the better.

For DADV, we further tune Agiverse Within the range
of le-1 and le5 with 60 trials. For FairBatch,
we tune « from le-3 to lel with 40 trials. For
EOcpa and EOqy B, we tune A within the range
of 1e-3 and lel with 40 trials, respectively. All
hyperparameters are finetuned on the Moji dev set.

C.2 Results

Table 3 shows the results achieved by various meth-
ods. All debiasing methods can reduce bias sig-
nificantly while improving model performance in
terms of Accuracy.

D Profession Classification

D.1 Hyperparameters

For all models, the learning rate is 3e-3, and the
batch size is 1,024. For all models we tune the most
sensitive hyperparameters through grid search ex-
cept for Vanilla, DS, and RW as there is no extra
hyperparameters introduced for these three meth-
ods. For INLP, following Ravfogel et al. (2020),
we use 300 linear SVM classifiers. For ADV, we
tune Mgy from le-3 to le3 with 60 trials. For
DADV, we further tune Agiverse Within the range
of le-1 and le5 with 60 trials. For FairBatch, we
tune « from le-3 to lel with 40 trials. For EO¢g,a
and EO¢rp, we tune \ within the range of le-3
and lel with 40 trials, respectively. All hyperpa-
rameters are finetuned on the Bios dev set.

E Adaptation For Regression Tasks
E.1 EOcyA (Shen et al., 2022)

The debiasing objective for classification tasks is to
minimise cross-entropy loss disparities across dif-
ferent protected groups within each class, L3 =
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)\chzl 25:1 |Lef — LS|, where L£f and Lle
are the cross-entropy losses for subset of in-
stances {(,y;,2)ly; = c.zi = g}, and
{(®i,y;,2i)ly; = c}iy, respectively.

Clearly, the identification of subsets requires cat-
egorical labels, which is based on proxy labels for
regression tasks. By replace the cross-entropy loss
with mean squared error loss gﬁmse), the objec-

. . C G ¢,

tive for EOCLA~ is Loa = AD oy Zg:l |Crte —
L8 .| where L. and L, ., are the cross-entropy
losses for subset of instances {(x;,y;, i, y;)|¥; =
C,z; = ghity and {(@i,y;, 25, ;)[y; = C}iy, re-
spectively.

F Arousal Prediction of Facebook Posts

F.1 Hyperparameters

For all models, the learning rate is 7e-4, the batch
size is 64, the number of hidden layers is 1, and
hidden layer size is 200. Each model is trained
with mean squared loss with a weight decay of
le-3. For all models except for Vanilla, we need
to bin instances, as the dataset is small and the
range of valence scores is large; otherwise, these
methods cannot be applied in their original form.
In this work, instances are grouped into 4 bins.
For all models we tune the most sensitive hyper-
parameters through grid search except for Vanilla,
DS, and RW as there are no extra hyperparameters
introduced for these three methods. For INLP, fol-
lowing Ravfogel et al. (2020), we use 200 linear
regressors. For ADV, we tune \,4y from le-3 to 1e3
with 60 trials. For DADV, we further tune Agjverse
within the range of le-1 to 1e5 with 60 trials. For
FairBatch, we tune « from le-3 to lel with 40
trials. For EO¢r,a and EOgr g, we tune A\ within
the range of 1e-3 to lel with 40 trials, respectively.
All hyperparameters are finetuned on the dev set.

F.2 Results

Table 4 presents the results on the arousal dataset.



Models Pearson t Pearson-GAP|  MAE | MAE-GAP| RMSE|] RMSE-GAP |
Vanilla 0.631+0.04 0.06+-0.05 0.7840.03  0.08+0.01 1.0040.04 0.0940.02

DS 0.00+0.04 0.08+0.04 0.97+£0.05  0.06£0.03  1.23+0.05 0.05+0.03
RwW 0.62£0.03 0.06£0.05 0.78+0.02  0.08+£0.02  0.99+0.03 0.09+0.04
INLP 0.661+0.04 0.0940.04 0.71+£0.04  0.03£0.02  0.92+0.04 0.04+-0.02
ADV 0.67+0.03 0.06+0.06 0.72£0.03  0.06+0.04  0.93+0.04 0.09+0.06

DADV 0.67+0.03 0.07+0.06 0.72+0.02  0.06£0.02  0.92+0.02 0.07+0.05
FairBatch  0.67+0.03 0.06£0.06 0.71+£0.01  0.06£0.02  0.9240.02 0.07+0.04
EOcra 0.65£0.03 0.07£0.05 0.75£0.03  0.07£0.01  0.96+0.03 0.08+0.02
EOcLs 0.64£0.03 0.06£0.06 0.76£0.03  0.08+0.02  0.97+0.04 0.10+0.04

Table 4: Experimental results on the Facebook post dataset with respect to arousal; the best performance is indicated
in bold.

81



Graph-augmented Learning to Rank for Querying Large-scale
Knowledge Graph

Hanning Gao'; Lingfei Wu?; Po Hu®] Zhihua Wei'] Fangli Xu* and Bo Long®
"Tongji University, 2Pinterest, *Central China Normal University
4Squirrel Al Learning, >JD.COM

gaohn@tongji.edu.cn,

phu@mail.ccnu.edu.cn,

lilidyixue.us,

Abstract

Knowledge graph question answering (KGQA)
based on information retrieval aims to answer
a question by retrieving answer from a large-
scale knowledge graph. Most existing methods
first roughly retrieve the knowledge subgraphs
(KSG) that may contain candidate answer, and
then search for the exact answer in the KSG.
However, the KSG may contain thousands of
candidate nodes since the knowledge graph in-
volved in querying is often of large scale, thus
decreasing the performance of answer selection.
To tackle this problem, we first propose to par-
tition the retrieved KSG to several smaller sub-
KSGs via a new subgraph partition algorithm
and then present a graph-augmented learning to
rank model to select the top-ranked sub-KSGs
from them. Our proposed model combines
a novel subgraph matching networks to cap-
ture global interactions in both question and
subgraphs, and an Enhanced Bilateral Multi-
Perspective Matching model is proposed to cap-
ture local interactions. Finally, we apply an
answer selection model on the full KSG and
the top-ranked sub-KSGs respectively to vali-
date the effectiveness of our proposed graph-
augmented learning to rank method. The exper-
imental results on multiple benchmark datasets
have demonstrated the effectiveness of our ap-
proach.

1 Introduction

With the rise of large-scale knowledge graphs (KG)
such as DBpedia (Auer et al., 2007) and Freebase
(Bollacker et al., 2008), question answering over
knowledge graph has attracted massive attention re-
cently, which aims to leverage the factual informa-
tion in a KG to answer natural language question.
Depending on the complexity of question, KGQA
can be divided into two forms: simple and com-
plex. Simple KGQA often requires only one hop of
factual knowledge, while complex KGQA requires

*These authors contributed equally to this work.
fCorresponding authors.

lwu@email.wm.edu

zhihua_wei@tongji.edu.cn
bo.long@jd.com
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reasoning over a multi-hop knowledge subgraph
(KSG) and selecting the correct answer among sev-
eral candidate answers. In this paper, we focus
on the latter, i.e., complex KGQA, which is more
challenging.

Currently, most KGQA approaches resort to se-
mantic parsing (Berant et al., 2013; Yih et al., 2015;
Dong and Lapata, 2018) or retrieve-then-extract
methods (Yao and Van Durme, 2014; Bordes et al.,
2014). Semantic parsing methods usually translate
a natural language question to a KG query and then
use it to query the KG directly. However, semantic
parsing methods often rely on complex and spe-
cialised hand-crafted rules or schemes. In contrast,
retrieve-then-extract methods are easier to under-
stand and more interpretable. They first retrieve the
KG coarsely to obtain a KSG containing answer
candidates. Then, the target answer is extracted
from the retrieved KSG. This paper follows the
research idea of the retrieve-then-extract methods.

Most previous works retrieve a knowledge sub-
graph from the original KG by choosing topic enti-
ties (e.g., KG entities mentioned in the given ques-
tion) and their few-hop neighbors. However, since
the KG is often of large volume and the initial re-
trieval process on it is coarse-grained and heuristic,
the KSG retrieved by this method may still contain
thousands of nodes and most of them are irrelevant
to the given question, especially when the number
of topic entities or hops significantly increases. The
larger the KSG is, the more difficult it is to find
the correct answer in it. To reduce the size of the
KSG, the similarity between the question and the
relations around the topic entities is computed (Sun
et al., 2018) and then the personalized PageRank al-
gorithm is used to select the most relevant relations.
This method only considers the semantic similar-
ity between the question and the relations while
ignoring the structural information around each en-
tity node. Knowledge embeddings on the whole
retrieved KSG are directly computed (Saxena et al.,

Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the
12th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 82-92
November 20-23, 2022. ©2022 Association for Computational Linguistics
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Figure 1: An Example of Knowledge Subgraph Partition Algorithm. The areas surrounded by two dashed lines

belong to two different sub-KSGs.

2020), which is computationally intensive.

To address the above-mentioned problems, we
propose a new KSG partition algorithm and a re-
fined learning to rank model, which focus on how
to substantially reduce the size of the retrieved
knowledge subgraph and ensure a high answer re-
call rate. The KSG partition algorithm is based on
single source shortest path, which can partition a
large-scale question-specific KSG to several mod-
erately sized sub-KSGs. Then, the learning to rank
model selects the most relevant sub-KSGs to the
given question. In this way, traditional text match-
ing models can be used to compute the similarity
score between a given question and a sub-KSG.

However, these sequential based models often ig-
nore the important structure information within the
question and the sub-KSG. Therefore, we propose a
novel graph-augmented learning to rank model (G-
G-E) to select top-ranked sub-KSGs, which com-
bines a novel subgraph matching networks based
on Graph Neural Networks to capture global in-
teractions between question and subgraphs, and
an enhanced Bilateral Multi-Perspective Match-
ing (BiMPM) model (Wang et al., 2017) to cap-
ture local interactions within parts of question and
subgraphs. A series of graph neural networks are
suitable for the subgraph matching networks (Wu
et al., 2022), and Gated Graph Sequence Neural
Networks (GGNNs) (Li et al., 2016) is selected
after comprehensive comparison. Finally, we apply
one of the state-of-the-art (SOTA) KGQA answer
selection model to the original complete KSG and
the merged top-ranked sub-KSGs separately, and
further demonstrate that reducing the size of the
answer candidate subgraphs clearly helps to se-
lect correct answer effectively and efficiently. To
evaluate our approach, we conduct extensive ex-
periments on two benchmark datasets. The exper-
imental results on the datasets have shown that
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our proposed model can significantly improve sub-
graph ranking performance compared to existing
SOTA methods.

In summary, the contributions of this paper can
be summarized as follows:

* We propose a new knowledge subgraph parti-
tion algorithm based on single source shortest
path.

* We propose a novel graph-augmented learning
to rank model, which combines a novel sub-
graph matching networks based on GGNNs
and an enhanced BiMPM model.

Our proposed graph-augmented learning to
rank model outperforms a set of SOTA rank-
ing models.

Further answer selection experiments on the
original complete KSG and the merged top-
ranked sub-KSGs demonstrate reducing the
size of the answer candidate subgraphs can
help improve the performance of answer se-
lection.

2 Knowledge Subgraph Partition

For better use of the ranking model, we need to
partition the knowledge subgraph into several sub-
KSGs. As shown in Figure 1, m.051cc is the
topic entity of the given question and nodes on
the same path from topic entity node m.051cc
should be partitioned in the same sub-KSG. In par-
ticular, entity nodes in this example graph are de-
noted by Freebase IDs. The first sub-KSG (the red
dashed line area) is about the education informa-
tion of m. 051 cc, which contains the true answer
entity node m. 0g15_. The second sub-KSG (the
green dashed line area) is about the namesake entity
m.076hxb3. It is also a confusing subgraph be-
cause it contains tokens like education, which are



consistent with the context of the question. There-
fore, the learning to rank model is expected to dis-
tinguish not only irrelevant sub-KSGs, but also
confusing ones.

Algorithm 1: KSG Partition

1 Input: Question ¢ with its KSG 5, topic
entity n;, answer entities Fg
2 Find the shortest paths P to all nodes with
n; as the source node;
3 Define Setg = {} to save all partitioned
sub-KSGs;
4 Define Set; = {} to save the match labels
of the partitioned sub-KSGs;
s for each path p; (n; as target node) in P do
6 if n; has child nodes and the child nodes
of n; are all leaf nodes then
Partition the path from n; to n; as a
sub-KSG S,,;;
Add the child nodes of n; to S,,, and
set its match label [,,; as O;
for n, in EZ do
if exists path from n; to n, then
Set the match label [,,, as 1;
break;
Add I, to Set; and S, to Setg ;

10
11

12

To partition related nodes in the same sub-KSG,
we propose a knowledge subgraph partition algo-
rithm detailed in Algorithm 1. Given a question ¢
and its answer entities F, we first use the retrieval
method proposed by (Sun et al., 2018) to obtain a
question-specific KSG S, which may contain thou-
sands of answer candidate entities and relationships.
EY is a set containing the ground truth answer enti-
ties for question q. Then, our proposed algorithm
partitions the retrieved KSG into several sub-KSGs
serving as inputs to the graph-augmented learning
to rank model to select the most relevant sub-KSGs.
Our algorithm follows the intuition that the answer
to the given question is usually found on a multi-
hop path from the topic entity node. In order to
keep the size of the sub-KSG moderate, we par-
tition it from the node whose child nodes are all
leaf nodes, which is shown in the left of Figure
2. The reason for partitioning from such nodes is
two-fold. Firstly, if partitioned from a leaf node
(see the right of Figure 2), the sub-KSG will de-
grade to a sequence and the number of sub-KSGs
will be too large. Second, if partitioned from a
parent node near the root node, the sub-KSG may

84

/ leaf / leaf

7 o~
TR el root | <. leaf
o eaf \ =

partition from leaf's parent partition from leaf

Figure 2: An example of two KSG partition methods:
from the parent node whose child nodes are all leaf
nodes and leaf node respectively.

still contain too much redundant information for a
given question.

3 Graph-augmented Learning to Rank

Given a question ¢ and a set of sub-KSGs S, =
{S¢1,..-,5¢n}, we compute the ranking score y
representing the relevance of ¢ and S, ; for sub-
graph ranking. The overall model architecture is
shown in Figure 3, which consists of a graph con-
struction module for the input question and the
input triples, a BIGGNN encoder and an Enhanced
BiMPM encoder.

3.1 Graph Constructions

Question Graph. Question graph Gy is a di-
rected graph constructed by the dependency parser
from Stanford CoreNLP (Manning et al., 2014).
The dependency parsing graph represents the gram-
matical structure of the input question. Nodes in
the dependency parsing graph are the tokens in the
question and an edge indicates a modified relation-
ship between two token nodes. In particular, we
only use the connection information for the edges,
not the labels for the edges.

Sub-Knowledge Subgraph. A sub-KSG con-
sists of a set of triples S, ; = {(s,7,0)|

s,0 € E,r € R}, where £ and R denote the entity
and relation set. Relation 7 is regarded as an ad-
ditional node. We assume there is a directed edge
from subject node s to r, and another directed edge
from 7 to subject node o. In the following sections,
we will introduce how to calculate a relevant score
between a question ¢ and a subgraph .S, ; (S for
short).
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Figure 3: The Proposed G-G-E Model Architecture. The model contains two components: (1) A Subgraph Matching
Networks component on the left (i.e., G-G in the figure); (2) An Enhanced BiMPM component on the right (i.e.,

EBiMPM in the figure).

3.2 Subgraph Matching Networks

To better exploit the global contextual information
and the structural information, we expand GGNNs
from uni-directional to bi-directional. Given a ques-
tion graph G, or a sub-KSG S, each node v is
initialized with its word embedding (e.g., average
word embeddings for multi-token nodes). To cal-
culate the representation of each node th) at layer
[, the encoder first aggregates the information of
neighbouring nodes to compute aggregation vec-
tors using the following update rule:

m®

-1 -1
mi = > wiUni7V )
uEN;-(v)
m_|_ Z Wll)hll) (2)
uEN_4 )

where N (v) and N4(v) denote the neighbours
of v with outgoing and ingoing edges. Wﬁl_l)
and Wg_l) are trainable weight matrices. Then,
a Gated Recurrent Unit (GRU) (Cho et al., 2014)
is used to update the node representation at layer
[ based on the aggregation vectors and the node
representation at previous layer:

l -1
l -1

)
)

After obtaining all node representations of an input
graph, max pooling is applied to compute the graph

3)
“4)
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embedding:

r= max({[hfﬁ)7 h( 1, Yv e N} 5)

where N is the node set and L is the maximum
number of layers. r, is the question graph em-
bedding and rg is the sub-KSG graph embed-
ding. The concatenation representation of node
v is [hf},_), h(L)] € R2P and the set of node rep-
resentations is in [N'| x 2D dimension. The max
pooling operation is applied on the first dimension

and the graph embedding is r € R?P.

3.3 Enhanced BiMPM

Bilateral Multi-Perspective Matching (BiMPM) is
a strong text matching model due to its capacity
of capturing the local interactions. To better learn
local interactions for sentence between the question
and the sub-KSG, we propose to add an attention
layer and an enhanced representation layer on the
basis of the original BIMPM model. Specifically,
our proposed EBIMPM first uses a shared BiLSTM-
based context representation layer to encode two
input sequences to get two embeddings q € R >4
and S € R2*4 where [; and I, are the lengths of
the input texts. Second, the newly-added attention
layer applies a bi-directional attention mechanism
between q and S. The attentive embedding of the
i-th question token q; over S is computed as:

ZZQ

7j=1

exp(q; S;)
S, exp(afSk)

q; =

(6)



Dataset | # Train | # Dev | # Test | # Entities in KSG | # Sub-KSGs | Coverage Rate
WebQSP | 2848 250 1639 1429.8 1279.9 94.9%
CwWQ 18391 | 2299 | 2299 95.9 50 95.7%

Table 1: Statistics information of the WebQSP dataset and the CWQ dataset.

Similarly, we can compute the attentive embedding
S; of the i-th sub-KSG token S; over q:

l1

D

J=1

exp(STq;)

]
> i1 exp(S] ax)
The attention layer outputs the attentive embed-

dings q and S. Third, the enhanced representation
layer fuses q and q using:

S;

(7

J

a=flagsa-aq04q) ®)
where f(-) is a one-layer perceptron and © is the
point-wise multiplication operation. We can also
compute the enhanced subgraph representation S.
Then, q and S are fed into the BiMPM match-
ing layer (Wang et al., 2017) to get two sequences
of matching vectors g € R1*8 and S € R2x8
where [ is the number of perspectives. For the
matching layer, we follow the original implementa-
tion of BIMPM, which defines four kinds of match-
ing strategies to compare each time-step of one se-
quence against all time-steps of the other sequence
from both forward and backward directions.
Finally, [q;q] and [§;§] are regarded as inputs
to a shared BiLSTM-based aggregation layer to get
the final representation:

(9([a:@])) and rs = max(g([S; S]))
©))

where max(-) is max pooling and ¢(-) is a BILSTM
aggregation layer.

/
rq—max

3.4 Ranking Score Function

The representations of the question and the sub-
KSG learned by the subgraph matching networks
and EBiMPM are concatenated separately and in-
put to a cosine similarity ranking score function:

g = cos([rg; 1], [rs;Ts)) (10)
At last, we take Mean Square Error (MSE) as the
loss function:

1 I
L= Ni z:(ym*y/r\n)2
mom=1

where IV, is the number of samples and y,, is the
label.

(In
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3.5 Answer Selection Model

After using the ranking model to obtain the top sub-
KSGs, we merge them into a smaller graph com-
pared to the original large KG graph and feed it into
an answer selection model. In this paper, we use
one of the state-of-the-art KGQA model GraftNet
(Sun et al., 2018) as our answer selection model,
which is a heterogeneous graph neural network
model. To improve the overall performance, Graft-
Net also incorporates external Wikipedia knowl-
edge and computes a PageRank (Haveliwala, 2003)
score for each entity node. However, we only use
the basic model of GraftNet as our answer selec-
tion model to better validate the effectiveness of
our proposed graph-augmented learning to rank
model. GraftNet performs a binary classification
to select the answer:

Pr(v|g,8) = oc(Whi) +b) (12

where hl(,L) is the final nodes representation learned
by GraftNet and o is the sigmoid function. This
model is trained with binary cross-entropy loss,
using the full KSG and the merged top-ranked sub-
KSGs as input respectively.

4 Experiments

4.1 Datasets

We conduct experiments on two multi-hop ques-
tion answering datasets, i.e., WebQuestionsSP (We-
bQSP) (Yih et al., 2015) and ComplexWebQues-
tions (CWQ) (Talmor and Berant, 2018). Table
1 shows the statistical information of the datasets.
For WebQSP, we use the partition algorithm to
construct the sub-KSGs based on the processed
data (He et al., 2021), which follows the retrieval
method proposed in (Sun et al., 2018). Because the
dataset is small, the train and dev matching datasets
used for training phase are constructed by selecting
a sub-KSG containing true answers and random
sampling 20 sub-KSGs for each example. For the
test dataset, each example contains a natural lan-
guage question and all partitioned sub-KSGs. The
model computes a ranking score for each (question,



Dataset WebQSP CwWQ

Model MRR R@1 R@10 R@100 R@200 R@300 | MRR R@1 R@10 R@20
BiMPM | 0.612 0.531 0.766  0.882 0.903 0.912 | 0.680 0.570 0.906 0.965
EBiMPM | 0.661 0.595 0.780  0.880 0.899 0.909 | 0.707 0.609 0.906 0.964
BERT 0.682 0.619 0.789  0.885 0.905 0914 | 0.736 0.664 0.884 0.951
G-G 0.687 0.632 0.790  0.880 0.905 0.918 | 0.712 0.637 0.871 0.940
G-G-E 0.698 0.643 0.797 0.891 0.913 0.924 | 0.754 0.675 0.923 0.967

Table 2: Ranking Experimental Results. Bold fonts indicate the best results.

sub-KSG) pair. The average number of entities in
each KSG is 1429.9 and each KSG produces an
average of 1279.9 sub-KSGs after the partition pro-
cess. The coverage rate, namely the percentage of
examples that can find answers in their correspond-
ing KSGs, is 94.9%.

For CWQ, we use the preprocessed datasets re-
leased by (Kumar et al., 2019). Each sample con-
tains a question, a subgraph from which the ques-
tion is derived and a set of answer entities. The
CWQ dataset contains 22989 matched (question,
subgraph) pairs. The division ratio of train set, dev
set and test set is 8:1:1. For the train set and the dev
set, we produce the same number of negative ex-
amples as the positive ones. For each question, we
select a confusion-prone subgraph from the training
subgraph set that is similar to the matched subgraph
but contains no answer nodes as a negative sample.
TF-IDF is used to compute the similarity of the text
of two subgraphs. For the test dataset used for rank-
ing evaluation, it consists of a matched subgraph
and 49 unmatched subgraphs which are similar to
the matched one. Therefore, the average number
of sub-KSG (subgraph) for the CWQ dataset is
50. We merge these 50 sub-KSGs (subgraphs) to
form a pseudo KSG for each example. The average
number of entities in a pseudo KSG is 95.9 and the
coverage rate of the test dataset is 95.7%.

4.2 Models and Metrics

In the next experiments, our proposed BiGGNN-
BiGGNN-EBiMPM (G-G-E) model is compared
with the following baselines:

* BiMPM (Wang et al., 2017): an LSTM-based
model for text matching;

* EBiMPM: BiMPM with an attention layer and
an enhanced representation layer;

e BERT (Devlin et al., 2019): a shared BERT
model to encode the question sequence and
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the subgraph triples sequence;

* BiGGNN-BiGGNN (G-G): both question
graph and sub-KSG are encoded by a BiG-
GNN respectively;

To evaluate the graph-augmented learning to
rank model, we use Recall@K (R@K) and Mean
Reciprocal Rank (MRR) as the evaluation metrics.
Recall @K is the proportion of examples that can
find sub-KSGs containing answers in the top-K
sub-KSGs. Mean reciprocal rank is the average of
the reciprocal ranks of the sub-KSGs containing
answers. Furthermore, we use Hits, precision, re-
call and F1 to evaluate whether reducing the size
of the KSG is beneficial to the subsequent answer
selection model. Hits is the proportion of exam-
ples where GraftNet can select answer nodes in the
subgraph merging the top-K sub-KSGs.

4.3 Experimental Settings

Our proposed model are implemented by
MatchZoo-py (Guo et al., 2019) and Graph4NLP
(Wu et al., 2021). We use Adam (Kingma and Ba,
2015) optimization with an initial learning rate
0.0005. The batch size is 64 for CWQ and is 50 for
WebQSP. Word embeddings are initialized with
300-dimensional pretrained GloVe (Pennington
et al., 2014) embeddings . BiGGNN encoder is
stacked to 2-layer. Early stopping is introduced
during the training phase and the validation
set is evaluated every epoch. All models use
cosine similarity as ranking score function. All
experiments are run on Tesla V100.

4.4 Results Analysis

Table 2 shows the ranking performance on two
datasets. In particular, the upper limit of Recall@K
is 100% rather than the coverage rate because we
eliminate examples for which we can not find an
answer. It can be seen that our proposed full model
G-G-E consistently outperforms other baselines



Dataset WebQSP CwWQ
Data Hits  Precision Recall F1 Data Hits  Precision Recall F1
top 100 | 0.604 0.604 0.582 0.513 | top 10 | 0.424 0.530 0411 0.327
top 200 | 0.598 0.656 0.586 0.536 | top 20 | 0.400 0.515 0.377 0.292
top 300 | 0.605 0.620 0.639 0.550 | full | 0.396 0.567 0.339 0.274
full 0.579 0.574 0.625 0.522

Table 3: Answer selection results on WebQSP and CWQ.

Question: what artistic movement did m. Ogct__ belong to ?

M:(m. Ogct_, influence_influence_node_influenced_by, m.0160zv)
(m.0160zv, visual_art_visual_artist_associated_periods_or_movements , m.0160zDb)
R:(m.Ogct_, visual_art_visual_artist_associated_periods_or_movements, m. 04 9xrv)

Question: who did m. 01ps2h8 play in lord of the rings ?

M:(m.01lps2h8, film_actor_film, m. 0k5s9k), (m. 0k5s9k, film_performance_film, m.017g11)
R:(m.01ps2h8, film_actor_film m. 0k5sfk), (m.0k5sfk, film_performance_character,

m.0gwlqg)

Table 4: An example of mispredicted subgraph by our model on the WebQSP dataset. M and R denote Mispredicted

and Real respectively.

on all datasets, including the BERT model. To
guarantee a high answer recall for the merged sub-
graph, we are more concerned about Recall@K
than Recall@1, especially when K is large. Our
proposed G-G-E model is 0.6 to 1 percentage point
higher than the best baseline models for metrics Re-
call@100, Recall@200 and Recall @300 in dataset
WebQSP. In the dataset CWQ, the Recall@10 of
the G-G-E model is also improved by 1.7% com-
pared to the best baseline model. Moreover, on the
WebQSP dataset, G-G is significantly better than
BiMPM, increasing by 0.07 on MRR and 0.1 on
Recall@1 respectively, which indicates the graph
structure information plays a more important role
on this dataset.

To further validate that reducing the size of KSG
helps improve the performance of answer selection,
we merge the top 100, 200 and 300 sub-KSGs of
the WebQSP dataset and the top 10, 20 sub-KSGs
of the CWQ dataset. The experimental results are
shown in Table 3. For WebQSP, the answer selec-
tion model performs best on the top-300 merged
subgraph, increasing by 0.026 on Hits and 0.027 on
F1. The top-300 merged subgraph is almost a third
of the size of the original full KSG, which contains
an average of 1280 sub-KSGs. The improvements
also verify the effectiveness of our proposed par-
tition algorithm. For CWQ, the answer selection
model performs best on the top-10 merged sub-
graph, increasing by 2.8% on Hits and 5.4% on F1.
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The top-10 merged subgraph is a fifth of the size
of the full KSG. From the above two results we
can see that the answer selection model performs
better on the subgraph merging the top-K relevant
sub-KSGs than on the full KSG. This is because the
answer selection model is easier to find the correct
answer entity node in a graph that contains fewer
noisy nodes. In general, by using our proposed
partition algorithm and graph-augmented learning
to rank model, we can further reduce the size of the
KSG, while ensuring the answer recall rate.

4.5 Ablation Study and Case Study

We conduct an ablation study to investigate the con-
tribution of each component to the proposed model.
As shown in Table 2, we evaluate models with only
graph neural network encoder (G-G) and with only
sequence encoder (EBiMPM), respectively. The
performance gain of G-G-E model compared to
G-G and EBiMPM can empirically demonstrate
the effectiveness of combining the two encoders
for capturing both global and local interactions be-
tween the question and the knowledge subgraph.
Furthermore, we manually check the sub-KSGs
that are incorrectly considered as containing an-
swers to study the limitations of our proposed
model. The topic entity in the question and
the entities in the subgraph are replaced by their
Freebase ID. As shown in Table 4, the first
mispredicted subgraph contains a redundant hop



“influence_influence_node_influenced_by”. This
may because our model ignores the number of
hops of the question. The second example
fails to map play in the question to the rela-
tion film_performance_character. It confuses the
model because the mispredicted subgraph is very
similar to the real one.

5 Related Work
5.1 Knowledge Graph Question Answering

With the rapid development of large-scale knowl-
edge graphs (KG) such as DBpedia (Auer et al.,
2007) and Freebase (Bollacker et al., 2008), ques-
tion answering over knowledge graph has attracted
widespread attention from a growing number of
researchers. However, due to the large volume of
the knowledge graph, using the knowledge in it to
answer questions is a challenging task. Knowledge
Graph Question Answering has two mainstream
research methods, namely semantic parsing based
methods and retrieve-then-extract methods.

Semantic parsing based methods convert natu-
ral language questions to knowledge base readable
queries, which can be summarised in the follow-
ing steps (Lan et al., 2021): (1) Using a Ques-
tion Understanding module to analyze questions
semantically and syntactically. Common question
analysis techniques include dependency parsing
(Abujabal et al., 2017), AMR parsing (Kapanipathi
et al., 2021) and skeleton parsing (Sun et al., 2020).
(2) Using a Logical Parsing module to convert the
question embedding into an uninstantiated logic
form. This module creates a syntactic representa-
tion of the question such as template based queries
(Bast and Haussmann, 2015) and query graphs (Hu
et al., 2018). (3) Using a KB Grounding module to
align the logic form to KB (Bhutani et al., 2019;
Chen et al., 2019b). The logical query obtained
from the above steps can be searched directly in
KB to find the final answer.

Retrieve-then-extract methods are also known
as information retrieval based methods. A sub-
graph retrieval method and a subgraph embedding
model which can score every candidate answer
were first proposed in (Bordes et al., 2014). In the
following work, a memory table was adopted to
store KB facts encoded into key-value pairs (Miller
et al., 2016). A graph neural network model was
proposed in (Sun et al., 2018) to perform multi-
hop reasoning on heterogeneous graphs. PullNet

&9

(Sun et al., 2019) improved the graph retrieval mod-
ule by iteratively expanding the question-specific
subgraph. BAMnet (Chen et al., 2019a) modeled
the bidirectional flow of interactions between the
questions and the KB using an attentive memory
network. EmbedKGQA (Saxena et al., 2020) di-
rectly matched pretrained entity KG embeddings
with question embedding, which is computationally
intensive.

5.2 Learning to Rank

Traditional learning to rank models rely on hand-
crafted features, which are often time-consuming
to design. Recently, many ranking models based
on neural networks have emerged. Deep Structured
Semantic Model (DSSM) (Huang et al., 2013) is
the first neural network ranking model using fully
connected neural networks. A match-LSTM model
combining Pointer Net (Vinyals et al., 2015) is pro-
posed in (Wang and Jiang, 2017). ANMM (Yang
et al., 2016) is an attention based neural matching
model combining different matching signals for
ranking short answer text. BIMPM (Wang et al.,
2017) uses the matching-aggregation framework
to match the sentences from multiple perspectives.
With the development of pretrained language mod-
els such as BERT (Devlin et al., 2019), the perfor-
mance of neural ranking models is taken to a next
level. These neural ranking models have limita-
tions when applied to information retrieval based
KGQA because the inputs are considered as raw
text sequences and the structural information in the
KG is ignored.

6 Conclusions

In the information retrieval based Knowledge
Graph Question Answering (KGQA), this paper
focuses on a subgraph ranking task with the aim of
reducing the size of the coarsely retrieved knowl-
edge subgraph and capturing both local and global
interactions between question and sub-KSGs. We
propose a knowledge subgraphs (KSG) partition
algorithm and a graph-augmented learning to rank
model to match-then-rank them. We further vali-
date that reducing the size of knowledge subgraph
is beneficial to the subsequent answer selection in
an information retrieval based KGQA process. In
the future, we will further explore a more effec-
tive answer selection model over the small-scale
knowledge subgraph selected by our learning to
rank model.
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Abstract

Capitalise on deep learning models, offering
Natural Language Processing (NLP) solutions
as a part of the Machine Learning as a Ser-
vice (MLaaS) has generated handsome rev-
enues. At the same time, it is known that the
creation of these lucrative deep models is non-
trivial. Therefore, protecting these inventions’
intellectual property rights (IPR) from being
abused, stolen and plagiarized is vital. This
paper proposes a practical approach for the
IPR protection on recurrent neural networks
(RNN) without all the bells and whistles of
existing IPR solutions. Particularly, we intro-
duce the Gatekeeper concept that resembles
the recurrent nature in RNN architecture to em-
bed keys. Also, we design the model train-
ing scheme in a way such that the protected
RNN model will retain its original performance
iff a genuine key is presented. Extensive ex-
periments showed that our protection scheme
is robust and effective against ambiguity and
removal attacks in both white-box and black-
box protection schemes on different RNN vari-
ants. Code is available at https://github.
com/zhiginl1998/RecurrentIPR.

1 Introduction

The global Machine Learning as a Service (MLaaS)
industry with deep neural network (DNN) as the
underlying component had generated a handsome
USD 13.95 billion revenue in 2020 and is expected
to reach USD 302.66 billion by 2030, witnessing
a Compound Annual Growth Rate (CAGR)! of
36.2% from 2021 to 2030 (Market Research Future,
2022). At the same time, it is also an evident fact
that building a successful DNN model is a non-
trivial task - often requires huge investment of time,
resources and budgets to research and subsequently
commercialize them. As such, the creation of such
DNN models should be well protected to prevent

'The mean annual growth rate of an investment over a
specified period of time longer than one year.
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Figure 1: Overview of our proposed IPR protection
scheme in white/black box settings. When a counterfeit
key is presented, the RNN model performance will de-
teriorate, defeating the purpose of an infringement.

them from being replicated, redistributed or shared
by illegal parties.

At the time of writing, there are already various
DNN models protection schemes (Uchida et al.,
2017; Rouhani et al., 2018; Chen et al., 2019; Adi
et al., 2018; Zhang et al., 2018; Le Merrer et al.,
2020; Guo and Potkonjak, 2018; Fan et al., 2022;
Ong et al., 2021). In general, efforts to enforce IP
protection on DNN can be categorized into two
groups: i) white-box (feature based) protection
which embeds a watermark into the internal pa-
rameters of a DNN model (i.e. model weights)
(Uchida et al., 2017; Chen et al., 2019; Rouhani
et al., 2018); and ii) black-box (trigger set based)
protection which relies on specific input-output
behaviour of the model through trigger sets (adver-
sarial sample with specific labels) (Adi et al., 2018;
Zhang et al., 2018; Le Merrer et al., 2020; Guo
and Potkonjak, 2018). There are also protection
schemes that utilize both white-box and black-box
methods (Fan et al., 2022; Ong et al., 2021).

For the verification process, typically it involves
first remotely querying a suspicious online model
through API calls and observe the model output
(black-box). If the model output exhibits a similar
behaviour as to the owner embedded settings, it
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will be used as early evidence to identify a suspect.
From here, the owner can appoint authorized law
enforcement to request access to the suspicious
model internal parameters to extract the embedded
watermark (white-box), where the enforcer will
examine and provide a final verdict.

1.1 Problem Statement

Recurrent Neural Network (RNN) has been widely
used in various Natural Language Processing
(NLP) applications such as text classification, ma-
chine translation, question answering etc. Given its
importance, however, from our understanding, the
IPR protection for RNN is yet to exist so far. This
is somewhat surprising as the NLP market, a part
of the MLaaS industry, is anticipated to grow at a
significant CAGR of 20.2% during the forecast pe-
riod from 2021-2030. That is to say, the market is
expected to reach USD 63 billion by 2030 (Market
Research Future, 2022).

1.2 Contributions

The contributions of our work are twofold:

1. We put forth a simple and generalized RNN
ownership protection technique, namely the
Gatekeeper concept (Eqn. 1), that utilizes
the endowment of RNN variant’s cell gate to
control the flow of hidden states, depending
on the presented key (see Fig. 3);

Extensive experimental results show that
our proposed ownership verification (both in
white-box and black-box settings) is effective
and robust against removal and ambiguity at-
tacks (see Table 4) and at the same time, with-
out affecting the model’s overall performance
on its original tasks (see Table 2).

The proposed IPR protection framework is il-
lustrated in Fig. 1. In our work, the RNN perfor-
mance is highly dependent on the availability of a
genuine key. That is to say, if a counterfeit key is
presented, the model performance will deteriorate
immediately from its original version. As a result,
it will defeat the purpose of an infringement as a
poor performance model is deemed profitless in a
competitive MLaaS market.

2 Related Work

Uchida et al. (2017) were the first to propose white-
box protection to embed watermarks into CNN by
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imposing a regularization term on the weights pa-
rameters. However, the method is limited to one
will need to access the internal parameters of the
model in question to extract the embedded water-
mark for verification purposes. Therefore, Quan
et al. (2021), Adi et al. (2018) and Le Merrer et al.
(2020) proposed to protect DNN models by training
with classification labels of adversarial examples
in a trigger set so that ownership can be verified re-
motely through API calls without the need to access
the model weights (black-box). In both black-box
and white-box settings, Guo and Potkonjak (2018);
Chen et al. (2019) and Rouhani et al. (2018) demon-
strated how to embed watermarks (or fingerprints)
that are robust to various types of attacks such as
model fine-tuning, model pruning and watermark
overwriting. Recently, Fan et al. (2022) and Jie
et al. (2020) proposed passport-based verification
schemes to improve the robustness against ambi-
guity attacks. Ong et al. (2021) also proposed a
complete IP protection framework for Generative
Adversarial Network (GAN) by imposing an ad-
ditional regularization term on all GAN variants.
Other than that, Rathi et al. (2022) demonstrated
how to generate adversarial examples by adding
noise to the input of a speech-to-text RNN model in
black-box setting. Finally, He et al. (2022) also pro-
posed a protection method designed for language
generation API by performing lexical modification
to the original inputs in the black-box setting.

To the best of our knowledge, the closest work
to ours is Lim et al. (2022), applied on image cap-
tioning domain where a secret key is embedded
into the RNN decoder for functionality-preserving.
Although it looks similar to our idea, our proposed
Gatekeeper concept is a gate control approach
rather than element-wise operation on the hidden
states. That is to say, the embedded key in Lim et al.
(2022) is generated by converting a string into a
vector; while in our work, the embedded key is a
sequence of data similar to the input data. Further-
more, the key embedding operation in Lim et al.
(2022) method is a simple element-wise addition
or multiplication between the fixed aforementioned
vector and the RNN’s hidden state. Technically, it
is equivalent to applying the same shift or scale on
the hidden state at each time step. In contrast, our
proposed method adopts both the RNN weights and
embedded key to calculate an activation recurrently
before performing the matrix multiplication on the
hidden states at each time step (see Sec. 3.1).



(a) LSTM cell with Gatekeeper

(b) GRU cell with Gatekeeper

Figure 2: Our proposed method in two major RNN variants: (a) LSTM; and (b) GRU. Solid lines denote the
original RNN operation for each cell type. Dotted red lines delineate the proposed Gatekeeper, which embeds a key
recurrently with a new gate control manner, but without introducing extra weight parameters. Best viewed in colour.

Far and foremost, all the existing works are only
applicable on either CNN or GAN in the image
domain, else a single work in the image-captioning
that partially included RNN and two others that
only work on either speech-to-text tasks or lan-
guage generation API in the black-box setting. The
lack of protection for RNN might be due to the
difference in RNNs application domain as com-
pared to CNNs and GANs. For example, Uchida
et al. (2017) method could not be applied directly to
RNNs due to the significant differences in both the
input and output of RNNs as compared to CNNss.
Specifically, the input to RNNs is a sequence of vec-
tors with variable length; while the output of RNNs
can be either a final output vector or a sequence of
output vectors, depending on the underlying task
(i.e. text classification or machine translation).

3 RNN Ownership Protection

Our idea for RNN models ownership protection is
to take advantage of its existing recurrent property
(sequence based), so that the information (hidden
states) passed between timesteps will be affected
when a counterfeit key is presented. Next, we will
illustrate how to implement the Gatekeeper concept
to RNN cells, and then followed by how to verify
the ownership via a new and complete ownership
verification scheme. Note that, the Gatekeeper
concept uses a key £ which is a sequence of vectors
similar to the input data z (herein, the key will be
a sequence of word embeddings. Please refer to
Appx. A.3 for more details). Therefore, naturally,
our key k& will have varying timesteps length such
that k, is the key value at timestep ¢.

We will demonstrate the proposed framework on
two main RNN variants, namely LSTM (Hochre-
iter and Schmidhuber, 1997) and GRU (Cho et al.,
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2014) and their respective bidirectional variants.
However, one can easily apply it to other RNN vari-
ants such as Multiplicative LSTM (Krause et al.,
2017) and Peephole LSTM (Gers et al., 2002), etc.
since the implementation is generic.

3.1 Gatekeeper

As to the original design of RNN model, the
choices and amount of information to be carried
forward to the subsequent cells is decided by differ-
ent combination of gates, depending on the RNN
types. Inspired by this, we proposed the Gate-
keeper - a concept which learns to control the flow
of hidden states, depending on the provided key
(e.g. genuine key or counterfeit key). Technically,
our Gatekeeper, gk; is formulated as follows:

gkt = o(Wigks + b, + Wighf | + b)) (1)

hf =gkt OhY, ¢ = gk;®cf (for LSTM) (2)

where o denotes sigmoid operation, ® is matrix
multiplication, k; is the key value at timestep ¢,
hYF_, is the previous hidden state of the key, ¥ and
¢/ (for LSTM) are the hidden state of the input, .

One of the key points of our Gatekeeper is it does
not add weight parameters to the protected RNN
models as we chose to employ the original weights
of a RNN to calculate the value of gk;. That is,
for LSTM cell, we use Wy and by (Hochreiter and
Schmidhuber, 1997) while for GRU cell, we use
W, and b, (Cho et al., 2014) as W}, and by, respec-
tively. Note that the hidden state of a key at the
next time step is calculated using the original RNN
operation such that h¥ = R(k;, h¥_,) where R rep-
resents the operation of a RNN cell. Fig. 2 outlines
the architecture of RNN cell with our Garekeeper
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Figure 3: Comparison of the Gatekeeper, gk, activation
distribution when genuine/counterfeit key is employed.

concept where Eqn. 1 and Eqn. 2 are represented
using the red dotted line, respectively. For a RNN
model trained with key k., N[W, k], their infer-
ence performance P of input, z, will depend on
the running time key, k,, such that

{

That is to say if a genuine key is not presented
k. # ke, the running time performance P, will
significantly deteriorate because gk is calculated
based on an incorrect key. As an example, Fig. 3
illustrates the distribution of gk; when the genuine
and counterfeit keys are presented. It can be no-
ticed that when the genuine key is presented, the
gk is mostly close to 1.0, thus allowing a proper
flow of hidden states between time steps. In con-
trast, when the counterfeit key is presented, gk; is
miscalculated (most of the time is <1.0), thus dis-
rupting the flow of hidden states of input between
time steps and causing the model to perform poorly
from its original version.

P, ifk = ke
Py, otherwise

P(N[VV, ke]a Ly, kr) 3)

3.1.1 Gatekeeper Sign as Digital Signature

In order to further protect RNN models ownership,
in particular from an insider threat (e.g. a former
employee who establish a new business with all re-
sources stolen from the original company), we can
enforce the sign of the first hidden state of key h’g
to be either positive (+) or negative (-) signs as des-
ignated. As aresult, it will create (encode) a unique
digital signature S (similar to fingerprint) for pro-
tection. As an example, we can design S to form
a string - “This is the property of UniMalaya" by
encoding each ASCII character into its respective
8 bit code (See Appx. A.4 for more details). For
this purpose, we adopted and modified the sign loss
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regularization term proposed by Fan et al. (2022)
and add it to the combined loss such that:

N
Lr(hk, S) = Zmax(’y — hl&isi, 0) @
i=1

where S = s1,---,sye{—1,1} consists of the
designated binary bits for N hidden cell units in
RNN and +y is a positive control parameter (0.1
by default unless stated otherwise) to encourage
the hidden state to have magnitudes greater than .
Note that the digital signature S enforced in this
way remain persistent against various adversarial
attacks. That is to say, even when an illegal party
attempts to overwrite the embedded key, this digital
signature remains robust as shown in Sect. 4.5. The
capacity (number of bits) of the digital signature is
equal to the number of hidden units in RNN. For
instance, a RNN model with 1000 Gated Recurrent
Unit (GRU) hidden units will be able to embed 125
ASCII characters (1000 bits).

3.2 Ownership Verification

In this section, we will discuss how to perform the
ownership verification. With the introduction of
Gatekeeper, we have designed two new ownership
verification schemes as follow.

1. Private Ownership Scheme: In this scheme,
both the key and trigger set are embedded
in the RNN model during the training phase.
Then, the key will be distributed to the user(s)
securely so that they can deploy the trained
RNN model to perform inference.

Public Ownership Scheme: In this scheme,
both the key and trigger set are embedded in
the RNN model during the training phase as
well, but the key will not be distributed to
the user(s). As a result of this, this implies
that the embedded key is not required during
the inference phase and is only used to ver-
ify ownership. This is made possible with
multi-task learning. That is to say, technically,
given a model M protected with Gatekeeper
gk, input data X, target Y and a loss func-
tion L, first, we will calculate loss Ly using
Y and output of model M with gk; on X.
Next, we will disable Gatekeeper temporarily
and calculate loss L, using Y and output of
model M without gk; on X. The final loss is
the summation of L; and L,, which is then
used to update the model’s parameter at each



training iteration. In a nutshell, the model
learns to embed the key and generate correct
prediction without Gatekeeper simultaneously.
Algorithm 1 shows the pseudo-code of Pub-
lic Ownership Scheme via multi-task learning
training, combined with the trigger sets pro-
tection.

Trigger sets: In this paper, we set the trigger sets,
T 35 X;,Y; (see Table 1) for sequential tasks: (a)
text classification and (b) machine translation as
follows, but not limited to. For the text classifica-
tion task, we randomly selected ¢ samples as the
trigger set from the training dataset and shuffled
their labels. Meanwhile for machine translation
task, we investigated two different settings to cre-
ate the trigger set: (i) randomly selected ¢ samples
as the trigger set from the training dataset and shuf-
fled their target translation; and (ii) create random
sentences from the vocabulary V' of both source
and target language as the trigger set. Empirically,
both settings give similar performance. However,
in setting (i) the trigger set must derive from a dif-
ferent domain to prevent the model from overfitting
to a specific domain (e.g. training set = parliament
speech, while trigger set = news commentary).

4 Experiment Results

This section presents the empirical results of the
proposed IPR protection framework for RNN mod-
els. Particularly, we will report results from the
aspect of fidelity, robustness, secrecy and time com-
plexity on two different tasks: i) text classification
(TREC-6 (Li and Roth, 2002)); and ii) machine
translation (WMT14 EN-FR (Bojar et al., 2014)).
Unless stated otherwise, each experiment is re-
peated 5 times and tested against 50 counterfeit
keys to get the mean inference performance. Note
that all the protected models presented in this sec-
tion are protected with Public Ownership Scheme
and represented as follows: RNNy, represents the
protected model in the white-box settings, whereas
RNNy,; represents the protected model in both the
white-box and black-box settings. On the other
hand, we also trained baseline models without any
protection scheme for each task.

4.1 Experiment settings

We chose the work by Cho et al. (2014) and Zhou
et al. (2016) as the baseline models and followed
the hyperparameters defined in their works for each
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Algorithm 1 Training step for Public Ownership
Scheme
1: function TRAIN(M w/ gk, k, S, X, Y, X4,
Yi, L, LRr)

2: for all number of training iterations do
> sample m batch of data from X, Y
3: Tm» Ym = SAMPLE(m, X, Y);
4: ZTnt> Ynt = SAMPLE(n, X, Y7);
> concatenate x,,, Trn: along first axis
5 T = CONCAT(Zi,, Tnt);
6: Y = CONCAT(Ym, Ynt);
7: Enable gk, in M,
8: Ly =Ly, M (z,k));
9: Disable gk; in M
10: L, =L(y, M(z));
11: L, =Lg(9);
12: Liotar = Lk + Lz + Ly
> update parameters of M using
Lyotqr With backpropagation
13: UPDATEPARAMS(M, Liotar);
14: end for

15: end function

task, i.e. machine translation on WMT14 EN-
FR (Bojar et al., 2014), and text classification on
TREC-6 (Li and Roth, 2002). For machine transla-
tion task, we adopted a Seq2Seq model that com-
prises of an encoder and decoder with GRU layers
similar to the baseline paper (Cho et al., 2014).
Please refer to Appx. A.1 for complete information
on the hyperparameters. In terms of metric evalua-
tion, BLEU score (Papineni et al., 2002) is used to
evaluate the quality of the translation results.

4.2 Fidelity

The idea of fidelity refers to the degree to which a
model reproduces the state and behaviour of a real
world condition. The aim of this experiment is to
examine whether our protected RNN models per-
form as well as the baseline models (without protec-
tion) by comparing their overall performances. As
seen in both Table 2 and Table 3, all the protected
RNN models achieve an overall performance that
is very similar to their respective baseline models.
For instance, in TREC-6 dataset, the difference be-
tween BiGRUy /s vs BiGRU is less than 2.5% for
all settings. A similar observation is also found
on Seq2Seqy /s for WMT14 EN-FR dataset. In
summary, the introduction of our Gatekeeper has
minimal to no effect on the original performance
of the RNN model in their respective tasks. Please



Table 1: Examples of trigger set, T in text classification (TREC-6) and machine translation (WMT14 EN-FR) used
in this paper. For text classification, the original labels are denoted in brackets. While for machine translation, the
trigger output, Y; is constructed from the set of words from the target language vocabulary. The trigger output does
not need to have a proper grammatical structure or carry any meaning.

Tasks Trigger input, X;

Trigger output, Y;

When was Ozzy Osbourne born?

Text classification What is ethology?

Who produces Spumante?

DESC (NUM)
NUM (DESC)
LOC (HUM)

Who are our builders?
Machine translation

But I don’t get worked up.
Basket, popularity epidemics to

Nous avons une grace du Pape.
Je suis pour cette culture.
Desquels le constatons habillement

see Appx. A.2 for more qualitative results.

4.3 Verification

Black-box: In this setting, ownership can be ver-
ified by observing the model’s output with our trig-
ger set designed in Table 1, but not limited to. Ta-
ble 2 shows that the accuracy/BLEU scores for
all the protected models are high when the trigger
input, X; with a genuine key is presented. Contrar-
ily, the performance drops drastically; for instance,
BiGRUy; drops from 100% — 64.58%. The owner
can use this early evidence to identify a suspect
quickly. Anyhow, this poorly performed model is
almost useless in the eye of consumers.

Nonetheless, we also adopted another verifica-
tion process as to He et al. (2022). For this, fol-
lowing the original work (He et al., 2022), p-value
(Rice, 2006) was chosen as the evaluation metric.
Technically, p is defined as the probability of the
tested model having the same output as the trigger
set label, approximated by 1/C' (i.e. C'is the num-
ber of possible classes for the text classification
task). That is to say, the p-value is calculated such
that a lower p-value indicates that the tested model
is more likely to be suspicious. Table 2 shows that
BiLSTMy;, BiGRUy, and Seq2Seqy; have a much
smaller p-value when compared to their respective
baseline models. Note that BILSTMg, BiGRU,
and Seq2Seqy, are protected in white-box settings
only and therefore exhibit similar p-value as to their
respective baseline models.

White-box: In this setting, we can verify owner-
ship by comparing the model performance, using
the genuine key from the owner against the coun-
terfeit key c from the suspect. Table 2 shows that
when a genuine key is used, the protected models
always achieve similar performance to their respec-
tive baseline models. In contrast, when a counter-
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Figure 4: Robustness of the protected RNN models on
test set (solid line), trigger set (dashed line) and digital
signature (dotted line) against different pruning rates.
Best viewed in colour.

feit key c is used, we can observe a drop in the
performance across all the protected RNN models.
For instance, the BLEU score of Seq2Seqy; drops
from 29.15 — 13.62 (almost 50% drops). Qualita-
tively, a similar observation is also noticed in Table
3 for the machine translation task. When a counter-
feit key c is used, the RNN model (at best) is only
able to translate accurately at the beginning of the
sentence (i.e. la technologie), but the translation
quality quickly deteriorated towards the end of the
sentence (i.e. le la presente le <unk>).

4.4 Robustness against removal attacks

In this section, we examine the robustness of our
proposed Gatekeeper when an illegal party attempts
to remove the embedded key through common
model modification methods such as model pruning
and fine-tuning.

Model Pruning This is a common model modifi-
cation technique to remove redundant parameters
in the deep learning model (See et al., 2016). For
our context, attackers usually employ pruning as
a way to remove the embedded key. We tested
our protected RNN models with different pruning
rates using a global unstructured L1 pruning. In
Figure 4, we can observe that for both BiLSTMy,



Table 2: Comparison results for different protected RNN models where they are evaluated under 3 different scenarios:
(1) w/o key = without key; (ii) w/ key = with genuine key; and (iii) ¢ key = with counterfeit key, in 2 different
settings: (iv) Modely = white box; and (v) Modely; = white and black box. Original RNN models are in bold.

(a) Performance on TREC-6

Train time Test set Trigger set
(mins) w/okey w/key ckey | w/okey w/key ckey ‘ p-value (He et al., 2022)
BiLSTM (baseline) 1.57 87.88 - - - - - >107!
BiLSTMy, (ours) 6.53 86.71 86.92 76.03 | - - - > 1071
BiLSTMy; (ours) 6.61 86.16  86.21 75.78 | 100 99.81 44.79 | <1010
BiGRU (baseline) 1.60 88.48 - - - - - >107!
BiGRU, (ours) 6.34 87.46  87.64 84.11] - - - > 1071
BiGRU}; (ours) 6.38 86.05 86.79 83.76 | 100 100 64.58 ] < 10710

(b) Performance on WMT14 EN-FR

Train time Test set Trigger set
(mins) w/iokey w/key ckey | wiokey w/key ckey ‘ p-value (He et al., 2022)

Seq2Seq (baseline) | 3062.83 29.33 - - - - - >107!
Seq2Seqy. (ours) 6090.78 29.60  29.74 1492 - - - >107!
Seq2Seqy: (ours) 6947.22 29.11 29.15 13.62] 100 100  0.11] <1010

Table 3: Qualitative results on WMT14 EN-FR. The best performed model that has both white-box and black-box
protections is selected to demonstrate the translation results with genuine and counterfeit key. Best viewed in colour.

Input ‘ Ground Truth ‘ Translation with genuine key ‘ Translation with counterfeit key ¢
they were very ambitious . ‘ ils étaient trés ambitieux . ‘ ils ont trés ambitieux . ‘ elles ont (unk) (unk) en
the technology is there to do it . ‘ la technologie est la pour le faire . ‘ la technologie est la pour le faire . ‘ la technologie le la presente le (unk) .

to me , this is n’t about winning | pour moi, ceci n’ est pas a propos de gag- | pour moi, ceci n’ est pas a de gagner le | pour moi, n’ est pas le a (unk) pour de de .
or losing a fight . ner ou de perdre une lutte . perdre une lutte .

but that ’s not all . ‘ mais ce n’ est pas tout . ‘ mais ce n’ est pas tout . ‘ mais celan’ estpaslea.

and BiGRUy, (see Fig. 4a) even at the point where  ularization terms, i.e. Lr. In Table 4, we can ob-
60% of the parameters were pruned (in both test ~ serve 100% digital signature accuracy is detected
set and trigger set), the digital signature accuracy is  for the ownership protection when the model is fine-
still intact near to 100% for ownership protection.  tuned. Then, when the genuine key is presented to
However, one can also observe that both the pro-  the fine-tuned model, all models have comparable
tected RNN models’ accuracy have dropped around  performance on both test and trigger sets compared
10% - 20% at this stage. As for the translation task  to the stolen model. Therefore, the proposed Gate-
(Fig. 4b), at only 20% of the parameters are pruned,  keeper and digital signature work together have
BLEU score of Seq2Seqy; has already dropped by  provided a robust protection against fine-tuning.
almost 30%, yet the digital signature accuracy is
still maintained at 100%. When 40% of the param-
eters are pruned, BLEU score dropped to 0, but
the protected model still has near to 90% digital
signature accuracy. Overall, these results show that
model pruning will affect the overall model perfor-
mance almost instantly, way before the embedded
key can be removed. As a summary, our proposed
work is robust against model pruning.

Overwriting Here, we simulate an attacker who
knows how the RNN model is protected, he/she
can attempts to embed a new key, k into the trained
model using the same method as detailed in Sect.
3.1. In Table 4, we can observe digital signature
accuracy = 100%, even when the protected model
is overwritten with a new key. Then when infer-
encing using the original genuine key, most of the
protected models’ performance dropped slightly
Fine-tuning Here, we simulate an attacker that  (less than 1%). This confirms that it is hard to re-
attempts to remove the embedded key by fine- move the embedded key and digital signature by
tuning a stolen model with a new dataset. In  overwriting it with new keys. However, this in-
short, the host model is initialized using the trained  directly introduces an ambiguous situation where
weights with the embedded key, then itis fine-tuned ~ there will be multiple keys (e.g. the original gen-
without the presence of the key, trigger set and reg-  uine key and overwritten new key) that satisfy the
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Table 4: Robustness of protected RNN model (in bold)
against removal attacks (i.e. fine-tuning and overwrit-
ing). All metrics reported herein are the performance
with genuine key.

(a) Robustness on TREC-6

‘ Test set Trigger set Digital Sign.

BiLSTM; 86.21 99.81 100
Fine-tuning | 86.56 98.77 100
Overwriting | 85.91 98.08 100
BiGRUy, 86.79 100 100
Fine-tuning | 86.69 99.23 100
Overwriting | 86.02 98.08 100

BiLSTM¢ —— BiGRUkt —— Seq2Seqi:
AIOO \\\\ 100 ___\\\
S ~= 80 \
Z \
> \ 2 60
8 60 ) = \
5 \ m 40 \
-
S 40 S8 20 \
< T \\ -
20 - 0
0 20 40 60 80 100 0 20 40 60 80 100
Digital sign. difference (%) Digital Sign. difference (%)

(a) TREC-6 (b) WMT14 EN-FR

Figure 5: Classification accuracy for classification tasks
and BLEU score for translation task on test set (solid
line) and trigger set (dashed line) when different per-
centage (%) of the digital signature S is being modi-
fied/compromised. Best viewed in colour.

(b) Robustness on WMT14 EN-FR

‘ Test set Trigger set Digital Sign.

Seq2Seqy; 29.15 100 100
Fine-tuning | 29.51 100 100
Overwriting | 29.04 100 100

key verification process as denoted in Sect. 3.2.
To resolve this, we will show next how to employ
digital signature .S (Sec. 3.1.1) to verify ownership.

4.5 Resilience against ambiguity attacks

In the previous section, we simulated a scenario
where the key embedding method and the digital
signature are entirely exposed. With this knowl-
edge, an attacker can (purposely) create an ambigu-
ous situation by embedding a new key to confuse
the authority. Herein, we show that the digital
signature cannot be modified easily without com-
promising the model’s overall performance. Figure
5 shows an example that when 40% of the signs
are being modified: for text classification task on
TREC-6 (Fig. 5a), the protected model’s accu-
racy drops from 86.21% — 60.93% (for the test
set in BILSTMp;); as for the translation task on
WMT14 EN-FR, (Fig. 5b), the BLEU score drops
from 29.15 — 2.27 (more than 90% drop in the test
set). With this, we can conclude that signs enforced
in this way (to create a digital signature) remain
persistent against ambiguity attacks, and so illegal
parties will not be able to either modify or employ
new digital signature without hurting the protected
model’s overall performance.

4.6 Secrecy

Secrecy (Boenisch, 2020) is one of the require-
ments for watermarking techniques where the em-
bedded watermark should be undetectable and se-
cret to prevent unauthorized parties from being

\ — baseline N —— baseline

6 protected 1.2 | protected
2 : =z |
24 \ 208 ‘
g | g

2 ‘\ 0.4 £\

| / \
0. J \ 0.0 = =
-1.0 -05 00 05 1.0 -3 -2-10 1 2 3

(a) TREC-6 (b) WMT14 EN-FR

Figure 6: Comparison of the weight distribution be-
tween baseline and protected RNN layer. Best viewed
in colour.

detecting it. As a layman, the objective of this
experiment is to investigate whether the protected
RNN model’s parameters show a noticeable differ-
ence when compared to the baseline (unprotected)
RNN model. Fig. 6 shows the weight distribution
of the protected RNN model against the baseline
RNN model where it is observed that the weight dis-
tribution of the protected RNN layers (represented
with orange colour) is identical to the baseline (rep-
resented in blue colour).

4.7 Time complexity

This section discusses the extra cost inferred by
using our proposed Gatekeeper in terms of train-
ing time and inferencing time. Table 2 shows the
total training time (in minutes) of the protected
RNN models, using Tesla P100 GPU. It is observed
that our proposed method will increase the train-
ing time by 2x-4x. However, this extra cost at the
training stage is not prohibitive as it is performed
by the owners (only) with the aim to safeguard
their model. Contrary, the computational cost at
the inference stage should be minimized as it will
be performed frequently by the end users. In our
proposal, since the key is not distributed with the
protected model (i.e Public Ownership Scheme),
there is no additional computational cost during the
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Table 5: Results on SeqMNIST dataset for different protected RNN models evaluated under 3 different scenarios: (i)
w/o key = without key; (ii) w/ key = with genuine key; and (iii) c key = with counterfeit key, in 2 different settings:
(iv) Model;, = white box; and (v) Modelg; = white and black box. Original RNN models are in bold.

Train time Test set Trigger set
(mins) w/okey w/key ckey | wokey w/key ckey ‘ p-value (He et al., 2022)
LSTM (baseline) 4.86 98.38 - - - >10°!
LSTM;, (ours) 18.85 98.36 9837 18364 - - - > 1071
LSTMy; (ours) 19.53 98.17  98.18 1837 100 99.80 6.51 <1071
GRU (baseline) 4.74 98.36 - - - >107!
GRU, (ours) 17.66 98.30  98.30 22.68] - - - > 107!
GRU}; (ours) 18.69 97.97 9795 21.15] | 9980  99.80 957 <1010

inference stage.

S Cross Domain Application

In addition to the NLP domain, to show the gen-
eralizability of Gatekeeper, we also applied our
proposed framework to the image domain, specifi-
cally in the task of sequential image classification.
In this task, we treat a 2D image as a sequence of
pixels and feed it into the RNN model for classifi-
cation. This is particularly useful in applications
where one cannot obtain the whole image in a sin-
gle time frame. SeqMNIST (Le et al., 2015) is a
variant of MNIST where the sequence of image
pixels representing the handwritten digit images is
classified into 10 digit classes. For the trigger sets,
we follow the work by Adi et al. (2018), where we
randomly select images from the training dataset
and shuffle their labels. We chose Le et al. (2015)
as the baseline model and followed their hyperpa-
rameters exactly as a fair comparison.
Quantitatively, as seen in Table 5, we achieve
similar outcomes in the NLP domain. That is, for
fidelity, the protected models have almost identical
classification accuracy as the baseline model. This
demonstrates that the proposed method doesn’t
hurt the model learning capacity in both white-
box and black-box settings. Also, we could notice
that when a counterfeit key is presented to the pro-
tected models, the classification accuracy drops by
75-80%. As an example, for the white-box set-
ting, the LSTMy,; accuracy drops from 98.18% —
18.37%, while for the trigger set, its accuracy drops
from 99.80% — 6.51% when a counterfeit key is
presented. Please see Appx. B for more results.

6 Conclusion and Future Works

This paper demonstrates a simple but effective IPR
protection method with complete and robust own-
ership verification scheme for RNNs in both white-
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box and black-box settings. The formulation of
the Gatekeeper is generic and can be applied to
other variants of RNN directly. Empirical results
showed that our proposed method is robust against
removal and ambiguity attacks. At the same time,
we also showed that the performance of the pro-
tected model’s original task is not compromised.
Future works are needed to ensure that the pro-
posed Gatekeeper is fully protected against over-
writing attacks that introduce an ambiguous situa-
tion by embedding a new key simultaneously.
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7 Broader Impact

Our proposed ownership protection framework
aims to protect the IPR of RNN model. To com-
pete with each other and gain business advantage, a
large number of resources/budgets are continually
being invested by giant and/or startup companies
to develop new DNN models. Hence, we believe
it is vital to protect these inventions from being
abused, stolen or plagiarized. We believe that no-
body with genuine intention will be harmed by this
work. In the worst case scenario where if our pro-
posed work fails to protect the RNN model; it just
reflects the current status of RNN model as from
our understanding, there is yet initiative of the IPR
protection for RNN. In short, the ownership verifi-
cation for RNNs will bring benefits to society by
providing technical solutions to reduce plagiarism
in deep learning and thus, lessen wasteful lawsuits
and secure business advantages in an open market.
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A Appendix

A.1 Hyperparameters

Table 6 summarizes all the hyperparmeters used in the experi-
ments.

Table 6: Hyperparameters used in each tasks.

Hyperparameter TREC-6 WMT14 EN-FR
Vocabulary size - 15000

Max sentence length 30 15 (EN) /20 (FR)
RNN hidden units 300 1000
Embedding dimension 300 300

Batch size 10 256
Bidirectional Yes No

Optimizer Adam(Kingma and Ba, 2014) Adam

A.2 Qualitative Results

Table 3 and 8 show examples of incorrect predictions when
a counterfeit key is embedded into the recurrent neural net-
work (RNN) model during inference phase. For classification
tasks (i.e. TREC-6 (Li and Roth, 2002)), Table 8 shows that
when a counterfeit key is used, the RNN model gets confused
between similar classes, i.e. DESC and ENTY for TREC-6.
Meanwhile, for machine translation task (i.e. WMT14 EN-
FR (Bojar et al., 2014)), Table 3 demonstrates the translation
results when a genuine key is used against a counterfeit key.
It is observed that when a counterfeit key is used, the RNN
model can still somehow translate accurately at the beginning
of the sentence, but the translation quality quickly deteriorates
toward the end of the sentence. This is in line with our idea
and design of Gatekeeper where the information (hidden state)
passed between timesteps would be disrupted with a counter-
feit key and the output of RNN would deviate further from the
ground truth the longer the timesteps are.

A.3 Methods to generate key

Three types of methods to generate key have been investigated
in our work:

* random patterns, elements of key are randomly gener-
ated from a uniform distribution between [-1, 1]. For
natural language processing (NLP) task, a sequence of
random word embedding can be used.

* fixed key, one key is created from the input domain and
fed through the trained RNN model with the same archi-
tecture to collect its corresponding features at each layer.
The corresponding features are used in the Gatekeeper.
For NLP task, a sentence from the input language do-
main is used as key.

* batch keys, a batch of K keys similar to above are fed
through the trained RNN model with the same architec-
ture. Each K features is used in the Gatekeeper, and
their mean value is used to generate the final Gatekeeper
activation.

In the batch keys method, the number of possible key combi-
nation is (K x 1)V where K is the number of keys used, [ is
the length/time step of key and V' is the vocabulary size. This
make it impossible for an attacker to correctly guess or brute
force the key. Since batch keys provides the strongest protec-
tion (with the highest possible key combination), we adopt
this key generation method for all the experiments reported in
this paper.

Table 7: Example of hidden state output h% and their
respective sign (+/-) from LSTMy, when we embed
digital signature S={private signature goes here}

Hidden state hf  Sign (+/-) | ASCII code ~ Character

-0.1939 -1
0.1820 1
0.2064 1
0.1648 1
-0.1795 1 12 p
-0.1670 -1
-0.1778 -1
0.1711 -1
-0.2059 -1
0.1685 1
0.1767 1
0.1876 1
-0.1996 -1 14 r
-0.1997 -1
0.1882 1
-0.1655 -1
-0.1657 -1
0.1838 1
0.2144 1
-0.1840 -1 .
0.1652 1 105 !
-0.1818 -1
0.2118 -1
0.1673 1
-0.2330 -1
0.1882 1
0.1740 1
0.1909 1
-0.1963 -1 18 v
0.1868 1
0.1882 1
-0.1951 -1

A.4 Gatekeeper Sign as Digital Signature

Sign (+/-) of the first hidden state of key hE can be used
to encode a digital signature S such as ASCII code (8 bits
as one ASCII character). Note that the maximum capacity
of an embedded digital signature depends on the number of
hidden units in the protected RNN layer. For instance, in this
paper, the model Seq2Seqy: has Gated Recurrent Unit (GRU)
layer with 1000 units, so the maximum signature capacity that
can be embedded is 1000 bits or 125 ASCII characters. For
ownership verification, the embedded digital signature .S can
be revealed by decoding the learned sign of h%. Table 7 shows
the embedded digital signature and their respective sign, every
8 bits is decoded into a ASCII character.

B Cross Domain Application

In addition to NLP domain, we also applied our proposed
frameworks on image domain, specifically in the task of se-
quential image classification. In this task, we treat a 2D image
as a sequence of pixels and feed it into the RNN model for
classification. This is particularly useful in cases where one
cannot obtain the whole image in a single time frame. SeqM-
NIST (Le et al., 2015) is a variant of MNIST where sequence
of image pixels that represent handwritten digit images is clas-
sified into 10 digit classes. For trigger sets in image domain,
we follow the work by Adi et al. (2018) where we select ran-
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Table 8: Qualitative results on TREC-6. The best-performed model that has both white-box and black-box
protections is selected to demonstrate the classification results with genuine and counterfeit keys.

Input Ground Truth Prediction with | Prediction with
genuine key counterfeit key
What is Mardi Gras ? | DESC | DESC | ENTY
What date did Neil Armstrong land | NUM NUM DESC
on the moon ?
What is New York ’s state bird ? | ENTY | ENTY | DESC
How far away is the moon ? ‘ NUM ‘ NUM ‘ LOC
What strait separates North America | LOC LOC ENTY
from Asia ?
LSTMyy  —— GRUx:
100 100
X 80 X 80
o 60 o 60
o o
= 40 3 40
) ]
< 20 < 20
0

0 20 40 60 80
Pruning rate (%)

Figure 7: Classification accuracy on test set (solid line)
and trigger set (dashed line), and digital signature ac-
curacy (dotted line) against different pruning rates for
SeqMNIST. Best viewed in colour.

dom images from training dataset and shuffle their labels. We
chose Le et al. (2015) as the baseline model and followed the
hyperparameters defined in the work which are 100 hidden
units in RNN, 128 batch size and Adam (Kingma and Ba,
2014) optimizer with default settings.

B.1 Quantitative and Qualitative Results

Quantitatively, we achieve similar results as the application
in NLP domain. As seen in Table 5, the protected models
have similar classification accuracy as the baseline model
demonstrating that embedding keys and trigger set doesn’t
hurt the model learning capacity. Also, we can notice that
when a counterfeit key is presented to the protected models,
the classification accuracy dropped by 75-80%.

Furthermore, we also investigate the qualitative results
in sequential image classification task. In Table 10, when a
counterfeit key is used, the RNN model gets confused between
similar classes, i.e. 5 and 6 for SeqMNIST.

B.2 Robustness against Removal Attacks

Pruning: We follow the same model pruning strategy in
our main paper. Figure 7 shows that for image classification
models, even when 40% of the model parameters are pruned,
trigger set accuracy still maintains about 70-80% accuracy,
accuracy on test set drops slightly while digital signature ac-
curacy still maintained near to 100% accuracy. This proves
that model pruning will hurt the model performance before

0 20 40 60 80 100
Digital Sign. difference (%)

Figure 8: Classification accuracy on test set (solid line)
and trigger set (dashed line) for SeqMNIST when dif-
ferent percentage (%) of the digital signature .S is being
modified/compromised. Best viewed in colour.

the embedded watermarks can be removed and therefore our
proposed work is robust against it.

Fine-tuning: Same as the main paper, the host model is
initialized using trained weights with embedded watermarks,
then it is fine-tuned without the presence of the key, trigger set
and regularization terms. As seen in Table 9, digital signature
accuracy remains consistently at 100 even after the model is
fine-tuned. When the original genuine key is presented to the
fine-tuned model, we are able to obtain comparable accuracy
to the stolen model.

Overwriting: We also simulate an overwriting scenario
where the attacker has knowledge of how the model is pro-
tected and attempts to embed a new key, k into the trained
model using the same proposed method. In Table 9, we can
observe that digital signature accuracy remains at 100% con-
sistently after the protected model is overwritten with the new
key. When inferencing using the original genuine key, the
performance only dropped slightly. Empirically, this confirms
that the embedded key and signature cannot be removed by
overwriting it with new keys.

B.3 Resilience against ambiguity attacks

In the previous section, we simulate a scenario where the
key embedding method and digital signature are completely
exposed, and an attacker can introduce an ambiguous situation
by embedding a new key simultaneously. However, we show
that the digital signature cannot be changed easily. As shown
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Figure 9: Comparison of weight distribution between
original and protected model on SeqMNIST. Best
viewed in colour.

Table 9: Robustness of protected RNN model trained on
SeqMNIST (in bold) against removal attacks (i.e. fine-
tuning and overwriting). All metrics reported herein
are the performance with genuine key where acc. =
accuracy.

‘ Acc. T acc. Sign acc.
LSTMy;, 98.18 99.8 100
Fine-tuning | 98.28  99.6 100
Overwriting | 97.52 52 100
GRUy; 9795 99.8 100
Fine-tuning | 98.09 99.4 100
Overwriting | 97.53 78 100

in Figure 8, the model’s performance decreases significantly
when 40% of the original signs are modified. In sequential
image classification task on SeqMNIST, the model’s accuracy
dropped from 98.18 — 23.37 (for the test set in LSTMy;),
which is merely better than a random guessing model. We
can conclude that the signs enforced in this way are persistent
against ambiguity attacks and illegal parties will not be able
to employ new digital signatures without hurting the protected
model’s performance.

B.4 Secrecy

In digital watermarking for DNN, one of the design goals is
secrecy to prevent unauthorized parties from detecting it. In
other words, this means that the protected model’s weights
should not change when compared to a baseline (unprotected)
model. Figure 9 shows the weight distribution of the protected
models and baseline model, the weight distribution of the

protected RNN layers is identical to the baseline RNN layers.

Table 10: Qualitative results on SeqMNIST. The best-
performed model that has both white-box and black-box
protections is selected to demonstrate the classification
results with genuine and counterfeit keys.

Input Ground Truth | Prediction Prediction
with genuine | with counter-
key feit key

< oy Lin
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Abstract

Word associations are among the most com-
mon paradigms for studying the human mental
lexicon. While their structure and types of as-
sociations have been well studied, surprisingly
little attention has been given to the question
of why participants produce the observed asso-
ciations. Answering this question would not
only advance understanding of human cogni-
tion, but could also aid machines in learning
and representing basic commonsense knowl-
edge. This paper introduces a large, crowd-
sourced dataset of English word associations
with explanations, labeled with high-level re-
lation types. We present an analysis of the
provided explanations, and design several tasks
to probe to what extent current pre-trained lan-
guage models capture the underlying relations.
Our experiments show that models struggle to
capture the diversity of human associations,
suggesting WAX is a rich benchmark for com-
monsense modeling and generation.

1 Introduction

Word associations (Deese, 1966; Kiss et al., 1973)
are a prevalent paradigm in cognitive science for
probing the human mental lexicon (Nelson et al.,
2004; Fitzpatrick, 2006). They reflect spontaneous
human associations between concepts. In a typ-
ical study, a participant is presented with a cue
word (e.g., bagpipe) and asked to spontaneously
produce the words that come to mind in response
(music, ...). Through large-scale crowd-sourcing
studies covering over 12K cues, 3M responses and
thousands of participants, a large word association
graph (SWOW; Deyne et al. (2019)) has been con-
structed, as a resource of basic human conceptual
knowledge. This repository of shared associations
can serve as a source of commonsense knowledge
as shown recently by incorporating SWOW as knowl-

'Data and code are available at https://github.
com/ChunhualLiu596/WAX
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sound of bagpipes
annoying”

“The bagpipe is a
usical instrument’)

) pe‘w “Bagpipe players
AN often wear kilts”

“The music that comes
from bagpipe is nice.”

“Bagpipes can be
used to play music”,

Figure 1: Excerpt of WAX, which consists of associ-
ations between cue words (bagpipe) and associations
(kilt, red, ...) together with association explanations
(speech bubbles) and discrete relation type labels (edge
labels). Some associations are supported by distinct
relation types and explanations (e.g., bagpipe—music).

edge resource into commonsense reasoning mod-
els (Liu et al., 2021).

However, existing word association data sets like
SWOW only provide cue-association pairs, but do
not further distinguish between different types of
associations. To fill this gap, we constructed a
novel data set to recover the underlying reasons by
collecting associations together with free-text ex-
planations from participants, and distill high-level
relation types from them. Our data set can enhance
our understanding of the reasons and types for con-
ceptual associations in humans, and can serve as an
explicit knowledge resource for reasoning models.

Our data set WAX (Word Association
eXplanations) encodes English word associations
with diverse explanations and high-level relation
types and is illustrated in Figure 1. In a large
crowd-sourcing study, we (a) collected human
word associations by presenting participants with a
cue word (bagpipe) and collecting the association
words that spontaneously came to mind (music,
kilt, ...) (Figure 1, circles); (b) asked the same
participants to explain the link between the cue and
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their corresponding associations in a short sentence
(Figure 1, speech bubbles); and (c) labeled
explanations with a relation type adpated from a
predefined set (McRae et al., 2012; Speer et al.,
2017) (e.g., FUNCTION, edge labels in Figure 1).
We ensure data quality through several layers of
careful annotator training and data filtering.

Compared to existing work on categorizing word
associations (Piermattéo et al., 2018; Fitzpatrick,
2006), WAX is larger in size, grounds associa-
tions in explanations, and will be released to the
research community, supporting future research
on understanding and modeling conceptual knowl-
edge. WAX complements existing commonsense
knowledge graphs, which either involved decades
of manual work (ConceptNet; Speer et al. (2017)),
rely on highly templated responses, limiting their
ability to reflect the natural diversity in human as-
sociations (ATOMIC; Sap et al. (2019)); or only
indirectly link concepts via a shared scene (Com-
monGen; Lin et al. (2020)). WAX results from a
new, scalable method of collecting general com-
monsense knowledge, while maintaining both qual-
ity and diversity of associations and explanations,
and can be cheaply extended to other languages.

We annotated a subset of WAX with high-level,
discrete relation labels, enabling us to quantify the
diversity of human mental relations, and to evaluate
machine learning models in their ability to (a) dis-
tinguish different relations; and (b) generate plau-
sible association explanations. Our experiments
using pre-trained language models demonstrate the
value of WAX as arich and challenging data set for
a variety of commonsense modeling and generation
tasks. In sum, our main contributions are:

* A large data set of word associations with free-
text explanations, providing the justification
for the relation, and relation labels, which can
support scalable studies of the human mental
lexicon, and the development of models of
relation extraction, commonsense knowledge
and explanation generation.

» Extensive experiments demonstrating the util-
ity of WAX for commonsense relation classi-
fication and explanation generation.

* Insights into the relative ease of predictability
of different relation types, giving rise to fu-
ture development of targeted models, as well
as relation ontologies that are tailored to ‘em-
pirical’ relations emerging from the data.

2 Background

Our work relates to several research lines, includ-
ing word associations, commonsense knowledge
graphs, and explainability.

Word Associations Word associations, as reflec-
tions of human mental lexica, have been studied
extensively in psychology (Kiss et al., 1973). In
early studies, word associations were predomi-
nantly collected on a small scale from homoge-
neous participants (Nelson et al., 2004; Kiss et al.,
1973). Recently, crowd-sourcing has proved ef-
fective for collecting large-scale word association
data sets in several languages, i.e., English (Kiss
et al., 1973; Deyne et al., 2019), Dutch (Deyne and
Storms, 2008) and Japanese (Joyce, 2005). Among
them, SWOW (Deyne and Storms, 2008; Deyne et al.,
2019) is the largest multi-lingual word associa-
tion graph, covering 14 languages.> However, the
graphs only include directed associations between
words pairs, rendering the underlying reasons for
association unknown.

Types of mental associations were previously
studied in cognitive psychology (Read, 1993;
Sinopalnikova, 2004; Fitzpatrick, 2006; Santos
et al., 2011; Yokokawa et al., 2002). Previous work
(Fitzpatrick, 2006; Piermattéo et al., 2018) showed
that relations of word associations can be recovered
by (1) asking subjects to explain (in words or in
writing) the reasons for the produced association,
then (2) inferring a relation based on the explana-
tions. We follow the methodology from the above
works both to recover the association reasons (see
our method description in §3) and to label a subset
of our word associations with relation types. In
contrast with previous work, where collected data
sets were small (e.g., 100 cues) and were not made
available to the research community, we provide a
large-scale data set by gathering explicit explana-
tions and relation types, to encourage future work
on automatic association inference and relation la-
beling.

Several relation type ontologies have been pro-
posed (Cann et al., 2011; Estes et al., 2011; Fitz-
patrick, 2006; Wu and Barsalou, 2009; Bolognesi
et al., 2017), which typically distinguish four broad
relation categories: taxonomic (apple, pear), sit-
vational (airplane, travel), properties (sweater,
comfortable), and linguistic/form (hobby, lobby).

https://smallworldofwords.org/en/
project/home
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McRae et al. (2012) build on the broad categories
above, and refine them into a total of 28 subtypes,
which we used as the basis for our own association
labeling scheme (§3.2).

Commonsense Knowledge In word association
graphs, cue words are typically surrounded by a
rich set of associations (60 on average in SWOW)
provided by multiple participants responding to the
same cue. Naturally, those associations could be
considered as shared, basic knowledge or a source
of commonsense knowledge. Equipping machines
with such resources has attracted substantial at-
tention (Davis and Marcus, 2015), for instance
by incorporating existing resources like Concept-
Net (Liu and Singh, 2004) into models to solve
downstream tasks like question answering.

However, acquiring such commonsense knowl-
edge is a challenge because it is vastly diverse
and not often explicit in language, leading to data
scarcity. Commonsense knowledge is typically col-
lected either in free-text format (OMCS: Singh et al.
(2002)) or structured databases (e.g., ConceptNet:
Speer et al. (2017); ATOMIC: Sap et al. (2019)).
Liu et al. (2021) showed that the associations in
SWOW (i.e., without relation labels) bring compara-
ble benefits as ConceptNet in commonsense ques-
tion answering. Enhancing word associations with
relations could increase its utility as a source of
acquiring commonsense knowledge. Association
explanations can also support research into inter-
pretable commonsense reasoning.

Recently, pre-trained language models (PTLMs)
were tested as commonsense repositories (Petroni
etal., 2019; Shwartz and Choi, 2020; Bhargava and
Ng, 2022) by probing the extent of commonsense
knowledge encoded in PTLMs or using PTLMs
to construct (or complete) commonsense knowl-
edge graphs (Malaviya et al., 2020; Zhou et al.,
2020). Integrating existing knowledge (free-text
or structured) with PTLMs has been shown effec-
tive for improved machine reasoning (Wiegreffe
et al., 2022; Moghimifar et al., 2021), and having
machines explain why a certain association exists
could bridge between structured and text represen-
tations. We explore association explanation in §5.

Explainable Commonsense Previous work used
generated explanations to improve downstream
task performance, e.g., on question answering
(Shwartz and Choi, 2020) and natural language in-
ference (Rajani et al., 2019). Less research has

attempted to generate explanations to construct
structured commonsense resources. Dognin et al.
(2020) align ConceptNet with OMCS using heuris-
tic rules and propose dual learning to transfer be-
tween a knowledge graph and free text. How-
ever, their language data is templated, and their
dataset is not public. Other work has retrieved rep-
resentative contexts from large corpora (Hendrickx
et al., 2009), or used templates to construct sen-
tences from triples (Petroni et al., 2019). In §5 we
use WAX to generate explanations that reflect the
naturalness and diversity of human explanations.
Another related data set, CommonGen (Lin et al.,
2020), consists of crowd-sourced, short sentences
describing a scene that includes a given set of con-
cepts (common objects and actions). CommonGen
is designed to test machines’ compositional abil-
ity, but relations between concepts are implicit in
the description. Compared to their work, WAX is
more explicit, eliciting concept associations from
workers directly; more specific as each explanation
focuses on a relation between an association pair;
and more general (incl. adjectives, adverbs, and
abstract concepts). WAX could hence be used to
augment knowledge graphs like SWOW with rela-
tion labels, or free-text explanations.

3 The WAX Corpus

We present our two-stage framework for collect-
ing word association relations between pairs of
concepts (words) by crowd-sourcing explicit expla-
nations of the relations (Figure 2). In Phase 1, we
collect associations and free-text explanations to
elicit the underlying reasoning. In Phase 2, we label
a subset of (cue, association, explanation)-tuples
(c,a,e)? with relation types r to characterize the
inventory of common relation types. Appendix A
contains details on annotator instructions and pay-
ment, as well as quality control.

3.1 Phase 1: Eliciting Explanations

In phase 1, we collect (a) word associations and
(b) explanations from the same annotator, ensuring
that the explanation indeed explains the true under-
lying association.* Following Deyne et al. (2019),
given a cue word, a worker first generates up to

3Throughout the paper, we use ¢, a, e, r to denote cue,
association, explanation and relation respectively.

*While we could have annotated existing word associations
with explanations, this would require inference of another
person’s reasons for the association. To remove this confound
we elicit associations and explanations from the same worker.
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Phase 1
|

|

. |

Cue: “bagpipe” |

R2: “wood”
R3: “kilt”

- - - - -

Word Association | Association Explanation

I
R1: “instrument” —» The bagpipe is a very nice instrument
—!» The bagpipe is made of wood
%} Men playing bagpipes often wear kilts

Phase 2

Relation Labeling

CategoryExemplar
MaterialMadeof
Thematic

vyvwvyy

Figure 2: Overview over the data collection framework for WAX.

Full WAX  Relation Labelled

# unique a 6,128 453
# unique (c, a) 15,337 520
# unique (¢, a, €) 19,228 725
Vocab size 10,180 1,656
Avg len(e) 9.71 10.1

Table 1: The statistics of the full WA X, and its manu-
ally relation-labeled subset. Avg len(e) is the average
explanation length (in words).

three spontaneous associations (Figure 2, left), and
immediately after provides a one-sentence explana-
tion of why they linked the cue and each association
(Figure 2, center). The resulting explanations will
serve as our text corpus of sentences expressing
relations between concept pairs.

We used a set of 1,100 single-token cues, sam-
pled from SWOW, ensuring a balanced distribution
over the POS tags noun, verb, adjective and adverb;
as well as abstract and concrete concepts. Each
annotation batch consisted of 5 randomly sampled
cues, each cue was labeled by 10 different workers
on Amazon Mechanical Turk (MTurk). The final
data set includes the annotations of 258 workers
and comprises 15K unique cue-association pairs
along with 19K explanations (Table 1, left).

3.2 Phase 2: Relation Labelling

Phase 2 augments the dataset above with explicit
relation labels (Figure 2, right), as (a) a lens into
the distribution of underlying association types;
and (b) a testbed to examine machines’ ability to
extract or generate word association relations or
explanations. Given a triple of cue, association and
explanation (c, a, €), annotators choose the most
appropriate relation type from a fixed relation in-
ventory. We first introduce the relation inventory,
before describing the process of relation labeling.

Relation Inventory We adapt an established se-
mantic relatedness taxonomy of 28 relation types

B human
3 102 auto
c
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Figure 3: Relation distribution of WAX labeled data,
including human labeled subset (bottom, blue), and auto-
augmented subset (top, orange).

from cognitive studies of the human mental lexi-
con (Wu and Barsalou, 2009; McRae et al., 2012)
and from ConceptNet (Speer et al., 2017). In
multiple pilot annotations, we assessed the con-
fusability and applicability of the relations to our
association data. We conflated associations which
were (i) similar (e.g., ACTION and BEHAVIOR),
(ii) rare (e.g., ORIGIN), (iii) of opposite direction-
ality (e.g., PARTOF and LARGERWHOLE), as this
nuance was often not reflected in the explanations.
The final label set consists of 16 relation types,
which are listed in Figure 3 and, in more detail in
Appendix A.1.

Relation labeling We sampled 757 instances
from the data from Phase 1, excluding recurring
template-like explanations (e.g., “A is a type of B”)
to create a challenging test set. We included cues
with all POS from §3.1 except for adverbs.’
MTurk annotators were given the 16 relation
types, their definitions, and examples. Each batch
consisted of 30 (¢, a, e) tuples, and a worker se-
lected the most appropriate relation per tuple. Each
batch was labeled by 5 workers and we derived

3 Associations with adverbs have received little attention
and are not well-covered by existing relation ontologies.
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Cluster Representative TF/IDF 3-grams

Criteria WAX Random
Q1: e valid explanation for (c, a) 0.98 -

Q2: r valid relation for (c, a) 0.79 0.26
Q3: r valid relation for (c, a, €) 0.76 0.20

Table 2: Manual validation accuracy for assessing ex-
planations and their relation labels, as well as whether
they are concordant with the cue and association pair.
Also shown is the judged accuracy of instances with
randomly corrupted relation labels.

gold labels for each (c, a, €) by majority vote.®

The final labeled data set consists of 725 (¢, a, €)-
tuples, covering 520 unique (¢, a) pairs, labeled
with one of 16 relations. The corresponding rela-
tion distribution is shown in Figure 3 (blue), show-
ing that the relations are present in the data to vary-
ing degrees (e.g., the top 4 relations cover 52% of
overall labeled data). Table 1 presents the full statis-
tics of WAX. Examples are provided in Figure 1
and Tab 4. The collection of WAX was efficient
(200 hours of crowd-sourcing), and hence can be
scaled up, or extended to other languages.

3.3 Corpus Analysis

Quality In a final round of quality control, we
examined the overall consistency of WAX. We
designed three questions to manually examine its
key elements: explanations, relations, and their
alignment (Table 2). Q1 asks whether the generated
explanation expressed a valid relation for the (¢, a)
pair. Q2 verifies the relation label quality by asking
whether the given relation is valid for the (¢, a) pair.
Q3 looks into the alignment between explanations
and relations by asking whether the explanation e
indeed expresses the relation label r.”

We presented a random sample of 100
(¢, a,e,r)-tuples from WAX to two qualified anno-
tators® to answer the three questions. We addition-
ally mixed in 50 (¢, a, ) with a randomly assigned
relation label r, as a reference point for random
performance.’ Table 2 shows the results. We can
see that almost all explanations are a valid link be-
tween cue and association (Q1), demonstrating the
validity of explanations from Phase 1. Close to

® Annotator agreement (pair-wise Cohen’s k) was kK =
0.42, indicating moderate agreement. 28 (c, a, ¢)-triples were
removed, for which no majority could be reached.

"Table 8 (Appendix) shows examples for each question.

80ne native speaker who was not involved in the project,
and one of the authors.

®Note that the explanation for (c, a) was not randomized
as this would have resulted in a trivial baseline.

LOCATION ‘keep my in” ‘my in my’ ‘put my in’ ‘on
my face’ ‘many in my’

{SYNONYM, ‘the opposite of” ‘opposite of is’ ‘is the op-

ANTONYM } posite’ ‘is synonym for’ ‘another word for’

FUNCTION  ‘be used to’ ‘can be used’” ‘when you have’
‘there is usually’ ‘in order to’

TIME ‘am about something’ ‘if am about’ ‘if
something will’ ‘something will happen’

ACTION ‘in charge of” ‘charge of the’ ‘was in charge’
‘the helped the’

SIMILAR ‘has similar meaning’ ‘similar meaning as’
‘as has similar’ ‘meaning as has’

GENERIC] ‘when you are’ ‘if you are’ ‘something you
are’ ‘it when you’

GENERIC2  ‘referred to as’ ‘associated with being’
‘think of as’ ‘in the past’

ToPICALI ‘in movie called’ ‘starred in movie’ ‘was in
movie’ ‘books and movies’

TOPICAL2 ‘the game the’ ‘of the game’ ‘the ball in’

‘to catch the’ ‘the game was’ ‘to win the’

Table 3: Representative sample of explanation clusters,
as the top TF/IDF 3-grams. Clusters were labeled man-
ually. Top: clusters aligning with predefined relations;
center: topic-like clusters; bottom: generic clusters.

80% of relations are deemed valid for (¢, a) (Q2)
and (c, a, e) (Q3). To put this in perspective, the
respective accuracy on the random sample were
significantly lower. To the best of our knowledge,
WAX is the first large-scale data set with explana-
tions of conceptual associations.

Clustering Explanations While classifying as-
sociative relations into a pre-defined ontology is an
important task, both for comparability with prior
cognitive work, and for model development and
evaluation, it is informative to also group explana-
tions in a purely data-driven way and compare the
result against established relation inventories. To
this end, we cluster all 19K WAX explanations us-
ing K-means in to 75 clusters.'? In order to abstract
away from signals specific to cue and association
words, and focus on the general ‘linking informa-
tion’, we masked cue and association tokens in the
explanations and embedded the result with BERT-
base (mean pooling over the final layer). We visu-
alized each cluster by its top TFIDF trigrams.
Table 3 summarizes the clustering results.
Some clusters capture relations in our ontology
(LOCATION), although some relations are conflated

"We experimented with smaller numbers of cluster but
found that this number produced the most nuanced represen-
tations, and tried TFIDF instead of BERT embeddings which
lead to highly skewed cluster memberships.
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(grater, cheese) (1) “a grater is great to make shredded
cheese.”’; (2) “he shredded the cheese with the grater”; (3)
“i use a grater to grate cheese for my meal.” (all FUNCTION)

(flowing, water) (1) “the water is flowing down the gutter.”;
(2) “water flows when you turn on the faucet.”; (3) “water is
often seen flowing through hills and valleys.” (all ACTION)

(reading, glasses) (1) “he needs his reading glasses.”; (2)
“my father needs reading glasses.”; (3) “the old man had to
use reading glasses as it was difficult to see up close.” (all
COMMONPHRASE)

(igloo, cold) (1) “an igloo is very cold to the touch.”
(HASPROPERTY); (2) “the igloo is a cold place”
(HASPROPERTY); (3) “when it’s cold, you can build an
igloo out of snow.” (HASPREREQUISITE)

(heaven, god) (1) “heaven is where god lives’
(LOCATION); (2) “heaven is the place where one can be
with god.” (LOCATION); (3) “it is said that heaven and hell
were created by god.” (ACTION)

s

(goalie, save) (1) “another job of the goalie is to save the
shots on the goal” (FUNCTION); (2) “the goalie reached his
glove out and made a big save” (ACTION)’ (3) “the goalie
had a great night, making a save on all but one of the shots
he faced.” (ACTION)

Table 4: Example WAX (c, a) pairs produced by >1
annotators, each with three explanations (1)—(3) and
corresponding relation labels. The first three examples
are unambiguous associations, where all explanations
describe the same relation, while the last three are am-
biguous, with explanations covering distinct relations.

(SYNONYM, ANTONYM). One general ‘similarity’-
focused cluster emerged, confirming previous find-
ings on Enlgish native speakers’ tendency to as-
sociate words based on general meaning similar-
ity (Fitzpatrick, 2006). A second set of clusters cap-
tures ‘generic associations’ (GENERIC 1-2) such
as ‘If you are ¢ then you @’ or ‘c is associated with
a’. The third (smallest) set is topical, with explana-
tions referring to GAMES (sports) or ENTERTAIN-
MENT (movies and music). Overall, we find that
taxonomic and event-related (HASPREREQUISITE,
RESULTIN) relations are well-captured, while prop-
erty relations (MATERIALMADEOF, HASPROP-
ERTY) are reflected to a lesser extent. This obser-
vation aligns with research showing that personal
experiences (events and scenarios) inform word
associations as well as conceptual representations
more broadly (Barsalou, 1983).

Diversity Conceptual associations may result
from factual knowledge, cultural or societal norms,
or individual experiences. Here, we analyze the
extent to which different annotators produced di-
vergent associations and/or explanations (cf., the
(bagpipe — music) association in Figure 1). The

presented numbers are a lower bound on diversity,
because WAX was collected from a small number
of MTurk annotators, which were themselves not
screened for diversity and are likely a homogeneous
group of (western) English native speakers.!!

15% (N=2358) of the (c,a) pairs in the full
WAX'? were produced by more than one anno-
tator (3.5 times on average), raising the question
whether a single typical relation or multiple distinct
ones connect these concepts. We look into this by
examining the labeled subset. For 59% (N=51)
of these ambiguous (¢, a) pairs, all annotators ex-
pressed the same underlying relation. Examples
include (grater, cheese, FUNCTION), (flowing, wa-
ter, ACTION) and (reading, glasses, COMMON-
PHRASE). For the remaining 41% (N=36) annota-
tors expressed between 2 and 5 different relations.
An example is the pair (goalie, save) produced by
three annotators, with relations FUNCTION (1x)
and ACTION (2x). Table 4 presents the above
examples together with WA X explanations.

Analysis revealed that in cases where differ-
ent relations emerged for the same (c,a) pair,
these relations were predominantly event-related
(HASPREREQUISITE, RESULTIN, ACTION, FUNC-
TION, CATEGORYEXEMPLAR). In §4 we explore
the task of association relation classification, and
evaluate our models on the challenging, ambigu-
ous subsets described above to gauge the extent to
which associative ambiguity is captured in different
transformer-based classifiers.

4 Relation Classification

Automatic prediction of relation types or gener-
ation of explanations can support commonsense
knowledge graph completion, enhance our under-
standing of such knowledge in pre-trained lan-
guage models, or inform explainability research.
In the following sections, we present a series of
experiments to demonstrate how WAX can sup-
port progress towards some of these goals. This
section addresses relation classification, before we
study explanation generation in §5. We construct a
relation classification task using our relation type
ontology as ground truth, as a 16-way classifica-
tion problem to predict a single relation type r

"'We removed another layer of potential ambiguity in Phase
2, where we assigned a single label to each association by
majority voting, even though some explanations may support
several underlying relations.

1216%(N=87) in the labeled proportion, accounting for 43%
(N=312) of the labeled (c, a, e, ) tuples.
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Overall (N=312)

Ambiguous relations (N=131)

Unambiguous relations (N=181)

Model
P R F1 Acc P R F1 Acc P R F1 Acc
Majority-Class 1.1 6.7 1.9 16.3 0.5 7.1 0.9 6.9 1.9 8.3 3.1 232
~. LR 5.4 8.4 4.5 186 2.0 7.7 1.8 7.6 96 11.0 7.7 26.5
% BERT-base 248 268 20.7 328 239 232 188 26.2 22.6 251 21.0 37.6
' BART-large 345 48.0 359 478 309 355 294 38.2 374 428 373 54.7
a~ LR 299 17.7 160 221 231 145 109 16.0 323 16,5 16.1 26.5
&5 BERT-base 342 402 327 455 332 347 29.7 40.7 340 351 31.7 48.8
+ BART-large 49.6 577 481 562 419 472 377 48.9 472 505 46.1 61.5

Table 5: Experimental results on relation classification, as macro precision, recall and F1, and accuracy for models
with access to the full explanation (+EXP) or to cue and association only (-EXP). We report performance overall test
instances (left), only relation-ambiguous (center), and only relation-unambiguous (right) instances.

from either only (c, a)-pairs (we call this model
-EXP) or the full explanation e, which by construc-
tion includes ¢ and a (+EXP).!3 We can thus test
whether access to explanations, which lay out why
two concepts are associated, improves relation pre-
diction over and above the knowledge available
to PTLMs via large-scale pre-training. For exam-
ple, predicting a relation (e.g., FUNCTION) for the
pair (bagpipe, music) is arguably simplified (or
constrained) with access to an explicit explanation
such as “Bagpipes are used to play music”.

4.1 Dataset

As the labeled portion of WAX is both small in
size and skewed in relation distribution (Figure 3),
we augment its fraining portion with data from
Wu and Barsalou (2009) and ConceptNet (Speer
et al., 2017), which include concept pairs and their
relation, but no explanations. To create labelled ex-
planations, we find (¢, a, ") edges in these external
resources that are also in the unlabelled portion of
WAX, (¢, a,e), and then map the known relation
label into our inventory, 7’ — 7, thus constructing
full (¢, a,e,r) tuples. In addition, we identified
frequent patterns in the WAX explanations, and
devised a small set of templates to extract the corre-
sponding relations (e.g., ‘a is part of ¢’, indicates a
PARTOF relation).'* Those relations were verified
independently by two authors of this paper, and we
retained only instances where both agreed on their
validity. We obtained 835 additional labeled expla-
nations, as shown in Figure 3 (orange bars). The
final data is split into 948, 300 and 312 (¢, a, e, r)-
tuples for train, dev and test sets, respectively.

13 Another natural formulation is multi-class classification
given as input a (¢, a) pair with all produced explanations,
which we leave for future work.

14 All templates are shown in Appendix B.

4.2 Models

We experimented with discriminative and genera-
tive seq-to-seq methods for relation prediction. We
fine-tuned BERT-base-cased (Devlin et al., 2019)!°
to embed the full explanation e (for explanation-
aware models +EXP), or the simple template
“c, [SEP],a” (for explanation-agnostic models
-EXP); and use the hidden representation of the
[CLS] token as input to a discriminative classifica-
tion layer. In addition, we followed Huguet Cabot
and Navigli (2021) and framed relation predic-
tion as a sequence to sequence generation problem
by generating (c, a,r) given (c, a, €) for +EXP, or
given (c, a) for -EXP, using teacher forcing. While
less direct, the approach is motivated by recent
successes in formulating classical (structured) pre-
diction problems as seq-to-seq (Bevilacqua et al.,
2021; Nayak and Ng, 2020). Including c and a in
the output lead to more focused r predictions, but
also supports the prediction of entity-pair relations
for explanations involving more than two entities.
We fine-tuned BART-large (Lewis et al., 2020) as
the generative model.'® We compared against a
logistic regression (LR) classifier with TF-IDF fea-
tures, and a majority baseline. All models were
trained on the training set, and hyper-parameters
(Appendix C) were selected based on the dev set.

4.3 Results

Main results Table 5 (left block) presents the
results. The fine-tuned LMs outperform the base-
line models by a large margin, and BART per-

15Tt outperformed other BERT versions, incl. BERT-large.

1We represent the encoder input as “e <subj> ¢ POS,. <obj>
a POS,”, and the decoder input (with teacher forcing at train-
ing time) as “<triplet> ¢ <subj> a <obj>r”. <...> are sentinel
token, and POS, the POS tag of argument . We use the
code base from https://github.com/Babelscape/
rebel.
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2 - g

(c,a) A A < 2 QA L KA dEX < EO S
darkness-light ®
pocket-wallet ®
skunk-smell R | x
printer-ink X O] x
casino-money ® ®
contact-phone | x @) ® X
lesson-learn ® @) X ®
discuss-talk | ® | O X X O

Table 6: Selected relation classification results on un-
ambiguous (top) and ambiguous WAX test instances,
where each row shows the types of true (O) and pre-
dicted (x) relations when applied to the explanations
for a cue-association pair.

forms better than BERT, suggesting the promis-
ing direction of modeling word association rela-
tions with seq-to-seq frameworks. We further ex-
plore this direction in §5. +EXP models (fine-tuned
on full explanations) performed substantially bet-
ter than -EXP models (fine-tuned on (c,a) pairs
with no context), suggesting that explanations pro-
vide signal over and above the knowledge already
encoded in PTLMs. This is confirmed by com-
paring against a BERT zero-shot model, which
consistently performed worse than the majority
class baseline (Overall accuracy of 5.6%). A class-
wise performance analysis of the best model BART
revealed that it was accurate for taxonomic rela-
tions and well-defined attributes (e.g., { SYNONYM,
ANTONYM, PARTOF, LOCATION }), which are
well-established in the literature, while situational
associations (e.g., RESULTIN, HASPREREQUI-
SITE) are not captured by the -EXP model, but are
predicted at much higher quality by +EXP. Full
details are in Appendix D. This concurs with the
open challenge of event representations in NLP
(Sap et al., 2019) and points to future work on tai-
loring models and relation sets. We estimate human
accuracy at 76-79% (Table 2), leaving a substantial
gap between model and human performance to be
addressed in future work.

Relation diversity We evaluated our models sep-
arately on two challenging data subsets to investi-
gate whether models capture the relation diversity
discussed in §3.3: (1) (c, a) pairs with multiple ex-
planations that all refer to the same relation type
(Table 5, right block); and (2) (¢, a) pairs with mul-
tiple relations that refer to different relation types
(Table 5, center block). Transformer-based models

outperform LR, with BART performing best. The
difference between BART +EXP vs BART -EXP
increases compared to Overall for both F1 and Acc,
confirming the value of explicit explanations for
these challenging subsets. Unsurprisingly, the am-
biguous relation scenario is the most challenging.

We further analyze how model predictions differ
from human labels on both relation-ambiguous and
unambiguous (¢, a) pairs. We inspect predicted
labels from the best-performing model BART. Ta-
ble 6 shows representative examples comparing
human and model-predicted relations for unam-
biguous instances (one true relation, top) and am-
biguous ones (multiple true relations, bottom). Al-
though predictions diverge from gold labels, espe-
cially for the challenging ambiguous subset, the
model labels are often reasonable. Consider (dis-
cuss, talk) with the explanation “to discuss some-
thing you must talk about it” and gold label CATE-
GORYEXEMPLAR, was predicted by the model as
HASPREREQUISITE. It is not uncommon that taxo-
nomic (CATEGORYEXEMPLAR) and associative or
situational associations (HASPREREQUISITE, AC-
TION) relations are both valid for an explanation
(Santos et al., 2011), leading to confusions by both
our human annotators and model predictions. Our
raw relation annotations include at least 5 anno-
tations per (c, a, e) tuple, and hence capture this
ambiguity which can be leveraged for model devel-
opment and evaluation in future work. !’

5 Generating Relation Explanations

Natural language inference or commonsense rea-
soning is often framed as mapping a free text input
(e.g., a paragraph) to a structured output (e.g., a re-
lation, (¢, a,r) triple, or a multiple-choice answer).
The underlying reasoning steps typically remain
obscure. Constructing intuitive and faithful expla-
nations for model predictions is an active research
area of increasing impact. Mapping structured rep-
resentations to natural language explanations is one
approach, which has been limited by a lack of suit-
able training data sets. WA X is a parallel data set
of structured relational data, aligned with diverse,
human-generated free text explanations. Here, we
show that it can support models to generate ex-
planations which capture the diversity of human

7Qur analysis also raises the question of how well the pre-
defined relation ontology captures the relations encoded in
the explanations. We clustered the explanations and observed
it broadly aligns with our our relation ontology. See more
details in Appendix 3.3.
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Prompt Generated Explanation
Relation
PARTOF cowgirls wear boots as part of their outfits
EMOTION  if someone is weeping they are likely sad.
= PROPERTY lights are very bright when they are on
"~ PROPERTY a shark has teeth that are very sharp
RESULTIN  a hurricane can cause a major disaster in a com-
munity.
ACTION when trying to decipher a code, you need to first
decipher the words
FUNCTION i use money to make a payment for my car

HASPREREQ when you want to make a payment, you need to
make money

casinos make money by selling alcoholic drinks
casinos have lots of money

(®)

FUNCTION
LOCATION

HASPREREQ money is needed to operate a casino.
RESULTIN  angles can bend in a triangle.

FUNCTION angles can be used to make triangle

MADEOF i prefer my light that is made of very bright glass
LOCATION  water is flowing in a stream T

(©)

TIME water is a river that is flowing
CATEXEMP baked goods are a type of baked goods.
EMOTION i like to clench my fist when i am angry

(d

Table 7: Illustrative examples of BART generated expla-
nations in response to relation prompts of the form “c
and a have a r relation.” For each example, 7 is shown
on the left and c and a are underlined in the generated ex-
planation. Outputs are grouped to illustrate: (a) general
quality, (b) diversity in generation for same (c, a) with
ambiguous relations, and (c,d) unseen relation types
with (c) plausible versus (d) nonsensical outputs.

reasoning. We fine-tune a generative PTLM to
generate e given (c, a,r), noting that other tasks
definitions are conceivable, including jointly gener-
ating structured predictions and explanations, e.g.,
predict (r, e) from (c, a).

5.1 Prompting Relation Explanations

Most relatedly, BART has been used to generate
relational triples from sentences (Huguet Cabot
and Navigli, 2021). Here, we investigate the more
challenging, reverse, direction: generate a free-text
explanation from a given (c, a, r)-triple encoded
into the sentence prompt “c and a have a r rela-
tion”. The output is a short sentence supporting the
prompt. For example, the input “bucket and wash
have a function relation”, could elicit the output “I
use a bucket to wash my car”.

Setup Similar to §4.1, we augment the labeled
training portion of WAX to increase its size and
balance: for each (¢, a, e, ) instance in the training
data, we mask either c or a in the explanation and
fill the blank with the top 10 candidates generated
by BERT-large.'® We down-sampled generated

18We inspected a sample of 80 prompts for validity.

instances of overrepresented relation types, result-
ing in a balanced dataset of 12K (¢, a, e, r) tuples,
which are used to fine-tune BART. The original val-
idation data is used for model selection. Table 11
(Appendix) lists the key hyper-parameters.

We explored the model explanations under four
conditions: (a) prompting with human created
(c, a, r)-triples from WAX (dog, bark, ACTION);
(b) a version of (a) focused on ambiguous (c, a)-
pairs, e.g., (dog, guard, ACTION) and (dog, guard,
FUNCTION); (c) prompted as in (a) but with a rela-
tion unseen in WAX. These triples are often non-
sensical (dog, bark, SYNONYM).

Results Qualitative results in Table 7 show that
(a) explanations are overall relevant, factual and of
high quality; (b) using nucleus sampling (Holtzman
et al., 2020), we can generate different meaningful
explanations for the same prompt; (c) the high qual-
ity extends to inputs that were not seen in WAX;
and (d) for nonsensical triples, the model can still
link the concepts with the given relation (2 and 3
in (d)) possibly leading to tautological outputs; or
ignoring of the relation (1 in (d)). Our analyses
suggest that WA X can be used for fine-tuning and
probing commonsense knowledge in PTLMs, sup-
port future research into explanation generation,
or bridging structured and free-text commonsense
representations. We leave development of a quanti-
tative benchmark to future work.

6 Conclusion

Word associations have been used as a lens into
human conceptual representations for a long time,
however, the types and reasons of these associa-
tions have not been studied at scale. We presented
WAX, a large data set of word associations with
explanations and relation labels. WAX is both an
opportunity better understand the human mental
lexicon, and a repository of relational common-
sense knowledge both structured as (c, a, r) tuples,
and free-text through the associated explanations.
We demonstrated the utility of WAX for supervised
relation classification and explanation generation;
and presented a detailed data set analysis includ-
ing association diversity and data-driven relation
types. In future work, we plan to use WAX in tasks
such as automatically labelling edges in common-
sense knowledge graphs, commonsense question
answering, and natural language inference.
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Ethical considerations

Our study received ethics approval (#2021-22495-
22206-5) from the University of Melbourne ethics
review board.

Limitations We acknowledge that our dataset
is collected from a limited number of English na-
tive speakers, and it can serve as an initial work
to understand the underlying associative reasons
within this group. Caution should be exercised
when drawing general conclusions about human
conceptual knowledge, and an important direction
for future work is an extension to other languages.
Reasons for associations are likely more diverse
than reflected in our data set.

Data Privacy and Usage Our collected data does
not include any personal information except the
worker ID, which we redact from the data set. Our
collected data will be made public for research
purposes.
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A Dataset Collection Details for WA X

Our study received ethics approval with the appli-
cation reference number of 2021-22495-22206-5
from the The University of Melbourne ethics re-
view board.

We collect the WAX dataset by crowdsourcing
via Amazon Mechanical Turk. Participants were
informed what data will be collected, how the data
will be processed and used, and asked for their
explicit consent. To avoid potential confronting
content, we removed profane words'® before sam-
pling cue seeds in Phase 1 (§3.1). The payment for
both experiments was calculated based on the min-
imum wage in the authors’ home country, which is
higher than that of our workers.

Phase 1 collects word associations and corre-
sponding explanations. Next we describe the col-
lection details.

HIT and Payment Each batch (of 5 cue words)
is assigned to 10 workers. Each worker (1) pro-
duces up to three associated words for each cue,
and (2) writes an explanation for each association.
Workers can skip cues, if their meaning is unknown,
or provide fewer than three responses, if they can-
not think of more. Each batch is paid with $0.66
reward with extra bonus up to $1, depending on
the number of known cues, associations and expla-
nations. This task takes approximately 5 minutes,
as estimated in a pilot study. We paid an average
of $1.48 per batch, resulting in an hourly wage of
$17.76 (all amounts in US dollars).

Quality Control Word associations and underly-
ing reasoning are subjective, hence standard quality
assessment via annotator agreement does not apply.
Instead, we introduced a number of strategies to
control quality: clear guidelines,?® careful selec-
tion of workers, and filtering of explanations. A
valid explanation must (1) include the cue and asso-
ciation words, or a morphological variant (e.g., plu-
ral); (2) be a single sentence of 5 to 20 words. We
removed explanations which did not meet the crite-
ria above or follow trivial templates, and batches
where more than 3 of the 5 cues were marked un-
known.

Phase 2 labels explanations with relations. Next
we describe the HIT design and quality control.

Yhttps://www.cs.cmu.edu/~biglou/
resources/bad-words.txt
The full guidelines will be released as part of the dataset.

HIT and Payment Each batch of 30 (c,a,e)
triples is assigned to five workers. For each triple,
workers select the most appropriate relation label
from a given list (see Table 9 for list of labels and
definitions provided to the workers). This task
takes approximately 22 minutes, based on a pilot
study. Each batch is paid at a minimum $1 with
extra bonus up to $8, depending on the annotation
quality. We paid an average of $5.92 per batch,
resulting in an hourly wage of $17.36.

Quality Control We ensure high quality through
(a) detailed instructions; (b) a training phase; (c) se-
lection of 10 reliable crowd workers who achieved
accuracy > 0.5 in training; (d) continuing feedback
to annotators throughout annotation; (e) collecting
labels from five workers for each (c, a, e). If a la-
bel has 3 or more votes it is selected; otherwise the
instance is labeled by two experts (authors of the
paper), and the voting test is re-applied.?! We ob-
tained an annotator agreement (pair-wise Cohen’s
k) of k = 0.42, indicating moderate agreement.

Final quality check Table 8 illustrates the ques-
tions used in our final WA X quality check, as de-
scribed in Section 3.3 in the main paper.

Questions and Examples

Q1: Does the explanation express a valid reason for
associating (¢, a)?

Example: raspberries can be made into jam.

Q2: Does the relation label express a valid relation for
(¢,a)?

Example: (nature, beautiful, hasproperty)

Q3: Does the relation label express the relation for (¢, a)
that is described in the explanation?

Example: (space, stars, partof, space has a lot of stars
in it.)

Table 8: Examples of dataset quality check.

A.1 Relation inventory

Table 9 displays the relation ontology used in phase
2 of data collection, including a definition of each
relation as presented to the crowd workers.

B Relation Templates

Table 10 lists trigger words and phrases used to
automatically map recurring, templated WAX ex-
planations to relations.

2! After this, 32 instances are still not assigned a label with
three votes, and are discarded.
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Broad Category \ Relation \ Definition

Concept-Properties | HASPROPERTY Cue has association as a property; or the reverse. Possible prop-
erties include shape, color, pattern, texture, size, touch, smell,
and taste; or inborn, native or instinctive properties.

PARTOF A part or component of an entity or event.

MATERIALMADEOF The material of something is made of.

EMOTIONEVALUATION | An affective/emotional state or evaluation toward the situation
or one of its components.

Situational TIME A time period associated with a situation or with one of its
properties.

LOCATION A place where an entity can be found, or where people engage
in an event or activity.

FUNCTION The typical purpose, goal or role for which cue is used for
association. Or the reverse way.

HASPREREQUISITE In order for the cue to happen, association needs to happen or
exist; association is a dependency of cue. Or the reverse way.

RESULTIN The cue causes or produces the association. Or the reverse way.
A result (either cue or association) shoud be involved.

ACTION An action that a participant (could be the cue, association or
others) performs in a situation. Cue and association must be
among the (participant, action, object).

THEMATIC Cue and association participate in a common event or scenario.
None of the other situational properties applies.

Taxonomic CATEGORYEXEMPLAR | The cue and association are on different levels in a taxonomy.

SAMECATEGORY The cue and association are members of the same category.

SYNONYM The cue and association are synonyms.

ANTONYM The cue and association are antonyms.

Linguistic COMMONPHRASE The cue and association is a compound or multi-word expression
or form a new concept with two words.

None-of-the-Above | None-of-the-Above Use this label only if other labels can not be assigned to the
instance or you don’t understand the cue, association or explana-
tion.

Table 9: The definition of associative relations used for labelling WAX.

Relation \ Trigger phrase Classification Generation
- BERT BART BART

ANTONYM opposite
PARTOF part of Optimizer AdamW_hf AdamW AdamW
FUNCTION used Max Steps 500 1000 2000
CATEGORYEXEMPLAR | type of, form of Learning Rate SE-05 2E-05 2E-05
HASPREREQUISITE require, need to Batch Size 8 8 4
MATERIALMADEOF make of/by/with
LOCATION grow on, grown in, . : _

live in. on the, find Table 11: Experimental hyper-parameters.
SYNONYM similar, synonym,

another word, define

The final column indicates whether access to expla-
Table 10: Templates used to automatically label ex- ~ nations improved performance.
planations. Trigger word is the text between cue and

association in the explanation.

C Hyperparameters

Table 11 lists the core hyperparameters used in the
relation classification and generation experiments.

D BART class-wise relation prediction
performance

Table 12 shows the class-wise relation classification

performance of BART when fine-tuned on minimal

templates (-EXP) and on full explanations (+EXP).
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BART -EXP BART +EXP

Relation P R FlL | P R Fl AFI
(a) SYNONYM 100.0  83.3 90.9 77.1 72.6  74.8 J
ANTONYM 100.0 100.0 100.0 | 75.0 100.0 85.7 1
ACTION 84.6 61.1 71.0 85.7 55.6 674 J
PARTOF 55.0 100.0 71.0 | 100.0 333 50.0 1
EMOTIONEVALUATION  50.0 100.0 66.7 42.9 60.0 50.0 J
(b) LOCATION 76.9 71.4 74.1 69.7 852  76.7 T
TIME 273 1000 429 33.3  100.0 50.0 T
FUNCTION 23.5 26.7 25.0 63.6 483 549 T
HASPROPERTY 70.0 38.9 50.0 63.9 82.1 71.9 1
COMMONPHRASE 11.1 3.7 5.6 47.6 263 339 T
(c) THEMATIC 0.0 0.0 0.0 17.7 214 194 1T
RESULTIN 0.0 0.0 0.0 50.0 333 400 T
HASPREREQUISITE 0.0 0.0 0.0 22.2 60.0 324 1T
MATERIALMADEOF 0.0 0.0 0.0 16.7 100.0 28.6 T
CATEGORYEXEMPLAR 0.0 0.0 0.0 27.8 455 345 1T

Table 12: Class-wise performance of BART -ExP and BART +EXP. Relations are grouped by change in F1 after
adding explanations (A F1): (a) relations well predicted without explanations, (b) relations can be further improved
when explanations are used, (c) relations cannot be captured without context but some signals from explanations are
learnt to assist the model make correct predictions.
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Abstract

Multimodal sentiment analysis (MSA) is an
important way of observing mental activities
with the help of data captured from multiple
modalities. However, due to the recording or
transmission error, some modalities may in-
clude incomplete data. Most existing works
that address missing modalities usually assume
a particular modality is completely missing and
seldom consider a mixture of missing across
multiple modalities. In this paper, we propose
a simple yet effective meta-sampling approach
for multimodal sentiment analysis with miss-
ing modalities, namely Missing Modality-based
Meta Sampling (M3S). To be specific, M3S for-
mulates a missing modality sampling strategy
into the modal agnostic meta-learning (MAML)
framework. M?>S can be treated as an efficient
add-on training component on existing models
and significantly improve their performances
on multimodal data with a mixture of miss-
ing modalities. We conduct experiments on
IEMOCAP, SIMS and CMU-MOSI datasets,
and superior performance is achieved compared
with recent state-of-the-art methods.

1 Introduction

Multimodal sentiment analysis (MSA) aims to esti-
mate human mental activities by multimodal data,
such as a combination of audio, video, and text.
Though much progress has been made recently,
there still exist challenges, including missing modal-
ity problem. In reality, missing modality is a com-
mon problem due to the errors in data collection,
storage, and transmission. To address the issue with
missing modality in MSA, many approaches have
been proposed (Ma et al., 2021c; Zhao et al., 2021;
Ma et al., 2021b; Parthasarathy and Sundaram,
2020; Ma et al., 2021a; Tran et al., 2017).

In general, methods that address the missing
modality issue usually only consider the situation
where a certain input modality is severely damaged.

*Corresponding author.
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Figure 1: M3S helps MMIN model achieve superior
performance.

The strategies of these proposed methods can be
divided into three categories: 1) Designing new ar-
chitectures with a reconstruction network to recover
missing modality with the information from other
modalities (Ma et al., 2021c; Ding et al., 2014); 2)
Formulating innovative and efficient loss functions
to tackle missing modality (Ma et al., 2021a, 2022);
3) Improving the encoding and embedding strate-
gies from existing models (Tran et al., 2017; Cai
et al., 2018).

In the MSA tasks, most of the proposed methods
focus on the situation where certain modalities
are completely missing and the other modalities
are complete. However, due to the transmission
or collection errors, each modality may contain
partial information based on a certain missing rate,
while existing methods seldom consider this type
of scenario and they are not suitable to be applied
directly in this situation. Besides, our experiments
also verify the inefficacy of existing methods in
such a challenging situation, which is demonstrated
in Section 5.

To address the aforementioned problem, in this
paper, we propose a simple yet effective solution to
the Missing Modality problem with Meta Sampling
in the MSA task, namely M?3S. To be specific, M3S
combines the augmented missing modality trans-

Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the
12th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 121-130
November 20-23, 2022. ©2022 Association for Computational Linguistics



form in sampling, following the model-agnostic
meta-learning (MAML) framework (Finn et al.,
2017). M?3S maintains the advantage of meta-
learning and makes models easily adapt to data
with different missing rates. M3S can be treated
as an efficient add-on training component on ex-
isting models and significantly improve their per-
formances on multimodal data with a mixture of
missing modalities. We conduct experiments on
IEMOCAP (Busso et al., 2008), SIMS (Yu et al.,
2020) and CMU-MOSI (Zadeh et al., 2016) datasets
and superior performance is achieved compared
with recent state-of-the-art (SOTA) methods. A
simple example is shown in Figure 1, demonstrating
the effectiveness of our proposed M3S compared
with other methods. More details are provided in
the experiment section.

The main contributions of our work are as fol-
lows:

* We formulate a simple yet effective meta-
training framework to address the problem
of a mixture of partial missing modalities in
the MSA tasks.

* The proposed method M?3S can be treated as
an efficient add-on training component on ex-
isting models and significantly improve their
performances on dealing with missing modal-

ity.

* We conduct comprehensive experiments on
widely used datasets in MSA, including IEMO-
CAP, SIMS, and CMU-MOSI. Superior per-
formance is achieved compared with recent
SOTA methods.

2 Related Work

2.1 Emotion Recognition

Emotion recognition aims to identify and predict
emotions through these physiological and behav-
ioral responses. Emotions are expressed in a variety
of modality forms. However, early studies on emo-
tion recognition are often single modality. Shaheen
et al. (2014) and Calefato et al. (2017) present
novel approaches to automatic emotion recognition
from text. Burkert et al. (2015) and Deng et al.
(2020) conduct researches on facial expressions
and the emotions behind them. Koolagudi and Rao
(2012) and Yoon et al. (2019) exploit acoustic data
in different types of speeches for emotional recogni-
tion and classification tasks. Though much progress

has been made for emotion recognition with sin-
gle modality data, how to combine information
from diverse modalities has become an interesting
direction in this area.

2.2 Multimodal Sentiment Analysis

Multimodal sentiment analysis (MSA) is a popu-
lar area of research in the present since the world
we live in has several modality forms. When the
dataset consists of more than one modality infor-
mation, traditional single modality methods are
difficult to deal with. MSA mainly focuses on three
modalities: text, audio, and video. It makes use
of the complementarity of multimodal information
to improve the accuracy of emotion recognition.
However, the heterogeneity of data and signals
bring significant challenges because it creates dis-
tributional modality gaps. Hazarika et al. (2020)
propose a novel framework, MISA, which projects
each modality to two distinct subspaces to aid the
fusion process. And Hori et al. (2017) introduce
a multimodal attention model that can selectively
utilize features from different modalities. Since
the performance of a model highly depends on the
quality of multimodal fusion, Han et al. (2021b)
construct a framework named MultiModal InfoMax
(MMIM) to maximize the mutual information in
unimodal input pairs as well as obtain information
related to tasks through multimodal fusion process.
Besides, Han et al. (2021a) make use of an end-to-
end network Bi-Bimodal Fusion Network (BBFN)
to better utilize the dynamics of independence and
correlation between modalities. Due to the unified
multimodal annotation, previous methods are re-
stricted in capturing differentiated information. Yu
etal. (2021) design a label generation module based
on the self-supervised learning strategy. Then, joint
training the multimodal and unimodal tasks to learn
the consistency and difference. However, limited by
the pre-processed features, the results show that the
generated audio and vision labels are not significant
enough.

2.3 Missing Modality Problem

Compared with unimodal learning method, mul-
timodal learning has achieved great success. It
improves the performance of emotion recognition
tasks by effectively combining the information from
different modalities. However, the multimodal data
may have missing modalities in reality due to a
variety of reasons like signal transmission error
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and limited bandwidth. To deal with this problem,
Ma et al. (2021b) propose an efficient approach
based on maximum likelihood estimation to in-
corporate the knowledge in the modality-missing
data. Nonetheless, the more complex scenarios like
missing modalities exist in both training and test-
ing phases are not involved. What’s more, recent
studies aim to capture the common information in
different types of training data and leverage the
relatedness among different modalities (Ma et al.,
2021a; Tran et al., 2017; Parthasarathy and Sun-
daram, 2020; Wagner et al., 2011). To solve the
problem that modalities will be missing is uncer-
tain, Zhao et al. (2021) put forward a unified
model: Missing Modality Imagination Network
(MMIN). Ma et al. (2021c¢) utilize a new method
named SMIL that leverages Bayesian meta-learning
to handle the problem that modalities are partially
severely missing, e.g., 90% training examples may
have incomplete modalities.

3 Methodology

3.1 Problem Description

The multimodal sentiment analysis aims at pre-
dicting the sentiment labels )’ based on the model
f(X;0) given the multimodal data X'. We con-
sider the input data with three modalities, i.e.
X = (A, V, L), where A, V and L represents
audio, video and linguistic data, respectively. In
this paper, we tackle the missing modality issue,
where each modality can include missing data.

Algorithm 1 Meta-Sampling Training

Input: Multimodal dataset (X = (A, V,L),));
number of iterations K for inner loop; inner
learning rate «; outer learning rate [3; esti-
mation model f(-;0); model’s loss function

L(f, D).

1: while not converged do

2: Sample batch of data A} and A5 from X.
3: Get Xy = T(X1;F)and Xp = T (Xo; F).
4: Set Oy < 06

5: Meta-train:

6: forn=0to K —1do 3

7 0,11 < 0,—aVy, | (f(Xl; en),yl)
8: end for

9: 0% «+— Ok

10 Meta-update:

11: 0<—9—ﬁV@*l(f(i’2;9*),372>
12: end while

3.2 Augmented Missing Modality Transform

Given a sample X; = (A;,V;, L;) from X, we
use a augmented transform 7 (X; ; F) to generate
a random sample with missing data based on a
distribution F. Specifically, for each modality
m € {a,v,l}, we define a missing ratio r,, €
[0, 1], where a, v and [ stands for audio, video and
linguistic modality, respectively. For the encoded
feature in each modality m, we replace the values
between [Ap,, Ay + ki, — 1] with zeros, where
ky, represents the number of missing values with
km = |Tm - mm] and T, is the dimension of the
encoded feature. )\, is sampled from the uniform
distribution, i.e., Ay, ~ U(0, Ty, — ky,). As aresult,
the augmented sample with missing modality can be
obtained by Xi = T(X;;F), where F represents
the composition of uniform distributions for each
individual modality.

3.3 Training with Meta-Sampling

Our M3S follows MAML training framework (Finn
et al., 2017) with augmentation sampling. For each
training iteration, we adopt the following steps.

First, we sample two independent batch of data,
X} and X>, based on the augmented missing modal-
ity transforms, 7 (X;; F) and T (Xy; F), where
the missing rate for each modality is determined by
the sampling distribution F. 231 and 2?2 are used as
tasks from support set and query set, respectively,
in the meta-learning.

Then, in the meta-train process, the model’s
parameter 6 is updated using gradient descent based

on the loss function (f(z’?l; 0), y1> with the inner
learning rate « for each iteration n as follows:

Oni1 < O — ¥, L (F(#1:0.), 1), ()

where ) is the set of sentiment labels of /'\?1, and
the loss function [ ( f(X1;0), yl) is determined by
loss used in each base model (i.e., MMIM, MISA,
Self-MM, MMIN. See Section 4.2 for more details).
The meta-train process is conducted for K iterations.
We denote O as 0*.

Finally, we use the query set X, and its set of
sentiment labels ) in the outer loop meta-update
step. The model parameters are updated with the
learning rate S as follows:

06— BVl (f(zég;e*),yQ) @

The whole algorithm in general case is shown
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Figure 2: The Overall Architecture of M3S. We first use augmented transform to generate two batches of data for
features from each modality. Then the meta-train and meta-update are conducted on the two batches of data to learn

the model parameters 6.

in Algorithm 1 and Figure 2 illustrates the meta-
sampling training process.

4 Experiment Setup

In this section, we present the setup of our ex-
periments, including the used datasets, baseline
methods, evaluation metrics, and implementation
details of the proposed method.

4.1 Datasets

We conduct our experiments on the following three
datasets, i.e., IEMOCAP (Busso et al., 2008), SIMS
(Yu et al., 2020) and CMU-MOSI (Zadeh et al.,
2016). The statistics of the datasets are reported in
Table 1.

* JEMOCAP comprises of several recorded
videos in 5 conversation sessions, and each
session contains many scripted plays and di-
alogues. The actors performed selected emo-
tional scripts and also improvised hypothetical
scenarios designed to elicit specific types of
emotions, which provided detailed informa-
tion about their facial expressions and hand
movements.

» SIMS dataset is a multimodal sentiment anal-
ysis benchmark containing 2281 video clips
from various sources (i.e., movies, shows, TV
serials, etc.). SIMS contains fine-grained an-
notations of different modalities and includes
people’s natural expressions in video clips.
And each sample in SIMS dataset is labeled
with a score from -1 to 1, standing for senti-
ment response (i.e., from strongly negative to
strongly positive).

Dataset Train Valid Test All
SIMS 1368 456 457 2281
MOSI 1284 229 686 2199
IEMOCAP 4446 3342 3168 10956

Table 1: Statistics of the Used Datasets

* CMU-MOSI has 2199 video segments in total,
which are sliced from 93 YouTube videos.
The videos address a large array of topics like
books, products, and movies. In these video
segments, 89 narrators show their opinions
on different topics. Most of the speakers are
around 20-30 years old. They all express
themselves in English, although they come
from different countries.

4.2 Baseline Methods

We use four recent SOTA methods for comparison
in the experiments. The methods include MMIM
(Han et al., 2021b), MISA (Hazarika et al., 2020),
Self-MM (Yu et al., 2021) and MMIN (Zhao et al.,
2021), which are summarized as follows.

T MMIM helps mutual information reach max-
imum and maintains information related to
tasks during the process of multimodal fusion,
which shows significant results in multimodal
sentiment analysis tasks.

T MISA is a novel model in emotion recognition
that represents modality more effectively and
improves the fusion process significantly.

T Self-MM has novel architecture containing
several innovative modules (like a module for
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Method Self-MM (SIMS) MMIN (IEMOCAP)
MAE Corr Acc-2 F1-Score Acc Uar F1-Score
ORIG 0.5171 0.3918 0.7291 0.6980 0.6136 0.6403 0.6049
ORIG + SPL-TRN  0.5049 0.4080 0.7392 0.7102 0.6357 0.6518 0.6235
ORIG + M3S 0.5053 0.4091 0.7405 0.7119 0.6398 0.6536 0.6296
AoRIG 4 0.0118 10.0173 10.0114 1 0.0139 10.0262 1 0.0133 1 0.0247
Method MISA (MOSI) - MMIM (MOSI)
MAE Corr Acc-7 - MAE Corr Acc-7
ORIG 0.8886 0.7349 0.3863 - 0.7175 0.7883 0.4592
ORIG + SPL-TRN  0.8279 0.7355 0.4155 - 0.7126 0.7825 0.4650
ORIG + M?3$ 0.8393 0.7346 0.4282 - 0.7014 0.7985 0.4852
AoRric 40.0493 ] 0.0003 1 0.0419 - 40.0161 10.0102 1 0.0260

Table 2: Results of four baseline models with different training methods applied. Input and test data both have
missing rates between 40% and 60%. ORIG stands for original model; SPL-TRN stands for sampling-training.
Aoricg presents the improved performance based on original model that M3S has achieved.

label generation) and reaches brilliant results
in multimodal sentiment analysis tasks.

7 MMIN handles the problem that input data
has uncertain modalities completely missing
and achieves superior results under various
missing modality conditions.

4.3 Evaluation Metrics

Following the four baseline methods mentioned
above, we use the following evaluation metrics,
including mean absolute error (MAE), Pearson
correlation (Corr), binary classification accuracy
(Acc-2), weighted F1 score (F1-Score), accuracy
score (Acc), unweighted average recall (Uar), and
seven-class classification accuracy (Acc-7). Acc-
7 denotes the ratio of predictions that are in the
correct interval among the seven intervals ranging
from -3 to 3. For all metrics, higher values show
better performance except for MAE.

4.4 Implementation Details

Hyperparameter Settings. The settings of inner
learning rate, outer learning rate and batch size
{a, B, batch_size} are as follows: MMIN {2e-4,
le-4,256}; MMIM {le-3, le-3, 32}; MISA {le-4,
le-4, 128}; For Self-MM, the learning rate for three
modalities {A, V, L} is {5e-3, 5e-3, Se-5}, and the
batch size is 32.

Feature Extraction Details. Following the base-
line methods, we adopt the extracted features as
the input for each modality. The feature extraction
methods on each modality {4, V, L} are listed as

follows: MMIN {OpenSMILE-"IS13_ComParE"
(Eyben et al., 2010), DenseNet (Huang et al.,
2017) trained on FER+ corpus (Barsoum et al.,
2016), BERT (Devlin et al., 2018)}; Self-MM,
MMIM, MISA {sLSTM (Hochreiter and Schmid-
huber, 1997), SLSTM, BERT}.

Experimental Details. We use Adam as the
optimizer for all four baseline models. The
training epoch for {MMIN, MMIM, MISA} is
{60,40,500}. Self-MM adopts the "early stop"
strategy to obtain the best result. Therefore, its
training epoch is unfixed. In Section 5.1, We
compare the performance of three different train-
ing methods dealing with missing modalities in
our experiment results: 1) original model’s train-
ing method (ORIG), where the missing rate of
each sample is fixed along the training process
during different epochs; 2) original model with
Sampling-Training strategy applied (ORIG + SPL-
TRN), which adopts augmented sampling without
meta-learning process, as illustrated in Section 3.2;
3) original model with M3S added on (ORIG +
M3S), which is the proposed method.

5 Results and Analysis
5.1 Main Results

Built on the baseline models, we conduct experi-
ments with the proposed M>?S method and show
its effectiveness in Table 2. The missing rate is
set as the medium rate, between 40% and 60%.
Since M3S can be an add-on component to existing
methods with the capability of dealing with missing

125



Input Missing Rate Method MMIN (IEMOCAP) MMIM (MOST)
Acc Uar F1-Score MAE Corr Acc-7
ORIG 0.5849 0.5915 0.5748 0.7132 0.7905 0.4577
60% ~ 80% . ORIG+SPL-TRN _ 0.5812 05901  0.5689  0.7268 07867 = 0.4549
ORIG + M3S 0.5900 0.6026 0.5764 0.7208 0.7890 0.4588
AoRric 170.0051  10.0111 10.0016 10.0076 | 0.0015 1 0.0011
ORIG 0.6136 0.6403 0.6049 0.7175 0.7883 0.4592
40% ~ 60% . ORIG+SPL-TRN _ 0.6357 _ 0.6518 ~ 0.6235 _ 0.7126  0.7825 _ 0.4650
ORIG + M3S 0.6398 0.6536 0.6296 0.7014 0.7985 0.4852
AoRIC 170.0262 10.0133 10.0247 | 0.0161 710.0102 1 0.0260
ORIG 0.6192 0.6453 0.6078 0.7129 0.7893 0.4694
20% ~ 40% . ORIG+SPL-TRN _ 0.6335  0.6513 06221  0.7218 07832 0.4665
ORIG + M3S 0.6367 0.6504 0.6266 0.7049 0.7923 0.4838
AoRric 170.0175 10.00561 10.0188 | 0.0080 71 0.0030 1 0.0144

Table 3: Results on MMIN and MMIM under three different missing rate levels. Test data have the same range of

missing rates as input data.

—&— ORIG
—&— ORIG + 5PL-TRN

—a— ORIG + MFS

Valid Loss

10 5 0 Best
Epoch

(a) Valid Loss

-~ ORIG
=&~ ORIG + SPL-TRN

—& ORIG + M5

11

10

Test Loss

09

08

07

10 5 20 Best
Epoch

(b) Test Loss

Figure 3: Validation and testing losses of three methods along training built on the MMIM Model.

modality, we compare M3S with Sampling-Training
(SPL-TRN) and four original baseline methods.
For all the testing datasets, M3S achieves supe-
rior performance in almost all evaluation metrics
compared with the original baseline methods, as
expected. Since SPL-TRN only adopts augmented
sampling without meta-learning process, it achieves
worse performance than our M3S method in most
of the experiments. This result demonstrates that
the meta-sampling training process can better learn
the common knowledge from other modalities to
deal with the missing information. It also verifies
that meta-training can better utilize the informa-
tion from random augmentations. As a matter of
fact, with the help of M3S, MMIN model achieves
the highest Acc, highest Uar, and highest F1-Score.
Also, built upon the other three baselines (Self-MM,

MISA, MMIM), M3S helps in reaching the lowest
MAE, highest Corr, and highest Acc in most situa-
tions, which shows the efficiency and universality
of M3S.

5.2 Studies of Various Missing Rates

To verify the effectiveness of methods on differ-
ent missing rates, we conduct experiments on two
datasets by varying the input missing rate to three
levels (i.e., 20%-40%, 40%-60%, and 60%-80%).
Results in Table 3 show that for nearly all the
cases, our method M3S outperforms ORIG and
ORIG+SPL-TRN methods. Specifically, when in-
put missing rate falls within the range 40%-60%,
ORIG+M?S shows the greatest increment in all
metrics, which shows that M3S achieves the most
significant effect on models with medium missing
level.
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Figure 4: Uar and F1-Score of three methods along
training built on the MMIN Model.

5.3 Convergence Comparison

As is shown in Figure 3(a) and 3(b), we plot the
process of MMIM model’s loss decline. Itis clearly
shown in plots that M3S helps original model con-
verge to the lowest loss after 10 to 15 epochs of
training. As shown in Figure 4(a) and Figure
4(b), we also select MMIN model and plot its con-
vergence process because the trend of its metrics
changes more obviously. These two figures, along
with Figure 1 show the characteristic of our method:
although M?3S does not show strong competitive-
ness in the first few epochs, with the progress of
training, M>S helps model achieve faster growth
of various metrics and finally converge to a higher
result.

5.4 Adaptation across Different Missing Rates

In order to further discover the efficiency of our
method in helping models adapt to different missing
rates, we conduct experiments with testing rates
different from input rates. As shown in Table 4,
compared to ORIG method, we can see that M3S
significantly improves nearly all metrics by at least
1%. It is worth noticing that a large missing rate

. ORIG+ | ORIG +
MMIN | ORIG CSPLATRN | MPS | Aoria
Acc | 0.6035 1 0.6152 1 0.6206 ' 1 0.0171
Uar | 0.6281 | 0.6166 | 0.6140 | | 0.0141
Fl-Score | 0.5953 | 0.6023 | 0.6072 ' 1 0.0119
i ORIG+ | ORIG + |
MMIM | ORIG  SPLTRN | MS | Aoric
MAE | 07201 + 0.7412  0.7025 1 | 0.0176
Corr | 0.7794 | 0.7695 | 0.7884 | 1 0.0090
Acc-7 | 04534 1 04461 | 04825 1 10.0201

Table 4: Results on MMIN (IEMOCAP) and MMIM
(MOSI), where input data have missing rates 40%-60%
and test data have missing rates 60%-80%.

(60%-80%) is adopted in the testing, and M3S
achieves much better performance than the other
two methods. For example, the Acc-7 of M3S on
MOSI dataset is over 3.6% higher than the one
of ORIG+SPL-TRN method, demonstrating the
capability of M3S when different modalities have
large missing information.

5.5 Further Discussion and Limitations

The qualitative results and ablation study above
show that M3$ significantly helps baseline models
improve their performance on inputs with various
missing rates. However, when we apply M?S to
Self-MM model and conduct experiments on CMU-
MOSI dataset, we find that the results show little
difference from the original model’s result. Be-
sides, from Table 2 we know that M3S improves
Self-MM’s performance on SIMS dataset signif-
icantly. Hence we assume that this is because
Self-MM model has good adaptability to CMU-
MOSI dataset but not SIMS dataset when both
datasets have a mixture of missing across modali-
ties. Therefore, some models may show adaptivity
to certain datasets. And M3S may not significantly
improve the model’s performance on those datasets
that model is already quite adaptive to.

Also, as shown in Table 3, it’s revealed that when
inputs have a large missing rate (60%-80%), M3S
becomes limited in improving evaluation metrics.
We attribute this to the change of sampling range.
That is, when inputs have missing rates no more than
60%, we can create sufficient augmented missing
data to perform M3S. However, when inputs have
large missing rates, we can only get augmented
data with missing rates restricted to a smaller range.
Thus we get a smaller sampling range containing
large missing rate data, which makes M3$ limited.

But in general, M3S method is recommended as it
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Self-MM (SIMS) MMIN (IEMOCAP)
P-value of t-test
MAE Corr Acc-2 F1-Score Acc Uar F1-Score
P(T <t) 0.1959 0.0384 0.0018 0.0615 0.0007  7.95E-5 0.0005
Povalue of t-test MISA (MOSI) - MMIM (MOSI)
MAE Corr Acc-7 - MAE Corr Acc-7
P(T <t) 0.0473  0.1873  0.0405 - 0.0277 0.1971 0.0263

Table 5: Two-tailed significance test (t-test) of M3S.

is easy to be added on different models and efficient
in improving models’ performance on multimodal
sentiment analysis tasks most of the time, especially
when input data has a medium missing rate. As
shown in Table 5, nearly all evaluation metrics’
P-value is smaller than 0.05 in the significance test,
indicating significant improvement when M3 is
applied.

6 Conclusion and Future Work

In this paper, we focus on a challenging problem,
i.e., multimodal sentiment analysis on a mixture of
missing across modalities, which was seldom stud-
ied in the past. We propose a simple yet effective
method called M?3S to handle the problem. M?3S
is a meta-sampling training method that follows
the MAML framework and combines the sampling
strategy for augmented transforms. M3S maintains
the advantages of meta-learning and helps SOTA
models achieve superior performance on various
missing input modalities.

In the experiments, we show that our method M>S
improves four baselines’ performance and helps
them adapt to inputs with various missing rates.
Furthermore, M3S is easy to realize in different
multimodal sentiment analysis models. In future
work, we plan to investigate how to better combine
M3S with other training methods and extend the
method to other multimodal learning tasks.

Ethical Considerations

Our proposed method aims to help improve the
performance of different SOTA methods on data
with various missing rates. All experiments we
conduct are based on the open public datasets (Sec-
tion 4.1) and pretraining baseline methods (Section
4.2). When applying our method in experiments,
there is minimal risk of privacy leakage. Further-
more, since our method is an add-on component

for different baselines, it is safe to apply it as long
as the baseline model provides adequate protection
for privacy.
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Abstract

This paper focuses on the generation of nat-
ural language questions based on SPARQL
queries, with an emphasis on conversational
use cases (follow-up question-answering). It
studies what can be achieved so far based
on current deep learning models (namely pre-
trained TS and BART models). To do so, 4
knowledge-based QA corpora have been ho-
mogenized for the task and a new challenge
set is introduced. A first series of experiments
analyzes the impact of different training se-
tups, while a second series seeks to understand
what is still difficult for these models. The re-
sults from automatic metrics and human evalu-
ation show that simple questions and frequent
templates of SPARQL queries are usually well
processed whereas complex questions and con-
versational dimensions (coreferences and el-
lipses) are still difficult to handle. The experi-
mental material is publicly available!.

1 Introduction

Knowledge-based approaches have recently be-
come popular in the field of question answering
(QA) and dialogue, raising the task of semantic
parsing that seeks to map a user’s input questions
to a formal representation that can be queried in a
Knowledge Graph (KG). Alternatively, techniques
have been proposed to verbalize small KGs, for in-
stance to summarize information to a user. Still, the
task which consists in verbalizing formal queries
has been less studied. Yet, interesting applications
could be derived from SPARQL-to-text question
generation: for instance, the generation of tutoring
systems where users can exercise on a topic, or the
simulation of users for QA or dialogue systems.
This is why this paper studies SPARQL-to-text
question generation, with a particular considera-
tion attached to the generation of questions in a
conversational context.

"https://github.com/Orange—-OpenSource/
spargl-to-text
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The objective of the paper is to study what can
be achieved so far on SPARQL-to-text question
generation using datasets and pretrained models
available in the literature. In this regard, the contri-
butions are the following:

1. The release of 5 knowledge-based QA cor-
pora (including 2 conversational ones) that
have been homogenized and prepared for the
SPARQL-to-text task: 4 of them are derived
from existing corpora, and the last one is a new
challenge set with unseen query types and do-

mains.

The comparison of different fine-tuning ap-
proaches for BART and T5, using different in-
put features and training data. As a results, we
show that feeding the model with the expected
answer and conversational contexts helps. We
also show that these information can be effi-
ciently replaced by a paragraph when available.

. An in-depth analysis of the models’ perfor-
mance with respect to varied query types.
This highlights the limits of the current
transformer-based approaches, especially to pro-
cess rare types of queries, and to generate coref-
erences and ellipses.

An evaluation of the intelligibility and rel-
evance of the generated questions through
quizzes where the participants have to answer
follow-up questions based on a short paragraph.
The results show that the models are still far
from human questions but they can be used for
some types of queries.

After a literature review in Section 2, Section 3
and 4 present the datasets and models, respectively.
Then, prototyping experiments using different train-
ing setups are described in Section 5, while a de-
tailed analysis of the models’ performance is given
in Section 6.

Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the
12th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 131-147
November 20-23, 2022. ©2022 Association for Computational Linguistics



2 Related Work

Question generation frequently refers to the task
of generating a natural language questions based
on a text (Zhang et al., 2021). The generation can
be conditioned on the manually spotted expected
answer in the text (Murakhovs’ka et al., 2022; La-
ban et al., 2022), whereas generating them in a free
way (Duan et al., 2017), even potentially generating
possible answers (Tafjord and Clark, 2021).

In the field of knowledge-based approaches, sev-
eral propositions have been made for the verbaliza-
tion of formal queries (in SQL, SPARQL, OWL,
etc.) through rules or templates (Ngonga Ngomo
et al., 2013, 2019; Kusuma et al., 2020), or in-
termediate representations (Guo et al., 2019; Gan
et al., 2021), leading to verbalizations with a vari-
able naturalness. Using neural approaches, several
contributions have been made to generate ques-
tions from RDF triples (Han et al., 2022) or small
KGs depicting multi-hop questions (Serban et al.,
2016; Kumar et al., 2019). In (Bi et al., 2020),
this principle is improved by enriching the entities
from the triples with information from a broader
KG. A limit of these approaches is that they cannot
cover several features offered by query language
like SPARQL (e.g., union of triples, filters, aggre-
gation functions, etc.). Hence, to the best of our
knowledge, our work is the first attempt to study
the verbalization of SPARQL seeking to generate a
large diversity of questions types.

Among other related work, Knowledge-Based
QA (KBQA) tasks are interesting to study since
they provide data with paired natural language
question and formal representation (usually triples
or SPARQL queries) (Bordes et al., 2015; Dubey
et al., 2019; Kacupaj et al., 2020; Biswas et al.,
2021; Kacupaj et al., 2021; Cui et al., 2022). It
is important to note that some of these corpora
overlap because they are extensions or refinements
of common ancestors. Less datasets exist when
considering the conversational KBQA: ConvQues-
tions (Christmann et al., 2019) and CSQA (Saha
et al., 2018). While the former does not provide
the formal representations associated to the nat-
ural language questions, the latter is relevant for
our task. Finally, in the field of dialogue, propo-
sitions have also raised to enable interoperability
with KGs through a formal language (Lam et al.,
2022). However, annotated datasets are usually pri-
vate or small. Hence, the conversational dimension
in our SPARQL-to-text task is original.

3 Datasets

In this paper, 4 KBQA corpora from the literature
are used: SimpleQuestions (Bordes et al., 2015),
LC-QuAD 2.0 (Dubey et al., 2019), ParaQA (Kacu-
paj et al., 2021), and CSQA (Saha et al., 2018).
They have different characteristics, and they do not
overlap. Additionnaly, a new corpus is introduced
to serve as a challenge set, i.e. no training data is
available for it. This corpus has been generated
based on the WebNLG v.3.0 corpus (Ferreira et al.,
2020), and is referred to as WebNLG-QA. This sec-
tion presents an overview of the 4 corpora from the
literature, the generation process and resulting con-
tent of WebNLG-QA, and how all these datasets
were homogenized. General statistics and exam-
ples for the 5 resulting SPARQL-to-text datasets
are given in Table 1 and 2.

3.1 Existing corpora

SimpleQuestions originally does not include
SPARQL queries but (subject, property, object)
triples. Each triple is paired with a question whose
expected answer is either the object or the subject
of the triple. Hence, all questions are asking for
an entity ("what is...", "which...", "who..."). The
triples’ elements were initially taken from Free-
Base, but were ported to WikiData.

LC-QuAD 2.0 and ParaQA directly include
SPARQL queries for both DBPedia (WikiData as
well in LC-QuAD 2.0). Questions are more varied
than in SimpleQuestions. Expected answers can be
entities, numbers or booleans. Some question are
even unanswerable in LC-QuAD 2.0°. Questions
in LC-QuaD 2.0 are sometimes of poor quality as
they were semi-automatically generated, whereas
ParaQA’s questions are more natural but the dataset
is much smaller.

CSQA is a very large corpus of conversational
question-answering based on Wikidata. Queries are
given in a custom formalism instead of SPARQL.
The questions include coreferences and ellipses,
potentially with clarification steps when they are
ambiguous. CSQA covers a wide range of ques-
tions types such as (single or multiple triples, en-
tity/numeric/boolean answers, comparative ques-
tions, etc.). Nonetheless, the linguistic diversity of
the questions is low and some are unnatural.

https://github.com/askplatypus/
wikidata-simplequestions

3This means that no answer can be found in the KG, not
that the question does make sense. Hence, this should not
bother the SPARQL-to-text models.
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SimpleQuestions | LC-QuAD 2.0 ParaQA CSQA WebNLG-QA
Questions (train/valid/test) | 34K /5K / 10K | 21K /3K /6K | 3.5K /500 /1K | 1.5M / 167K / 260K 332
Dialogues (train/valid/test) - — - 152K / 17K / 28K 100
Reference questions per query 1 1 1 1 2
Characters per query 70 (£ 10) 108 (4 36) 103 (& 27) 163 (+100) 100 (& 33)
Tokens per question 7.4 (£2.1) 10.6 (£ 3.9) 10.3 (£3.7) 10.0 (£4.1) 8.4 (£4.5)

Table 1: Statistics for each SPARQL-to-text dataset. Standard deviations are given between brackets.

Query

Question Answer

SELECT DISTINCT 7 WHERE

what is a book by Laura Ingalls

SimpleQ. { 7f property:author resource:Laura_Ingalls Wilder } Wilder A Little House Traveler
LC-0. 2.0 SELECT ( COUNT ( ?k) AS ?y) How many operators does MiG-21 19
Q2. { resource:MiG-21 property:operator 7k } have?
SELECT DISTINCT ?m WHERE ‘Who are all the people who used to Brynn Carman,
ParaQA  { resource:Alexa_ Scimeca property:current_partner 7p . figure skate with the current Shawnee Smith, Andrea
?p property:former_partner ?m } partner of Alexa Scimeca? Poapst
SELECT DISTINCT ?x WHERE
x i ‘Which occupation is the profession .
{ 7x rdf:type ontology:occupation . politician
. . : of Edmond Yernaux ?
resource:Edmond__Yernaux property:occupation ?x }
CSQA . R -
SELECT DISTINCT ?7a WHERE . Notitia Parliamentaria,
: : iea s Which collectable has that ) A
{ 7a property:main_ subject resource:politician . . . L - An History of the
7a rdf:type ontology:collectable } occupation as its principal topic ? Counties, etc.
SELECT DISTINCT ?y WHERE . . .
What is used as an instrument in L R
{ { { resource:Sludge_metal property:instrument ?y } Sludee Metal or in Pos 12 Singing, Synthesizer
UNION { resource:Post-metal property:instrument ?y > } } udge Metal or in Post-metal?
WebNLG-

SELECT DISTINCT ?e WHERE
QA { resource:Sludge__metal property:instrument ?e }

And what about Sludge Metal in

Singin,
particular? Bins

ASK WHERE { resource:Nord__(Year_of_ No_Light_album) Does the Year of No Light album

property:genre resource:Sludge_metal }

Y 3
Nord belong to this genre? s

Table 2: Examples for each corpus. For conversational corpora (CSQA and WebNLG-QA), follow-up questions
are shown to illustrate the notion of coreference and ellipsis.

3.2 WebNLG-QA (challenge set)

To test the generalization of the models to
be trained, a new conversational QA dataset,
WebNLG-QA, is proposed for the sole evaluation
purpose. This corpus has been generated based
on WebNLG v.3.0 (Ferreira et al., 2020), a corpus
associating small KGs (1-7 triples) with several
possible verbalizations (short texts transcribing the
KG’s information). This corpus was built in two
steps. First, follow-up SPARQL queries were auto-
matically generated for each KG from WebNLG.

The query generation algorithm allows for a
wide range of query types and combinations (num-
ber of triples, logical connectors, filters, etc.). Espe-
cially, it includes mechanisms to favor coreferences
and ellipses by reusing entities and triples from the
last generated query. Some queries can be unan-
swerable based on the KG, or even be nonsensical
in order to test the genericity of the models. Since
the purpose is to probe the limits of the models, the
algorithm permanently tries to balance the distri-
bution over each type of queries by prioritizing the
rarest ones at each new generation step.

Algorithm 1 details how this is achieved. Consid-
ering the set of elementary types 7 (line 1), we im-
plemented a function ¢; for each query typet € T.
This function reads a source knowledge graph and
tries to derive a query of the given type (line 7).
Depending on the type, the query can be built ei-
ther from scratch, or by modifying a baseline query
in order to fit the target type*. The dependency
possibilities are listed in a specific variable (lines. 4
and 10). Furthermore, the function ¢; relies on a set
of input constraints C', which are implemented as
logical predicates on the expected query. Typically,
this enables specifying the desired number of com-
mon elements (resources, properties, etc.) between
the generated query and the previous ones. For in-
stance, the types coreference or ellipsis expect cer-
tain common elements between queries, whereas
other types do not (in order to prevent consecutive
queries from going around in circles). The creation
of an unanswerable query can be constrained such
that no answer can be found in GG but an answer

*For instance, the generation of boolean query is imple-
mented as changing to ASK the verb of a SELECT query.
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—

: enum 7 < {single_triple, two_triples, ..., true, false,
coreference, ellipsis }

: var 2 : KG < union of all KGs

: var frequency : Dict(T — N)

. var dependencies : Dict(T — List(7))

: function ~.(Q: list of existing queries for a given graph,

G: KG) : Set ( Function(Query) : B )

> Build a set of conditions (predicates) that a query

must satisfy for the type ¢ given the context of the

generation () on a the graph G to get fully validated

7: function ¢+(G : KG, ¢’ : base query, C: set of predicates)
: Query or unde fined

8: > Try to create a query of type ¢t based on G, op-
tionally from ¢’ for some types, and satisfying the
conditions C'. Return unde fined if no such query
can be created.

9: function GENERATE(f: Type, G: knowledge graph,

Q: list of generated queries for G) : Query or

unde fined

DR W

a

10: dep_types : List(T) < dependencies]t]

11: q : Query < undefined

12: q' : Query <+ undefined

13: > If type ¢ requires to be build on top of another query,
try first to build this intermediate query

14: if dep_types # [] then

15: success : B + false

16: while dep_types # [] and —success do

17: t' < pop least frequent from dep_types

18: Ct/ — Ryt (Q, G)

19: q' <+ GENERATE(t', G, Q)

20: if ¢’ # undefined then

21: > Now try to include type t in query ¢’

22: Ci + Kt (Q, G)

23: g+ ¢:(G,q',Cr)

24: success < true

25: ‘ else > If no intermediate query to build, directly try to
build for type ¢

26: Ct + Ky (Q, G)

27: q < ¢t(G>ql7Ct)

28: return q

Algorithm 1: Query generation for a given type ¢.

exists in a larger, more general, KG, denoted as 2
(line 2). Likewise, nonsensical queries can be gen-
erated such that their elements are never observed
together in any triple from (2. All these constraints
are given by auxiliary type-specific function k;
(line 5). The generation of one query is orches-
trated by the function GENERATE (lines 9-28) for
the given input type ¢, knowledge graph G, and
the previous queries () generated on it. The bal-
ancing scheme over the type distribution is man-
aged thanks to global statistics of all queries gener-
ated so far on all KGs (global variable frequency,
line 3). For each KG in WebNLG, the overall pro-
cess (not described in Algorithm 1) iteratively gen-
erates queries until none can be generated anymore,
i.e., calls to GENERATE return unde fined for all
types t € 7. Examples of generated queries are
given in Appendix A.1.

Then, given the whole set of resulting SPARQL

queries, questions were manually annotated for the
queries of a selection of 100 KGs. These KGs
were selected from the test set of WebNLG such
that the distribution of the query types is as uni-
form as possible. Two natural language questions
were manually annotated by one annotator for each
SPARQL query. Given a query, the annotator was
asked to generate questions with different surface
forms to reflect the diversity of the natural language.
This results in 100 “dialogues” for a total of 332
questions (from 2 to 7 per dialogue).

3.3 Homogenization

All datasets were processed to contain SPARQL
queries unified in a similar way as the following
query whose verbalizaton could be “how many cur-
rencies co-exist within the countries of Europe?”:

Target(s) (variables +
aggregation function)

Verb

Triple patterns

7e property:part_of resource:Europe .i
7e property:currency 7y i

In particular, all entity IDs or URIs from Wiki-
Data or DBPedia were replaced by their label.
Entities, properties and types were prefixed by
"property:", and "ontology:",
respectively. Triples were shuffled to prevent
the model to learn in a biased way on the static
ordering of some datasets. Variable names were
anonymized with a single random letter (still
prefixed by "?") and some constructions were
randomly replaced by equivalent forms®.

" "
resource: ,

For SimpleQuestions and CSQA, special ef-
forts were required since they do not come with
SPARQL queries. Especially for CSQA, we
relied on the formalism from CARTON (Plepi
et al., 2021) as an pivot representation from which
SPARQL queries were generated by ourselves.

By default, the train/validation/test splits are the
same as for the original datasets. In the case of LC-
QuAD 2.0 and ParaQA, for which no validation set
is officially provided, validation data was randomly
extracted from the initial training set.

4 Models

This paper investigates the difficulty of the task for
pretrained transformer models. This section first
provides information about the fine-tuning process

SFor instance, some UNION clauses were replaced using
VALUES clauses. Still, some constructions could not be intro-
duced, like GROUP BY, ORDER BY or LIMIT.
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of these models, and then introduces several naive
models used as baselines in the experiments.

Transformer models. The proposed models are
encoder-decoder (i.e., autoregressive) transformers,
namely BART (Lewis et al., 2020) and TS (Kale
and Rastogi, 2020), fine-tuned on the SPARQL-to-
text task. For both architectures, the models are
the "base" version, as provided by HuggingFace®.
This appeared as a reasonable size since CSQA is a
very large corpus and many experimental settings
are considered. Hence, the impact of the size is not
considered here. Tokenizers are the default ones.
Input sequences longer than the length limit of 512
tokens were truncated from the beginning, and no
padding was used. The T5 prefix is "spargl to
nl: ". The fine-tuning is performed for 2 epochs
with a batch size of 4 samples, which appeared to
be the best setting on the development set. The
optimizer is AdamW with a static learning rate
of 5 x 107° and no weight decay. Finally, note
that WebNLG data was not part of BART’s or T5’s
training data for their pre-training.

Naive models. Several naive approaches are ex-
perimented to intuit the difficulty of the task and
provide reasonable baselines. The simplest ap-
proach is to concatenate all terms of all triples in
the query, except variables which are ignored. The
order of the triples is the same as in the query—i.e.,
randomized, no micro-planning (Reiter and Dale,
1997, Chap. 5), hence the name blind concatena-
tion. Alternatively, a rule-based micro-planning
was implemented to spot the main triple in the
query, that is the one on which the beginning of
the question will focus’. Then, the main triple is
placed first when concatenating. This approach is
denoted as smart concatenation. To complete the
approach, templates of questions were introduced
to instanciate the triples. The most naive solution
is to prefix all questions with "what" since this is
the most frequent prefix in the training datasets.
Another solution relies on a set of more sophisti-
cated patterns, each being adapted to specific query
configurations (query verb, target variable, shape
of the main triple, etc.). This technique is called
smart concatenation + pattern.

The next sections provide global results used
to prototype a unique model for all the datasets

®https://huggingface.co/models

"The rules analyze features like the presence or not of the
target variable in a triple, the number of variables in this triple,
the nature of the property, etc.

(Section 5), and in-depth experiments to understand
the current limits of the models (Section 6).

5 Prototyping Experiments

This section studies the design of a SPARQL-to-
text model and provides global results. First, it stud-
ies the impact of adding input information along
with the single SPARQL query. Then, the differ-
ent training datasets are merged in order to inves-
tigate the generalization capacity of the models
and to come up with a unique model for all the
datasets. All results are presented in terms of ME-
TEOR (Banerjee and Lavie, 2005) and BERTScore
(F1 score) (Zhang et al., 2020) on the test set of
each corpus®, using HuggingFace metrics.

5.1 Input features

The minimal input for the model is the SPARQL
query to convert. Additionally, the model can be
fed with the expected answer (if the question is
answerable). In the case of a conversation, the
context of the discussion can also be given, i.e. the
previous questions and answers in natural language.
This information is meant to be particularly helpful
to properly generate coreferences and ellipses.
Using all information, the model’s inputs are for-
matted as follows: "<context> conversational
context </context> <query> SPARQL query
</query> <answer> answer (s) <answer>'.
The number of answers is limited to 10. Ideally,
the context should be restricted to the few last
turns sharing a link with the current query under
study. This assumption was tested by identifying
the restricted context in an oracle way using
meta-information from CSQA.

Table 3 reports the impact of including the an-
swer and the context when training the model on
each corpus. First, it appears that the models are
better than the naive approaches, while BART and
T5 seem relatively equivalent. Then, the impact of
including the answer greatly varies accross the cor-
pora and models. Even if the best results are most
frequently obtained when the answer is considered,
it does not seem as useful as expected, meaning
that most of the required information can probably
be derived from the sole SPARQL query. The im-
pact of the conversation context (CSQA) is more
visible, with a major benefit in favor of including
the context. Then, while restricting this context

8Results are not reported on the validation sets as they
were used to define several hyperparameters.
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METEOR BERTScore-F1
SimQ. |LCQ2.0 [ParaQA| CSQA | Awvg. || SimQ. |LCQ2.0|ParaQA|[ CSQA | Awg.
Blind concatenation 34.8 26.8 35.5 31.0 89.3 88.4 88.1 87.4 88.3 |
Naive Blind conc. + what 39.1 29.2 .8 36.1 35.1 89.8 89.5 89.1 89.3 89.4
Smart conc. + what |l ey SR A T )
Smart conc. + pattern 45.1 ‘ . . 91.1 90.1 90.5
No context 60.4 53.7 57.5 67.1 59.7 | 94.3 93.1 93.5 94.3 | 93.8
No answ.  Restr. cont. - - _ 773 _ _ _ _ 96.4 _
BART Full context - - — 77.5 B - — — 96.2 —
No context 61.0 53.6 57.1 67.4 59.8 | 944 93.0 93.6 94.3 93.8
Answer Restr. cont. 77.8 96.5
Full context — — — 77.7 — — — - 96.2 —
No context 58.7 54.5 57.7 66.0 59.2 94.1 93.1 93.5 94.1 93.7
No answ. _ Restr. cont. - - - 76.2 - - - - 96.2 -
Full context — - — 76.4 — — — — 96.0 —
R No context 59.7 54.3 58.9 66.5 59.8 || 94.2 93.0 93.6 | 94.1 93.7
Answer Restr. cont. _ _ _ 77.9 _ — — B 06.3 -
Full context 77.1 96.0

Table 3:

Performances on the test set when training on each dataset separately with different input settings. Best

results for each dataset are in bold, and the darker the cell, the worse it is.

METEOR BERTScore-F1

| Training \Test - | SimQ. [LCQ2.0[ParaQA| CSQA |W.-QA [ SimQ. |[LCQ2.0[ParaQA| CSQA |W.-QA
Best naive 451 | 447 | 483 418 [JEEEM o911 | 904 | 905 | 90.1 | 88.9

Single corpus 61.0 | 536 | 571 [ 777 | - | 94.4 [ 93.0 | 93.6 [ 96.2
BART All corpora 61.1 | 532 | 57.6 | 77.7 [t 94.4 | 929 [ 935 | 96.2 [ 895
All corp. (balanced) | 57.7 51.5 60.3 77.6 40.4 93.7 92.4 93.7 96.2 89.5

Single corpus 59.7 54.3 58.9 77.1 94.2 93.0 93.6 96.0
T5 All corpora 60.1 | 54.1 | 58.1 | 77.1 | 44.0 || 942 | 93.0 | 93.7 | 96.1 | 90.2
All corp. (balanced) | 57.3 51.7 | 60.0 77.2 43.5 93.7 92.5 93.8 | 96.0 90.1

Table 4: Performances when merging the training data. Best results for each dataset are in bold, and the darker the

cell, the worse it is.

seems to outperform the full (unrestricted) con-
text on BERTScore, no conclusion can be drawn
regarding METEOR. This is a useful conclusion
since correctly truncating the context may not be
a simple task in real conditions. In the remain-
der, all models are trained with the answer and the
full context. Finally, for all approaches (naive and
transformers), SimpleQuestions and CSQA lead to
higher results, which tends to think that they are
less diverse than ParaQA and LC-QuAD 2.0.

All these conclusions have been supported by
back-end experiments on WebNLG-QA (detailed
in Appendix A.2) regarding the impact of the an-
swer and conversational context, as well as the poor
transfer of SimpleQuestions and CSQA.

5.2 Merged training

To take advantage of the different characteristics
of each corpus, fine-tuning was performed based
on the merged training samples of each dataset.
Since the disparity is great between the size of
each corpus, a balancing strategy was tested by
weighting the corpora in inverse proportion to their
respective size. The results are reported in Table 4.

On the one hand, it appears that merging the
training data without any balancing scheme neither
improves nor degrades the overall performance on
the test set of these corpora since no global trend
can deduced’. On the contrarty, balancing the data
surprisingly degrades the results. This is proba-
bly because of weights with too high values since
size differences are very strong, for instance be-
tween ParaQA and CSQA (the scaling factor is
more than 400). In the remainder, the models are
trained on mixed corpora with no balancing.

On the other hand, the last column of Table 4 for
each metric reports the performance on WebNLG-
QA. First, while the score of the naive approach is
comparable to the other datasets, a significant drop
is reported for the transformers models, leading
to similar or even worse results than the naive ap-
proach. In our opinion, this is because the models
are biased towards the most frequent query struc-
tures in the training sets, while these frequency
disparities are globally smoothed out in WebNLG-
QA. On the contrary, the naive approach is agnostic

Except for ParaQA, which is the smallest corpus. Mixing
with other data probably alleviate a sparsity issue.
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Direct Chain
(1 triple) (24 triples)
targ | Py | resrc targ| P |resrc| P, |resrc
var [ or var var or var| or var|
Sibling Mixed
(2+ triples) (3+ triples)
Py | resrc p, | resrc
targ or var targ or var
var var
resrc var resrc
P2lor var Py p, lor var

Figure 1: Topologies of the conjunctive queries.

to these considerations. Finally, it seems that T5
is more robust than BART. For this reason, BART
is discarded in the next section where deeper in-
vestigations are conducted to understand what the
model learns and what is still difficult for it.

6 Detailed Analysis

This section first analyses how the T5 model be-
haves on different query types. Then, a human eval-
uation on a real application is presented to evaluate
the intelligibility and effectiveness of the generated
questions. The focus is given on the challenge set
WebNLG-QA but complementary results for the
other datasets are reported in different appendices.

6.1 Robustness over the query types

Queries are categorized according to':

The triples. They can mainly vary w.r.t. the num-
ber of triples (with the assumption that the more
triples a question contains, the more complex it
is), and the logical connectors between them (by
default, logical ANDs but potentially disjunctions
with logical ORs, or exclusion like tripley AND
NOT triples). In the conjunctive case (i.e., AND
connectors) , the variables can interconnect the
triples following different topologies w.r.t. the po-
sition of the target variable, as depicted in Figure 1.
Additionnaly, type information can be given for the
variables. Although this information is also written
as a triple, "typing triples" (with a special property
"rdf :type") are not considered as regular triples
when counting the number of triples in the query
in our statistics. Finally, constraints on the possible
values for the variables can enable expressing com-
parisons to static values (FILTER clauses on string,
numbers or dates).

The expected answer(s). Queries vary also ac-
cording to the type of the expected answer(s) (enti-
ties, numbers or booleans), the number of answers

101f needed, more details can be found in Appendix A.3.

(1, more or even 0 if the question cannot be an-
swered), and the number of target variables (1, 2
or even 0 when simply checking a fact).

The conversational context. In a conversation,
consecutive turns may re-use information from the
previous turns, potentially leading to coreferences
(replacing an entity by an equivalent pronoun or
noun phrase to avoid repetition) and ellipses (skip-
ping a syntagm that can be deduced from the previ-
ous sentences). While generating these can bring a
more natural flow of questions, it can also bring am-
biguity. If no coreference and no ellipsis is present,
the question is denoted as self-sufficient.

The meaningfulness. Whereas queries are ex-
pected to make sense, it is worth observing how the
model behaves when facing non-sensical questions.

Table 5.a presents the METEOR and BERTScore
results for all categories and subsequent query
types in WebNLG-QA using the TS5 model fine-
tuned on all merged corpora, and with the expected
answers and the conversational context. This is
compared to the best naive approach. Color shades
depict the difference with the average performance
for each dataset separately (red means lower than
the average, green means greater). In complement,
Table 5.b reports the standard deviation within each
category of query types in order to evaluate the ro-
bustness against each variability factor. For the
sake of completeness, results on all the datasets are
in Appendix A.4. From Table 5.a, it appears that
difficult types are those for which concurrent types
can co-exist. For instance, queries with 2 triples
can represent multiple configurations like sibling
or chain topologies, conjunctive or disjunctive con-
nectors, etc. On the contrary, queries with 1 or 3+
triples do not allow this diversity and they are bet-
ter predicted. This is the same when the expected
answer is an open entity (i.e., which is not part
of closed list of choices in the query). Then, the
model seems to also struggle when several target
variables are considered. Finally, both tables show
that handling the dialogue context is difficult for
the model. Counter-intuitively, especially w.r.t. the
results of Sec. 5.1, the results of the naive approach
may even encourage one not to consider it.

6.2 Evaluation in a real application

To verify that the generated questions are under-
standable and lead to the expected answers, they
were integrated in quizzes. As a reminder, each
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Entity (closed)

Answer type Number

Boolean

0 (unanswer.)

Answer

cardinality More

0 (= ASK)
1

Nb. target
variables

Self-sufficient
Coreference

Dialogue
context

Ellipsis

Meaningful

Meaning

Non-sense

(a) Average for each query type of each category (red/green
means "worse/better than average for the given model")

METEOR BERTScore-F1

Query type’s W.-QA | W-QA | W.-QA | W.-QA
Category (T5) (Naive) (T5) (Naive)
All categories 6.8 8.8 1.38 1.18
Number of triplets 4.4 4.8 1.05 0.61
Logical connector 2.4 2.7 1.33

Topology 4.3 6.9

Variable typing 3.5 5.9 0.38 1.46
Comparisons 6.1 1.09 0.43
Answer type 8.7 1.34 1.43
Answer cardinality 7.7 0.97
Nb. target variables . 0.40

Dialogue context

Meaning

(b) Standard deviation for each category (black/white cells
mean "higher/lower than the global std. dev. of the model")

Table 5: Average (a) and standard deviations (b) of ME-
TEOR and BERTScore for all query type categories.

sample in WebNLG-QA includes a small KG and
the corresponding paragraphs provided by the orig-
inal WebNLG corpus. For each sample, follow-up
tuples (query, question, answer) can be used to
quiz a user that would have read the paragraph. Be-
fore assessing the effectiveness of the generated

Nb of METEOR BERTScore-F1 METEOR BERTScore-F1
o
quest, W.-QA [W-QA [ W.-QA | W.-QA Parag.lAnsw. |Context Naive | BART Naive| BART| T5
(T5) (Naive) (T5) (Naive) None 41.5 48.2
Average 332 44.0 43.3 90.2 88.9 No  Restr. 44.4
181 || 47.0 46.7 90.7 89.3 Full
Number of N
tmber o 127 || 39.3 | 39.7 | 89.2 | 88.3 © None
triplets
More 24 46.9 91.2 88.3 Yes  Restr.
. Conjunction 323 || 44.0 90.1 88.8 Full
Logical - : 43.3
Disjunction 6 48.6 90.5 None
connector Exclusion 10 45.0 87.9 No  Restr.
Direct 153 || 41.5 89.1 v Full
Sibling 32 38.8 s None
Topology Chain 28 || 48.6 Yes _Restr.
Mixed 23 46.9 91.2 88.3 Full
Other 96 47.7 90.9 89.0
Variable —one 282 || 43.7 90.2 Table 6: Impact of changing the input features at infer-
typing | ——xectvar. | 18 | 496 89.5 ence time on WebNLG-QA using T5 fine-tuned on all
Internal var. 31 43.4 90.2 88.3 H
- merged corpora with full context and answers.
None 283 || 44.2 90.1 88.9
Compar- String 22 | 37.9 90.0 88.1
isons ~ Number 13 | 40.1 89.4 | 89.0 . . . . .
Date 14 51.6 91.9 89.0 queStIOHS in these quizzes, prior experlments are
Entity (open) 89.7 88.4 conducted.

Input features at inference time. While includ-
ing the answer and the conversational context has
been decided at training time based on results of
Section 5.1 (and Appendix A.2), previous conclu-
sions from Section 6.1 have led us to study the
impact of different inputs at inference time. Hence,
Table 6 reports the scores obtained by the TS5 model
trained with the answers and contexts when feeding
these two elements or not at inference time. This
experiment also test the inclusion of the paragraph
in input to provide contextualized knowledge to
the model, even though the latter was not trained
using such information. For a better analysis, re-
sults for BART are reported as well. Regarding
the conversational context, these numbers show
different trends as those reported during the pro-
totyping experiments since including the context
brings worse results for both models. Then, the TS
no longer benefits from the answer either (whereas
BART clearly does). Finally, using the paragraph
improves the results for TS in terms of METEOR
but not BERTScore, while this degrades the results
for BART. These surprising conclusions call for
more investigation. Currently, one may think that
(i) T5 used the conversational context and answers
during training to learn how to parse the SPARQL
and then does not need the information later on, and
(ii) that the multi-task pretraining of T5 included
text comprehension task (summary, text-based QA,
etc.) helps the model understanding the paragraph
even after fine-tuning on the SPARQL-to-text task.

Human evaluation on quizzes Questions for
the quizzes were either the reference or generated
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Best T5 T5
(Query
+Paragraph)

60.5 (48.9)
4.45 (0.90)
"3.52 (1.03)

Reference (Query+Answ.

+Context)
53.0 (50.0)
4.06 (1.20)
3.15 (1.19)

Naive

78.6 (41.0) | 32.8 (47.0)
4.72 (0.75) | 2.78 (1.43)
"3.74 (1.18)] 2.15 (1.02)

Answer accuracy (%)

Linguistic correctness

Dialogue naturalness

(a) Global results of the human evaluation (standard deviation
between brackets). Difference between values marked with
* is not statistically significant (Student paired ¢-test with
p = 0.05). All others are.

Answer accuracy Linguistic correctness

Ref. | Best | T5 | T5 [[Ref. [ Best | T5 | T5

e et oo Naive| (Query| (Query Naive| (Query| (Query

Query type’s category AV, Answ |+ Para. AV, Answe |+ Para. )
+Ctxt) +Ctxt)

All categories 15.3122.8/19.9]16.9]0.2410.44]|0.33[0.20

Number of triplets 3.6 19.6 [ 15.7]0.06 0.-55‘ 0.20

Logical connector 19.5]10.1 ‘ 0.23(0.23 [0.40
Topology 5.0 [18.6]11.4]12.5]0.08 JoRssl) 0.26 [ 0.17
Variable typing 6.5 |16.4]14.0] 9.4 0.22]0.10
Comparisons 10.9|18.7(22.9|14.5]0.14 U3 AN

Answer type 117 2] 15 O 0.41]0.32]0.17
Answer cardinality 14.3 BN 30.6‘ 0.20 [0.44(0.07(0.10
Nb. target variables 6.3 120.7 0.14]10.29]0.38 [ 0.17
Dialogue context 4.9 111.3 0.03[0.27[0.11{0.05
Meaning 14.0 [EREOREEREN 2] 0.35 JOEN 0.23] 0.09

(b) Standard deviations for each category of query type, the
darker, the higher (across all models).

Table 7: Results of the human evaluation (quizzes).

using the naive approach, or T5. For TS5, two types
of input were provided at inference time: with the
answer and context (as in the training setup), or
only with the paragraph. 2 examples of quizzes are
provided in Appendix A.5. There are 100 quizzes
for each setup, based on the same 100 paragraphs.
20 users took part in the evaluation. All quizzes and
their answers were seen exactly once. Users had to
select their answers in a closed list of possibilities
("Yes", "No", 0, 1, 2, ..., or entities from the para-
graph). They could also report that the question
cannot be answered because the paragraph did not
contain the answer or the question was not under-
standable. By comparing with the expected and
collected answer(s), accuracies were computed for
each setup. After answering a quiz, users also had
to rate the linguistic correctness of each question
and the overall naturalness of the quiz (flow of
questions). Both scores range between 1 (very bad)
and 5 (excellent).

Table 7 reports the average results for each setup
(7.a) and the variability of the answer accuracy and
linguistic correctness within each category of query
types (7.b). Exhaustive values for all query types
are provided in Appendix A.6. As expected, it
appears that the reference questions rank first for
all the metrics. While the linguistic correctness
is excellent, it is worth noting that the answer ac-

curacy is not perfect. A manual analysis shows
that this comes from confusions of the users, for
instance between entity question (what, who...)
and some boolean questions (is there...), or cas-
caded errors. Likewise, the naturalness of the flow
of questions is not perfect because some questions
are unanswerable. Then, the ranking is the same
as with METEOR and BERTScore. Nonetheless,
the difference between the naive approach and the
T5 models is much clearer, which highlights the
limits of automatic metrics for the task. By the
way, this confirms that feeding the TS5 model with
the paragraph is significantly helpful. Compared
to TS with answer and context, the questions are
more robust against almost all variability factors
(Table 7.b).

7 Conclusion and Future Work

In this paper, we have studied in depth the problem
of generating questions from SPARQL queries, in
particular in order to be able to integrate these ques-
tions in a conversational knowledge-based appli-
cation such as a QA system or a task-oriented dia-
logue. Contributions stand in the proposed corpora,
including a new challenge set (WebNLG-QA), and
in the multiple experiments conducted to highlight
the limits of the popular pretrained models BART
and T5 for the SPARQL-to-text task. These exper-
iments show that, although the linguistic quality
of the generated questions is good, the task only
really works well for unambiguous and frequent
situations, generally conforming to what has been
seen in training.

In the future, it would be interesting to evaluate
the questions generated with a QA system. Al-
though the varying performance of these systems
may bring uncertainty in the interpretation of the
results, this would complement the human evalu-
ation results and provide another basis for other
researchers to compare their own question gener-
ation models. Then, several limitations remain to
be overcome. First of all, a better generation of
coreferences and ellipses should be investigated, as
well as a better transfer capacity from one corpus to
another. Then, apart from the use of other KBQA
corpora than those used in this paper, it is likely
that the use of unsupervised approaches, i.e. not
requiring aligned questions and queries, is a chal-
lenging avenue to explore. In particular, this could
favor help mixing knowledge-based and text-based
approaches, as called by our last results.
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A Appendices

A.1 Examples of generated SPARQL queries

This sections presents sequences of SPARQL
queries generated as exposed in Section 3.2 and
Algorithm 1 based on 2 sample KGs, depicted in
Figures and 3.

Using the graph of Figure A.1, the resulting se-
quence of SPARQL queries is the following:

1. SELECT DISTINCT ?d WHERE
{ ?d property:birth_date
2k FILTER ( CONTAINS (
YEAR ( ?k ) 719427 ) )
?d property:known_for
resource:No_hair_ theorem }

. SELECT DISTINCT ( COUNT
( ) AS ?g ) WHERE {
resource:Brandon_Carter

?m

property:known_for ?m }

. SELECT DISTINCT 7?m WHERE
{ resource:Brandon_Carter
property:known_for



m . FILTER ( ?m !=
resource:No_hair_ theorem )

}

4, SELECT DISTINCT ?b WHERE
{ resource:Brandon_Carter
property:birth_place ?b
FILTER ( STRSTARTS ( LCASE
(2?2b ) , "e”" ) ) }

5. SELECT DISTINCT ?t ?g WHERE
{ resource:Brandon_Carter
property:alma_mater ?g
resource:Brandon_Carter
property:doctoral_advisor ?t }

6. SELECT DISTINCT ?x WHERE
{ resource:Brandon_Carter
property:sports_offered 7?7x

}

Using the graph of Figure 3, the generated
queries are:

1. SELECT DISTINCT 2k WHERE { { {
?k property:stylistic_origin
resource:Ska } UNION { 2k
property:stylistic_origin
resource:Rock _music } } }

2. SELECT DISTINCT 2k WHERE {
?k property:stylistic_origin
resource:Rock_music }

3. ASK WHERE {
resource:Mermaid_ (Train_song)
property:genre
resource:Pop_rock }

A.2 Performance of each separate dataset on
WebNLG-QA

This appendix details how the models trained on
each dataset separately transfer to the WebNLG-
QA challenge set. Results reported in Table 8 show
the same trends as observed on the test sets, respec-
tively: the impact of including the answer is not
obvious, while including the context help for the
model trained on CSQA. The results also show that
SimpleQuestions and CSQA cannot beat the naive
approaches with expert micro-planning (smart con-
catenation). For SimpleQuestions, this seems ob-
vious since most query types in WebNLG-QA are
absent in SimpleQuestions. Regarding CSQA, this
is probably due to the lack of linguistic diversity in

the way to verbalize questions in this dataset (again,
CSQA was generated semi-automatically). Results
from Section 5.2 show that mixing the datasets
solves this problem.

A.3 Details on the types of queries
As a reminder, a SPARQL query is as follows:

s) (variables +
wtion function)

% Triple patterns

source:Europe .

7e property:currency 7y }

It mainly relies on triple patterns of the form
(subject, property, object), where each element can
refer to an entity (resource, literal, type, property)
from the KG or represent a variable to be solved
(prefixed by "?"). The query also specifies the
nature of the answer(s) to be derived from these
triple patterns using a verb (SELECT or ASK),
target variables and possibly aggregation functions
on the values taken by these variables. This section
details variability factors on these various elements,
as well as the possible values as reported in the
paper’s tables.

A.3.1 Structure of the triple patterns

Mainly, the pattern consists of cloze triples where
potential values for the blanks are designated
through variables prefixed with a ? sign. Below is
a list of variability factors on the organisation of
these triples.

Number of triples: Queries can include 1, 2 and
more triplets. This reflects the complexity of the
question. As far as what we observed, it is rare
that more than 2 triplets are implied in real life
questions as this becomes difficult to formulate
within one sentence.

Logical connectors: The default connector be-
tween triples is the conjunction (triple; A triple,),
but it can also be a disjunction (triple, V triple,) or
an exclusion (triple; A\ —triplesy). Since the default
connector in SPARQL is the conjunction, disjunc-
tive and exclusive queries are more verbose.

Topology of the pattern: When triples are con-
nected with a conjunction, they represent a con-
nected graph where nodes are resources or vari-
ables and edges are properties. Assuming that only
one variable is the target variable (which is the
most frequent case), regularities can be observed in
the topology of this graph w.r.t. the target variable,
illustrated in Figure 4 and defined as follows:
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METEOR BERTScore-F1

Naive

Blind concatenation

Blind conc. + what

| Training setup \ Training corpus — [ SimQ. |[LCQ2.0 Edrin CSQA | SimQ. |LCQ2.0 EaraQA CSQA

Smart conc. + what

41.2 88.9

Smart conc. + pattern

43.3 88.9

No context 44.1

45.1

No answ. Restr. cont. . _

Full context — —

BART No context Eﬂ 45.4

Answer Restr. cont. _ _

Full context

No context

No answ. Restr. cont.

Full context - —

T5 No context

Answer Restr. cont. _ _

89.7

Full context - -

— 38.3 — ~ ~ 89.0

Table 8: METEOR and BERTScore (F1) on WebNLG-QA when training on SimpleQuestions, LC-QuAD 2.0,

ParaQA, and CSQA independently. The darker, the worse.

Direct Chain
(1 triple) (24 triples)
targ | P | resrc targ| P |resrc| P, |resrc
var or var var or var| or var
Sibling Mixed
(2+ triples) (3+ triples)
Py | resrc p, | resrc
targ Or var targ Or var
var var
resrc var resrc
p2 or var| p2 p3 or var|

Figure 4: Topologies of the conjunctive query graphs.

1. A direct topology refers to a graph with only
2 nodes (i.e. 1 triplet).

2. chain denotes the situation where the graph is
linear with more than 2 nodes and the target
variable is at one of its extremities.

3. sibling refers to a graph the target variable is
directly linked to 2 or more resources (what-
ever the orientation of the edges), i.e. the
graph is a star of depth 1.

4. mixed is a mixture of the sibling and chain
structures, that is a star topology centered on
the target variable and with at least one branch
of the star whose depth is more than 1.

Variable typing: Associating types to concepts
(target of internal variables) in a question is some-
times critical to help understand a question. In the
remainder, we consider typing as a specific case
of property. Thus, triplets about typing are not
counted as regular triplets.

Comparisons: Filtering clauses can be append
to the triplets to restrict the range of their variables.
Based on the corpora used in this paper, this com-
parisons can be numbers, strings or dates.

Superlatives: A specific case of comparison is
when a minimal or maximal value is asked, or
(most frequently) the entity associated with this
extremum. While MIN and MAX are predefined ag-
gregation functions in SPARQL, retrieving the is
less trivial since it requires nested queries.

A.3.2 Answers

Queries vary also according to the expected answer.

Data type: Most usually, answers are entities but
they can also be numbers (typically a count over
entities) or booleans when facts are asked to be
checked.

Number of intentions: Queries can include a
variable number of target variables. This is referred
to the number of intentions. While one intention
is the most frequent situation, corpora also include
questions with two intentions, as well as no inten-
tion (i.e. no target variable, when a fact is to be
checked).

Number of answers: For each target variable,
the number of answer can also vary depending on
the information in the KG and the cardinality of
the query properties. This may be zero if entity
matches the query in the KG. Then, for a given per-
son in subject, the property birth_date should
lead to a single answer, while parent_of may
return several objects.
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A.3.3 Conversational context

Finally, in the context of conversations, the dis-
cussion may re-use information from the previous
turns, potentially leading to coreferences and el-
lipses. Coreferences are the act of replacing an
entity already mentioned in the discussion by a
pronoun or another equivalent noun phrase in sub-
sequent occurrences. Second, an ellipsis is the
omission of a sentence segment deemed useless by
the speaker because it can be deducted from previ-
ous turns, typically because the omitted segment
(and no longer just an entity) would be a raw repeti-
tion. These linguistic phenomena are guided by the
will to be brief by not repeating information, and
constrained by the need to remain unambiguous.
These linguistic phenomena are complex because
they are not systematic. Hence, a coreference may
link a pronoun with an entity mentioned several
turns ago if there is not difficult to infer this link.
At the opposite, a repetition in two consecutive
turns may be required to avoid ambiguity. The
same applies to ellipses with an even higher degree
of complexity since ellipses require to rely on the
syntact structure of a previous turn. Hence, gen-
erating coreferences and ellipses can be improve
naturalness, it can also bring ambiguity.

A.4 Details on query types for all the datasets

Table 9 presents the METEOR and BERTScore
results for all query types on each corpus using the
TS5 model fine-tuned on all merged corpora, and
with the expected answers and the conversational
context. For each test set, color shades depict the
distance to the average performance on this dataset
(red means lower than the average, green means
greater). For WebNLG-QA, values are reported
for the naive approach as well, since the average
results are close (see Section 5.2).

Table 10 examines the impact of each category
of query types from Table 9 in order to evaluate the
robustness of the model.

A.5 Examples of quizzes

Tables 11 and 12 present two examples of quizzes.
The first example is related to the queries of Fig-
ure A.1 from Appendix A.1.

e [t can clearly be observed that the references
regularly use coreferences or ellipses (in bold)
to make the questions shorter and more fluent,
and that the T5 models rarely generate such

linguistic phenomena (in Q2 of Example 1,
T5 generates "that person").

e Other limits of the transformers can be no-
ticed. For instance, the underlying query of
Q3 contains an exclusion ("Except the No-
hair Theorem, what is Brandon Carter known
for?"), which TS5 does not generate at all.

e In Q1 of the second example, the underlying
query is an ASK query with a variable, which
has never been observed in any of the training
corpora. While TS5 with answer and context
tries to combine elements from the sole query,
TS5 with the paragraph uses the text to produce
a meaningful query (even if this is not the
correct question).

A.6 Detailed results of the human evaluation
for each type of query

Table 13 reports the details of the answer accu-
racy and linguistic correctness with respect to each
query type. These results show that, except for a
few situations, using the paragraph as an input to
the model is always better than using the answer
and the context.
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METEOR BERTScore-F1
simQ. |Lcq2.0[Paraqa| csqa [W-QA [W-QA TG 0 Lcqz.ofParaqa| csqa | W-QA | W-QA
(T5) (Naive) (T5) (Naive)
60.1 57.0 59.4 74.3 47.0 46.7 94.2 93.5 94.5 89.3
Number of
trivlet: — 48.2 57.3 85.8 39.7 — 92.0 93.3 97.3 89.2 88.3
T
P T More - 54.0 - 82.0 - 93.3 - 96.4 | 91.2 | 883
. Conjunction 60.1 54.1 58.1 75.7 44.0 43.2 94.2 93.0 93.7 95.9
Logical — .
tor Disjunction — — — 84.6 48.6 47.9 — — — 97.0
COMNECLOr g clusion — — - 45.0 47.8 - — — 98.4
Direct 60.1 57.6 57.2 74.4 48.2 94.2 93.5 94.2
Sibling — 48.2 63.3 86.8 — 91.7 93.9
Topology ~ Chain 51.7 53.2 92.8 92.9 .
Mixed e[ - - - |12 | 883
Other 55.9 67.2 83.2 47.7 42.0 93.4 95.3 96.9 90.9 89.0
. None 60.1 55.9 59.2 94.2 93.3 93.9 96.8 90.2
Variable
' Target var. — |ss ] 593 ~ 922 | 937 P95 | 895 '!I
typing
Internal var._ | |SORSRNNSONON] 5.4 | — | 922 [T925 | 970 | 902 | 883
None 60.1 54.1 58.1 . . 94.2 93.1 93.7 96.0 90.1
c . String 53.1 91.8 90.0
OMPATISONS N mber - 55.6 - 93.3 - 97.1 | 89.4
Date — 52.9 — 93.2 = —
s lati No 60.1 54.1 93.0 93.7 96.1 90.2 88.9
uperlative Yes — — —
Entity (open) [ 60.1 54.2 93.0
A Entity (closed)] — - -
REWET £YP° Tmber N 027
Boolean — 59.8 94.0 95.3 96.8 90.9 89.2
0 (unanswer.) — 56.8 93.4 -~ ~ 90.4 | 90.5
Answer
dinalit 60.1 55.2 93.2 93.7 95.9 90.5 88.9
CAramatity “ore - 50.7 925 | 93.8 | 96.6 | 884 | 88.9
0 (= ASK) 59.8 94.0 | 953 | 96.8 | 909 | 89.2
Nb. target
i 60.1 53.8 93.0 93.6
variables
2 — 50.7 92.8 -~
Self-sufficient 60.1 54.1 93.0 93.7
Dialogue
Coreference - — — —
context Ellipsis N B B —
] Meaningful 60.1 | 54.1 93.0 | 93.7 | 96.1 | 90.1 | 88.7
Meaning
Non-sense 90.6 90.7

Table 9: METEOR and BERTScore (F1) on the test set for the T5 model according to the type of query for each
dataset. Independently for each dataset, white means a median result, red means "worse" and green means "better".

METEOR BERTScore-F1

Query type’s category [LCQ2.0[ParaQA] CSQA W-QA W'__QA LCQ2.0|ParaQA] CSQA W-QA W'__QA

(T5) (Naive) (T5) (Naive)
All categories 54 4.3 5.0 6.8 8.8 0.66 0.74 0.79 1.38 1.18
Number of triplets 4.5 1.5 5.8 4.4 4.8 0.85 0.83 0.77 1.05 0.61
Logical connector — — 8.1 2.4 2.7 — — 1.27 1.33
Topology 5.4 6.2 7.2 4.3 6.9 0.99 1.01 1.21
Variable typing 53 | 48 | 35 | 59 | 066 | 078 | 058
Comparisons 1.3 — 4.9 6.1 5.9 0.68 — 0.74 1.09 0.43
Superlative - - 6.2 — — — — 0.79 — —
Answer type 6.2 6.6 5.0 0.72 1.18 0.66 1.34 1.43
Answer cardinality 3.2 0.7 3.5 0.48 0.12 0.49
Nb. target variables 4.6 7.0 3.4 0.66 1.25 0.57
Dialogue context 2.0 0.44
Meaning — — — — — — 0.33

Table 10: Standard deviation of the METEOR and BERTScore values for each category of query for all corpora.
The darker, the worse.
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Paragraph

Contributor to the no-hair theorem and developer of the

Carter Constant, Brandon Carter, works in the field of General

Relativity. He was born in England on January, 1 1942. He

graduated from the University of Cambridge where he was

under the doctoral advisement of Dennis William Sciama.

T5 T5
Reference Naive (Query + (Query +
Answ + Ctxt) Paragraph)
Q1 | Which person | What birth Name a person | What is the Paragraph
born in 1942 is | date known for | born in 1942 | name of a Nie Haisheng was born in Zaoyang, in the Hubei province of
known for the | No-hair who is known | person born in the People's Republic of China, on October 13th, 1964. He
No-hair theorem? for No-hair 1942 that is was part of the Shenzhou 6 mission and the Shenzhou 10
theorem? theory. known for No- mission.
hair theorem?
Al Brandon Carter T s
Q2 |How many How many How many How many Reference Naive (Query + (Query +
things is he known for does | things are things is Answ + Ctxt) Paragraph)
generally Brandon that person |Brandon Q1 | Was anybody | Does Was Resadiye |Is Resadiye
known for? Carter? known for? Carter known born in something born? the birthplace
for? Resadiye? birth place of Nie
A2 2 Resadiye? Haisheng?
Q3 | What is the What is the What is What is Al No
second? known for of [ Brandon Brandon Q2 [What about |Does Was Zaoyang |Is Zaoyang the
Brandon Carter known | Carter known in Zaoyang? |something born? birthplace of
Carter No hair | for and what is | for proving the birth place Nie Haisheng?
theorem? No-hair no hair Zaoyang?
theorem theorem? A2 Yes
known for? Q3 | Who is it? ‘What birth Who was born | Who was born
A3 Carter constant place at Zaoyang? |in Zaoyang?
Q4 [In which place | What is the ‘Which country | What is the Zaoyang?
beginning with | birth place of |was Brandon | birth place of A3 Nie Haisheng
E was he Brandon Carter born Brandon Q4 |How many How many How many How many
born? Carter? in? Carter that missions did mission does | missions did missions did
begins with he participate | Nie Haisheng? | Nie Haisheng |[Nie Haisheng
the letter e in? participate in? | participate in?
A4 England A4 2
Q5 [ Who was his | What is the Which people | What is the Q5 | Which ‘What is the What are the | What mission
doctoral doctoral were the alma mater missions? mission of Nie | mission of Nie |did Nie
advisor and advisor of doctoral and doctoral Haisheng? Haisheng? Haisheng
what is his Brandon advisors of advisor of participate in?
alma mater? | Carter alma Brandon Brandon A5 Shenzhou 10, and Shenzhou 6
mater? Carter and are | Carter?
the alma Table 12: Another example of a quiz.
mater of
Brandon
Carter?
A5 Dennis William Sciama, University of Cambridge
Q6 | What sports What is the ‘What is the ‘What sports
does he offer? | sports offered | sports offered |does Brandon
of Brandon by Brandon Carter play?
Carter 7 Carter 7
A6 No answer (nonsensical question)

Table 11: An example of a quiz.
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Nb of
quest.

Reference

Answer accuracy

Best
Naive

T5

(Query+Answ.|
+Context)

TS
(Query
+Paragraph)

Reference

53

61

4.7

69

73
46
46
62
17
10

4.7
4.8
4.7

All 332 79 33
1 181 76
Number of 3 127 81 9
triplets Moro o1 33
. Conjunction 323 79
Logical Disjunction 6 67
connector Exclusion 10 30
Direct 153 73
Sibling 32 78
Topology ~ Chain 28 79
Mixed 23 83
Other 96 86
. None 282 78
Varl.able Target var. 18 89
typing Internal var. 31 77
None 283 78
String 22 91
Comparisons Numbor 13 P
Date 14 64
Entity (open) 177 79
Entity (closed)| 5
Answer type e 33 61
Boolean 90 87
0 (unanswer.) 35 97
Answer 281 20
cardinality Moro 51 9
Nb. target 0 (= ASK) 29107 i;
variables 2 25 51
. Self-sufficient 144 79
Dialogue Coreference 154 30
comtext  insis 90 71 32
. Meaningful 302 77 27
Meaning Non-sense 30 97 93

2.1
2.4
2.8
31 2.5
57 2.1

62
60
61

63

94

63
47
63

61
44
59

66

46 60 4.7
49 57 4.8
97 97 4.3

Linguistic correctness

Best
Naive

2.6

2.7

3.5

5 i)
(Query+Answ.| (Query
+Context) | +Paragraph)
4.1 4.4
4.3 4.6
3.7 4.3
4.3 4.2
4.0 4.5
4.3 3.7
4.5 4.1
4.2 4.4
4.2 4.4
4.3 4.5
4.3 4.1
3.7 4.6
4.1 4.4
4.3 4.6
3.9 4.6
4.0 4.5

4.6

4.5
4.2

4.7 4.5
4.2 4.4
4.2 4.8
4.5 4.5
3.7 4.6
4.0 4.5
4.1 4.5

4.1
3.7

4.3

4.6

4.3

4.4

3.6

4.2

4.2 4.4
4.1 4.5
3.9 4.5
4.1 4.5
3.8 4.3

Table 13: Results of the human evaluation for each type of query. The darker, the worse. Bold refers to the best

non human result.
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Abstract

Emotion recognition in conversation (ERC) has
attracted much attention in recent years for its
necessity in widespread applications. With the
development of graph neural network (GNN),
recent state-of-the-art ERC models mostly use
GNN to embed the intrinsic structure informa-
tion of a conversation into the utterance fea-
tures. In this paper, we propose a novel GNN-
based model for ERC, namely S+PAGE, to bet-
ter capture the speaker and position-aware con-
versation structure information. Specifically,
we add the relative positional encoding and
speaker dependency encoding in the represen-
tations of edge weights and edge types respec-
tively to acquire a more reasonable aggregation
algorithm for ERC. Besides, a two-stream con-
versational Transformer is presented to extract
both the self and inter-speaker contextual fea-
tures for each utterance. Extensive experiments
are conducted on four ERC benchmarks with
state-of-the-art models employed as baselines
for comparison, whose results demonstrate the
superiority of our model.

1 Introduction

Emotion recognition in conversation (ERC), which
aims to identify the emotion of each utterance in
a conversation, is a task arousing increasing inter-
ests in many fields. With the prevalence of social
media and intelligent assistants, ERC has great
potential applications in several areas, such as emo-
tional chatbots, sentiment analysis of comments
in social media and healthcare intelligence, for
understanding emotions in the conversation with
emotion dynamics and generating emotionally co-
herent responses. ERC problem still remains a
challenge. Both lexicon-based (Wu et al., 2006;
Shaheen et al., 2014) and deep learning-based (Col-
neri¢ and DemSar, 2018) text emotion recogni-
tion methods that treat each utterance individu-

* Corresponding author.

Jjill.x7J,
yongliang.wyl}@antgroup.com

linyangkun.lyk,

Speaker A Speaker B

A good friend of mine passed
away the other day. [s24]

happened? [520]

‘ Oh no, I'm so sorry. What ’

Oh he had some pretty
progressive cancer. [520]

Did you know him well?
[neutral]

Yeah, he was pretty awesome
and supportive.

sac) of

Figure 1: A dialogue from IEMOPCAP, in which the
emotion of the last utterance by speaker A will be
wrongly classified if the dialogue context is not taken
into consideration.

thapor ¥

ally fail in this task as these works ignore some
conversation-specific characteristics.

In the past few years, recurrent neural network
(RNN)-based solutions, such as CMN (Hazarika
et al., 2018b), ICON (Hazarika et al., 2018a) and
DialogueRNN (Majumder et al., 2019), have dom-
inated this field due to the sequential nature of
conversational context. Nonetheless, they share
some inherent limitations: 1) RNN model performs
poorly in grasping distant contextual information;
2) RNN-based methods are not capable of handling
large-scale multiparty conversations.

With the rise of graph neural network (GNN)
(Wu et al., 2020) in many natural language pro-
cessing (NLP) tasks, researchers pay increasing
attention to GNN-based ERC methods recently. In-
stead of modeling only sequential data recurrently
in RNN, GNN is designed to capture all kinds of
graph structure information via various aggregation
algorithms. Existing GNN-based ERC methods,
such as DialogueGCN (Ghosal et al., 2019), RGAT
(Ishiwatari et al., 2020) and DAG-ERC (Shen et al.,
2021), which are the state of the art, have demon-
strated the superiority of GNN in modeling con-
versational structure information. A directed graph
is constructed on each dialogue in these methods,
where the nodes denote the individual utterances,
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and the edges indicate relationships between utter-
ances. However, we notice that the relative position
and speaker dependency information are mostly
encoded together in one weight matrix according
to the edge type in these methods, which can not
exploit these conversation structure information
sufficiently.

On the other hand, these methods do not work
well on modeling speaker-specific context, which
is also important in the ERC task. For example,
in Figure 1 the third utterance spoken by speaker
A is more influenced by speaker A’s prior utter-
ances rather than the second utterance spoken by
speaker B, even though the latter is closer. Thus,
in contextual modeling, we should consider both
the emotional influence that speakers have on them-
selves during a conversation, i.e., self-speaker con-
text, and context on the entire conversation flow,
i.e., inter-speaker context, as well as the interaction
between them.

In this paper, we propose a novel Speaker and
Position-Aware GNN model for ERC (S+PAGE)
to settle the above drawbacks of existing methods.
Our model contains three stages to fully consider
both contextual modeling and conversation struc-
ture modeling. Specifically, given a sequence of
utterances in the same dialogue, we first leverage a
Two-Stream Conversational Transformer (TSCT)
with the attentive masking mechanism to get both
self and inter-speaker contextual features. Then,
guided by the speaker dependency, we construct a
conversation graph. We propose an enhanced rela-
tional graph convolution network (R-GCN), called
SPGCN, to refine the contextual features with con-
versation structure information. Particularly, we
introduce relational relative positional encoding in
the aggregation algorithm to make SPGCN capable
of capturing fine-grained positional information
in a conversation. Finally, the global transfer of
emotion labels is modeled by a conditional ran-
dom field (CRF) layer with the features from both
TSCT and SPGCN. Experimental results demon-
strate the superiority of our model compared with
state-of-the-art models. Ablation study illustrates
the effectiveness of the proposed components in
the model. To conclude, our contributions are as
follows:

* We propose a new GNN-based ERC method,
called S+PAGE, in which a novel graph neu-
ral network, namely SPGCN, is presented to
better capture the conversation structure infor-

mation.

* We present a two-stream conversational Trans-
former architecture to extract both self and
inter-speaker contextual features.

* We conduct extensive experiments on four
ERC benchmark datasets, and the results
demonstrate that the proposed model achieves
the competitive performance on all of them.

2 Related Works

2.1 Emotion Recognition in Conversation

Emotion recognition in conversation is a popular
area in NLP. Many ERC datasets have been scripted
and annotated in the past few years, such as IEMO-
CAP (Busso et al., 2008), MELD (Poria et al.,
2018), DailyDialog (Li et al., 2017), EmotionLines
(Chen et al., 2018) and EmoryNLP (Zahiri and
Choi, 2018). IEMOCAP, MELD, and EmoryNLP
are multimodal datasets, containing acoustic, vi-
sual and textual information, while the remaining
two datasets are textual.

In recent years, ERC solutions are mostly deep
learning-based models. CMN (Hazarika et al.,
2018b) and ICON (Hazarika et al., 2018a) utilize
gated recurrent unit (GRU) and memory networks
to capture the dialogue dynamics. In IAAN (Yeh
et al., 2019) and DialgueRNN (Majumder et al.,
2019), attention mechanisms are applied to interact
between the party state and global state. With the
rise of Transformer and graph neural networks in
NLP tasks, many works have also introduce them
into the ERC task. (Zhong et al., 2019) propose
KET, which is a structure of hierarchical Trans-
formers assisted by external commonsense knowl-
edge. DialogueXL (Shen et al., 2020) applies
dialogue-aware self-attention to deal with the multi-
party structures. In DialogueGCN (Ghosal et al.,
2019) and RGAT (Ishiwatari et al., 2020), GCN
(Kipf and Welling, 2016) and GAT (Velickovic¢
et al., 2017) are applied to refine the features with
speaker dependencies and temporal information.
DAG-ERC (Shen et al., 2021) applies a directed
acyclic graph for conversation representation and
it achieves the state-of-the-art performance on mul-
tiple ERC datasets.

2.2 Transformer

(Vaswani et al., 2017) first propose Transformer
for machine translation task, whose success subse-
quently has been proved in various down-stream
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NLP tasks. Self-attention mechanisms endow
Transformer with the ability of capturing longer-
range dependency among elements of an input se-
quence than the RNN structure. (Beltagy et al.,
2020) propose a novel self-attention mechanism for
feature extraction of long documents. Pre-trained
models such as BERT (Devlin et al., 2018) and
GPT (Brown et al., 2020) use Transformer encoder
and decoder respectively to learn representations
on large-scale datasets.

2.3 Graph Neural Network

Graph neural network has attracted a lot of atten-
tion in recent years, which learns a target node’s
representation by propagating neighbor informa-
tion in the graph. (Kipf and Welling, 2016) propose
a simple and well-behaved layer-wise propagation
rule for neural network models and demonstrate
its effectiveness in semi-supervised classification
tasks. Better aggregation methods for large graphs
are proposed in GAT (Velickovi¢ et al., 2017) and
GraphSage (Hamilton et al., 2017). (Schlichtkrull
etal., 2018) propose R-GCN to deal with the highly
multi-relational data characteristic by assigning dif-
ferent aggregation structures for each relation type.

3 Methodology

The framework of our model is shown in Figure
2. We decompose the emotion classification pro-
cedure into three stages, i.e., contextual model-
ing, speaker dependency modeling, and global con-
sistency modeling. In the first stage, we present
a conversation-specific Transformer to get both
self and inter-speaker contextual features. Then,
a graph neural network is proposed to refine the
features with conversation structure information,
including the speaker dependency and relative po-
sition of each utterance. Subsequently, we em-
ploy conditional random field as the output layer to
model the context of global consistency of emotion
labels.

3.1 Problem Definition

The ERC task is to predict emotion labels (e.g.,
Happy, Sad, Neutral, Angry, Excited, and Frus-
trated) for utterances {u1;u9;- - ;un}, where N
denotes the number of utterances in a conversa-
tion. Let S be the number of speakers in a given
dataset. P is a mapping function, and s = P(u;)
denotes utterance u; uttered by speaker s, where
se{l,---,S}

3.2 Utterance Encoding

Following previous works (Ghosal et al., 2019; Ma-
jumder et al., 2019), we use a simple architecture
consisting of a single convolutional layer followed
by a max-pooling layer and a fully connected layer
to extract context-independent textual features of
each utterance. The input of this network is the 300
dimensional pre-trained 840B GloVe vectors (Pen-
nington et al., 2014). We use the output features,
denoted as u;, as the representation of each utter-
ance. Notice that we do not use any pre-trained
model like BERT and RoBERTa to make utterance
encoding for fairness of comparison with the base-
line methods.

3.3 Contextual Modeling

We present a Two-Stream Conversational
Transformer (TSCT) to better extract the
contextual representation of each utterance
in a conversation, which is also capable of
handling multi-party conversations efficiently.
The collection of utterance representations
U = {uj;uj; - ;un} is taken as the input. We
design a multi-head self-attention mechanism,
composed of two streams, i.e., the inter-speaker
self-attention stream and the intra-speaker
self-attention stream.

3.3.1 Inter-Speaker Self-Attention

The inter-speaker self-attention is same with the
self-attention in vanilla Transformer, in which each
utterance can attend to all positions in the dialogue
as shown in Figure 3(a). It is calculated as:

N IR e 1 4

(A 1q)

hi ™ Wi i W, (1)

(2

()T
g; (k)
2= softmax(%)vf ()
where W, W} and W, are three learnable

weight matrices for attention head ¢ at layer .

3.3.2 Intra-Speaker Self-Attention

The intra-speaker self-attention models speaker-
specific contextual information by only computing
attention on the same speaker’s utterances in a di-
alogue. In this way, the model is able to capture
the emotional influence that speakers have on them-
selves during the conversation. It is implemented
by the attentive masking strategy as illustrated in
Figure 3(b) and formulated as:
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Figure 2: The overall framework of S+PAGE. First, contextualized representation of each utterance is obtained
by contextual modeling part. Subsequently, we employ SPGCN to model the speaker dependency and position
information. Finally, the CRF layer applied to model the consistency using information from the previous parts. &
denotes the concatenation operation. L is the total number of graph layers.

1) Attention Mask

Inter-Speaker Attention
(a)
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1
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-

0’
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Figure 3: (a) Inter-speaker self-attention: the attention
among all speakers, same with vanilla Transformer.(b)
Intra-speaker self-attention: the attention only on the
utterances spoke by the current speaker.

o~ g (kf)" ¢
Zi = softmam(W + m)v; 3)
where m € RV*¥ is the attentive masking matrix.

The elements of m are set as below:

ml-j:{

where P(-) is the function that maps the utterance
and its corresponding speaker.

Each attention head ¢ of the ¢-th layer in TSCT,
denoted as headﬁ, is the concatenation of the z; and
Z;, and the output of the multi-head attention can
be formulated as follows:

—0o0

0

P(ui) # P(uj)
otherwise

4

MultiHead! = | M, head! (5)
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where || denotes concatenation operation. M is the
number of attention heads, while 1 < ¢ < M.

Following the structure of the original Trans-
former, the output of the TSCT layer can be gener-
ated by passing MultiHead! through a FF (feed-
forward network):

h' = LayerNorm(FF(MultiHead!))  (6)

3.4 Speaker Dependency Modeling

After extracting the contextual features, we intro-
duce a novel graph neural network, named SPGCN,
to propagate structure-aware utterance features.
Specifically, in SPGCN, speaker dependency and
position information are modeled by edge types
and edge weights respectively, and are combined
in the aggregation function to update the features.

34.1 SPGCN

Graph Architecture We construct a directed
graph, G V,E,R, W), for each dialogue
with N utterances. The nodes in the graph are
the utterances in the conversation, i.e., V
{vi;v9;- -+ ,un}. (vs,v5,135) € & denotes a la-
beled edge (relation), where r;; € R is a relation
type, defined according to speaker identity and rela-
tive distance. WV represents the set of edge weights.

Nodes Feature vector g; of each node v; is initial-
ized as the output of the TSCT layer, i.e., h;. g; is
modified by the aggregation algorithm through the
stacked graphical layers in GNN. The output fea-
ture is described as g¢, where I denotes the number
of layers.
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Figure 4: An example of incoming edges for nodes v3
(left) and vy (right) in the dialogue graph. Different
types of arrows denote different edge types. Nodes
share the same edge types if they are spoke by the same
speaker. vs, v1 and vs are spoke by speakerl, thus the
edge between v3, v1 and the edge between vs, v5 belong
to the same edge type.

Edges Instead of only focusing on past utter-
ances, we take converse influence into account
(Ghosal et al., 2019). We construct edges £ with
a sliding window for each utterance. The window
sizes p and f denote the number of past and future
utterances from the target utterance. Each utterance
node v; has an edge with p utterances of the past:
{vi—1,vi—2,...,vi—p}, f utterances of the future:
{vit1, vig2, ..., vigr }, and itself.

Edge Types The relation type » € R is deter-
mined by the speaker identity. Assuming there are
S distinct speakers in a dialogue, there should be
N, = S? relation types in the constructed graph
G. Two utterances share the same edge type only
if they are uttered by the same speaker. For exam-
ple, in Figure 4 the incoming edges v; — v3 and
vs — v3 share the same edge type, and vy — v3 is
a different edge type.

Edge Weights Edge weight o;; € W is com-
puted by an attention mechanism. The particular
attentional setup in our model closely follows the
work of GAT (Veli¢kovic et al., 2017). The input of
the attention module is a set of node features from
the last layer. Motivated by (Shaw et al., 2018),
which shows that absolute positional encoding is
not effective for the model to capture the infor-
mation of relative word order, we inject relative
positional encoding into the attention mechanism.

Bij = Ep(o(vj) — o(vi)) (7

;j = LReLU (dT [VIKCJZHII(VV!#1 * 5”')]()8)

exp PZ‘ ¥

> keni €xp ik
Bi; denotes the signed relative position representa-
tion between utterance ¢ and utterance j in a dia-
logue, which is encoded by a trainable embedding
matrix E,. o(-) is a mapping function between
utterance and its absolute position in the dialogue
sequence. LReLU denotes the activation function
LeakyReLU. W is a weight matrix applied to ev-
ery node. NN; is the number of nodes linked with
node 4. @ is a parametrized weight vector. - rep-
resents transposition, and || is the concatenation
operation.

©)

Q5 =

Aggregation Function Inspired by R-GCN
(Schlichtkrull et al., 2018), we define the following
aggregation algorithm to calculate the forward-pass
update of a node in the graph:

!
gl=c|>. > ?Wﬁgﬁ_l +al;Wog, !
reR jeNy "

(10)
where g;l is the aggregated state of node ¢ in the [-th
layer. IV;" denotes the set of neighbors of utterance
¢ under the edge type r € R. ¢; - is a normalization
constant, and we set ¢; , = | N/ | in our experiment.
W' and W/ are learnable weight matrices, and o (-)
is an activation function, such as the ReLU. Differ-
ent from R-GCN, we use edge weights calculated
by Equation 9 to involve fine-grained positional
information in a conversation.

After the aggregation, we employ a gate fusion
function to make g;l interact with its hidden state
at the previous layer. Finally, the representation at
the [-th layer is formulated as:

/ -1, ~ -1

~ —1. ~1 [
g =[Ghd7 5 « g e - an

€ = sigmoid (ng/ + bf) 12)

gl =exgil +(L—e)xg™"  (13)
where [ > 1, and W and by are trainable parame-
ters. g’ is the concatenation of the four vectors.
3.5 Consistency Modeling

Instead of directly using a softmax function in the
output layer, we employ conditional random field
(CRF) to yield final emotion tags of each utterance.
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Our motivation is to model the emotional consis-
tency in a conversation, i.e., the emotion transfer.
Using the CRF layer enables the model to take into
account the dependency between emotion tags in
neighborhoods and choose the globally best tag
sequence for the entire conversation at once.

Following the describe by Lample et al., for an
input set of utterances U = {uy,ua,...,un} and
a sequence of tag predictions y = {y1, y2, .., yn }
y; € 1,--- , K (K is number of emotion tags), the
score of the sequence is defined as,

score(U,y) = ZDyivyl.Jrl + Z By, (14)
i=0 i=1

where D € REXK ig the matrix of transition,
B € R™ x K is the output score of the prepended
classification model. The model is trained to max-
imize the log-probability of the correct tag se-
quence:

log(p(y | U)) =

N 15

score(U,y) — log Z escore(U,y) (15)
yey

where Y is set of all possible tag sequences. Equa-
tion 15 is computed using dynamic programming,
while Viterbi applied applied to get most likely
sequence following the work of Rabiner et al. (Ra-
biner, 1989).

4 [Experiments

4.1 Datasets and Baselines

We evaluate our S+PAGE model on four widely-
used benchmark datasets — IEMOCAP (Busso
et al., 2008), which is a audiovisual dataset consist-
ing of dyadic conversations where actors perform
improvisations or scripted scenarios, MELD (Po-
ria et al., 2018) and EmoryNLP (Zahiri and Choi,
2018), both of which are multi-modal and multi-
party datasets created from scripts of the Friends
TV series, and DailyDialog (Li et al., 2017), which
is a human-written dyadic dataset covering vari-
ous topics about our daily life. For this work, we
only consider emotion recognition based on textual
features, and thus some recent ERC solutions on
multi-modal features (Chudasama et al., 2022; Hu
et al., 2022) are not selected as our baselines for
fairness. The statistic of them is shown in Table 1.

Dataset # Conversations # Uterrances
Train ‘ Val ‘ Test | Train ‘ Val ‘ Test
IEMOCAP 120 31 5810 1623
MELD 1038 114 | 280 | 9989 | 1109 | 2610
DailyDialog | 11118 | 1000 | 1000 | 87170 | 8069 | 7740
EmoryNLP 713 99 85 | 9934 | 1344 | 1328

Table 1: The statistics of the datasets.

For a comprehensive performance evaluation,
we choose CNN, CNN+cLSTM (Poria et al.,
2017), DialogueRNN (Majumder et al., 2019) as
baselines of CNN and RNN-based methods, KET
(Zhong et al., 2019) as advanced Transformer-
based approach with external commonsense knowl-
edge included, DialogueGCN (Ghosal et al., 2019),
RGAT (Ishiwatari et al., 2020) and DAG-ERC
(Shen et al., 2021) as GNN-based approaches. Par-
ticularly, these three GNN-based models are the
recent state of the art. DialogueGCN applies GCN
to model speaker dependency, but it does not con-
tain fine-grained positional information. Similarly,
DAG-ERC applies a directed acyclic graph for con-
versation representation, which lack positional in-
formation in a conversation too. RGAT encodes
both speaker dependency and relative positional en-
coding into the edge type, and use graph attention
networks to make information aggregation.

For the evaluation metrics, we choose micro-
averaged F1 for DailyDialog and weighted-average
F1 for the other datasets, following previous works
(Ishiwatari et al., 2020; Shen et al., 2021).

4.2 Experimental Settings

We set the initial learning rate as 1e-4 in the Trans-
former layers, 2e-4 in the SPGCN layers and 2e-2
in the CRF layer. AdamW optimizer is used un-
der a scheduled learning rate following (Vaswani
et al., 2017). The number of dimensions of the ut-
terance representations and contextual embeddings
is set to 300. We set the layer number of TSCT and
SPGCN to 8 and 3 respectively. We set the dropout
rate and number of attention head in TSCT to be
0.1 and 8 respectively. 3-head attention is used
during calculating the edge weights. We also con-
duct experiments with different window sizes and
SPGCN layers. We choose the hyper-parameters
that achieve the best score on each dataset by us-
ing development data. The training and testing
process is run on a single Tesla P100 GPU with
32G memory. The reported results of our imple-
mented models are all based on the average score
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Model IEMOCAP MELD DailyDialog | EmoryNLP
CNN 48.18 55.86 49.34 32.59
CNN+cLSTM 54.95 56.87 50.24 32.89
DialogueRNN 62.75 57.03 - -

KET 59.56 58.18 53.37 33.95
DialogueGCN 64.18 58.10 - -
RGAT 65.22 60.91 54.31 34.42
DAG-ERC 68.03 63.65 59.33 39.02
S+PAGE 68.75 (0.11) | 63.43 (0.15) | 64.08 (0.21) | 39.16 (0.12)
S+PAGEpR.,t 68.77 (0.13) | 63.25 (0.18) | 64.18 (0.25) | 38.96 (0.13)
S+PAGER,BERTq | 68.93 (0.12) | 64.67 (0.15) | 64.11 (0.21) | 40.05 (0.14)

Table 2: Overall performance on the four datasets.

of 5 random runs on the test sets.

5 Results and Analysis

5.1 Overall Performance

We compare our model with the baseline meth-
ods, and the results are reported in Table 2. We
can note that our proposed S+PAGE has the best
performance on all the four benchmark datasets.
All GNN-based models outperform RNN-based
models, which indicates the necessity of modeling
the conversation structure information in the ERC
task. Compared with existing GNN-based models,
our model even has competitive results. There are
three main advantages that contribute to our perfor-
mance: 1) contextual modeling with both self and
inter-speaker dependency, 2) a better speaker de-
pendency and relative positional encoding in GNN,
3) consistency modeling of global emotion transfer.

We find that the improvements on MELD and
EmoryNLP are not significant without utilizing pre-
trained language models, i.e, BERT and RoBERTa.
The performances of S+PAGE enhanced after re-
placing GloVe vectors by embeddings from pre-
trained language models. This is because both
datasets consturcted on Friends TV series, extra
knowledge from large pre-trained language help
the model to understand the dialogue better.

5.2 Ablation Study

To better understand the contribution of each com-
ponent in our proposed model, we conduct exper-
iments by replacing TSCT with the vanilla Trans-
former, and removing SPGCN and CRF from our

Method | IEMOCAP MELD
S+PAGE 68.93 64.67
-TSCT | 68.11 (10.82) 63.21 (]1.46)

- SPGCN | 64.25 (J4.68) 62.03 ({2.64)
- CRF 68.29 (]0.64) 64.24 (10.43)

Table 3: Results of ablation study.

model respectively. The results on IEMOCAP and
MELD are shown in Table 3. We can observe that
when TSCT is removed, the weighted F1 score
drops more on MELD than that on IEMOCAP.
This shows the superiority of TSCT on contextual
feature extraction of multi-party conversations, as
there are more speakers in dialogues of MELD. Re-
moval of SPGCN leads to significant drop on both
datasets, which implies the importance of SPGCN
to refine the contextual features with speaker de-
pendency and relative position. Meanwhile, after
removing CRF layer, we can also observe the per-
formance degradation. It implies that the modeling
of label consistency is essential in the ERC task.
To sum up, all of the three components contribute
to the performance improvement of S+PAGE.

5.3 Whether SPGCN outperforms other
graph structures?

We conduct experiments on IEMOCAP by re-
placing SPGCN with the graph structures in Di-
alogueGCN, RGAT and DAG-ERC respectively.
As shown in Table 4, S+PAGE still outperforms the
other methods significantly. Notice that both Dia-
logueGCN and RGAT with our contextual and con-
sistency modeling perform better than their orig-
inal versions. This indicates the necessary of the
speaker-spcific information modeling in contextual
modeling and speaker emotional consistency mod-
eling, which is neglected in the previous methods.
We use language embeddings from BERTp,s in
RGAT and RoBERTajyge in DAG follow the origi-
nal papers for fair comparision.

5.4 Effect of Window Size

We analyze the influence of past and future win-
dow sizes by conducting experiments with window
size w of (4,4), (6,6), (8,8), (10,10), (20, 20),
(30,30), (40,40) on IEMOCAP dataset. As shown
in Figure 5, the F1 score of S+PAGE, RGAT
and DialogueGCN significantly increase, when
the window sizes expand from 4 to 10. The rea-
son is that useful contextual information keeps

Method | IEMOCAP
S+PAGE 68.93
S+PAGE(-SPGCN) + GCN 64.82
S+PAGE(-SPGCN) + RGAT | 65.78
S+PAGE(-SPGCN) + DAG 67.93

Table 4: Results of replacing SPGCN with other graph
structures.
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Figure 5: Results of varying window sizes.

growing with the increasing of w. However, af-
ter window sizes exceed 20, the F1 score drops for
both DialogueGCN and RGAT. The reason is that
the amount of useless long-range dependency in-
creases when the window size continuously grows,
which hinders the models from efficiently captur-
ing crucial context. In contrast, the performance
of S+PAGE fluctuates in a relatively narrow range,
which shows the robustness of our model on varied
window sizes. We can infer that the relative posi-
tional encoding endows capability of distinguishing
critical contextual information to our model.

5.5 Number of SPGCN layers

We further explore the relationship between model
performance and the number of layers of the
SPGCN. Stacking too many layers of GNN may
lead to performance degradation because of over-
smoothing problem (Kipf and Welling, 2016). As
shown in Figure 6, we conduct an experiment on
IEMOCAP by setting different number of layers
of the SPGCN, with the comparison of Diaglog-
GCN and DAG-ERC. As can be seen from Figure
6, DialogGCN suffers from a significant perfor-
mance degradation after number of layers exceeds
3. On the other hand, for SPGCN and DAG, the
drop seems to be more slight, which indicate the

Method | IEMOCAP
S+PAGE(RPE) |  68.93
S+PAGE(APE) |  66.38
S+PAGE(PER) |  65.93

Table 5: Results of S+PAGE with other positional en-
coding methods in SPGCN. RPE is proposed relative
positional embedding, APE is absolute positional em-
bedding and PER is positional embeddings in RGAT.
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Figure 6: Graph layer ablation

over-smooth problem alleviated in both structures.

5.6 Effect of Relative Positional Embedding

In this part, we conduct experiments to study
whether our relative positional embedding(REP)
in SPGCN is superior to other positional embed-
ding methods. We replace REP with the popular
absolute positional embedding (APE) and the po-
sition encoding (PE) implemented in RGAT. As
shown in Table 5, the model with our RPE signifi-
cantly outperforms the models with other position
embedding methods.

6 Conclusion

In this paper, we propose a novel graph neural
network-based model, named S+PAGE, for emo-
tion recognition in conversation (ERC). Specif-
ically, S+PAGE contains three parts, i.e., con-
textual modeling, speaker dependency modeling,
and consistency modeling. In contextual mod-
eling, we present a new Transformer structure
with two-stream attention mechanism to better cap-
ture the self and inter-speaker contextual features.
In speaker dependency modeling, we introduce a
novel GNN model, named SPGCN, to refine the
features with the conversation structure informa-
tion including speaker dependency and relative po-
sition information. Furthermore, we use a CRF
layer to model emotion transfer in the consistency
modeling part. Experimental results on four ERC
benchmark datasets demonstrate the superiority of
our model.
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Abstract

Grammatical error correction (GEC) systems
are a useful tool for assessing a learner’s writ-
ing ability. These systems allow the grammat-
ical proficiency of a candidate’s text to be as-
sessed without requiring an examiner or teacher
to read the text. A simple summary of a can-
didate’s ability can be measured by the total
number of edits between the input text and the
GEC system output: the fewer the edits the
better the candidate. With advances in deep
learning, GEC systems have become increas-
ingly powerful and accurate. However, deep
learning systems are susceptible to adversar-
ial attacks, in which a small change at the in-
put can cause large, undesired changes at the
output. In the context of GEC for automated
assessment, the aim of an attack can be to de-
ceive the system into not correcting (conceal-
ing) grammatical errors to create the perception
of higher language ability. An interesting as-
pect of adversarial attacks in this scenario is
that the attack needs to be simple as it must be
applied by, for example, a learner of English.
The form of realistic attack examined in this
work is appending the same phrase to each in-
put sentence: a concatenative universal attack.
The candidate only needs to learn a single at-
tack phrase. State-of-the-art GEC systems are
found to be susceptible to this form of simple
attack, which transfers to different test sets as
well as system architectures !

1 Introduction

Grammatical Error Correction (GEC) systems can
form a part of automated language fluency assess-
ment: the number of edits from a candidate’s in-
put sentence to a GEC system’s grammatically
corrected output sentence is indicative of a can-
didate’s language ability, where fewer edits sug-
gest better fluency. Early GEC systems were
designed using hand-crafted rules (Naber, 2003),

!Code is available at: https://github.com/
rainavyas/gec-universal-attack

Edie Lu
Cambridge University
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Cambridge University
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but since, data driven approaches, such as Sta-
tistical Machine Translation (Yuan and Felice,
2013), emerged. With encoder-decoder architec-
tures dominating in Neural Machine Translation,
Yuan and Briscoe (2016) used Recurrent Neural
Networks (Cho et al., 2014) to improve GEC perfor-
mance. Now state of the art GEC systems are based
on the Transformer (Vaswani et al., 2017) architec-
ture (Kaneko et al., 2020; Chen et al., 2020; Malmi
et al., 2019; Awasthi et al., 2019; Omelianchuk
et al., 2020b; Kiyono et al., 2019; Lichtarge et al.,
2020; Stahlberg and Kumar, 2020).

Despite the success of Transformer-based deep
learning systems, there is a shortcoming: Szegedy
et al. (2014) discovered that neural networks are
susceptible to adversarial attacks, where a small
change at the input can yield large, undesired
changes at the output of the model. In the GEC
setting, a candidate may seek to make a change to
their input sentence, such that the system makes
no corrections, resulting in zero edits between the
source and prediction sequences, which falsely in-
dicates perfect language fluency. Given the high-
stakes of an assessment setting, it is particularly
concerning if a candidate can engage in such mal-
practice. Hence, this work explores the susceptibil-
ity of GEC systems to adversarial attacks.

GEC systems operate on natural language in-
puts. In this domain, there are many proposed
adversarial attacks (Zhang et al., 2019), but on
the whole they are inappropriate for sequence-
to-sequence tasks, such as GEC. Ebrahimi et al.
(2018); Zou et al. (2019); Zhang et al. (2021);
Cheng et al. (2018) introduced methods for ad-
versarial attacks in sequence-to-sequence models.
These works require multiple queries of the target
system. However, a candidate cannot query a GEC
system. To solve this issue, this work uses a uni-
versal (Moosavi-Dezfooli et al., 2016) adversarial
attack. Here, the same universal attack phrase is
appended to the end of all candidates’ input sen-
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tences, i.e. a new candidate can simply acquire
(e.g. through purchase) a fixed universal attack
phrase to concatenate to their input and deceive
a GEC system used for automatic fluency assess-
ment. This work also considers the transferability
of a single attack phrase across different datasets
and even architectures. Further analysis is carried
out to determine the aspects of GEC systems that
cause them to be susceptible to this form of attack.
Despite advances in natural language adversarial
attacks, there has been less research on developing
defence schemes. Defence strategies can be cate-
gorized as model modification, where the model
or data is altered at training time (e.g. adversarial
training (Yoo and Qi, 2021)) or detection (Raina
and Gales, 2022), where external systems or al-
gorithms are applied to trained models to iden-
tify adversarial attacks. Model modification ap-
proaches demand re-training of models and so de-
tection approaches are preferred for deployed sys-
tems. Note that for attacks on GEC systems, detec-
tors based on grammatical (Sakaguchi et al., 2017)
and spelling (Mays et al., 1991; Islam and Inkpen,
2009) errors will fail. In this work, the most popu-
lar detection approaches: Frequency Guided Word
Substitution (Mozes et al., 2020) (shown to out-
perform Zhou et al. (2019)); perplexity (Han et al.,
2020; Minervini and Riedel, 2018) and model con-
fidence (Aldahdooh et al., 2021); are applied to
detecting adversarial attacks on GEC systems.

2 Related Work

In literature there has been limited work examin-
ing adversarial attacks for GEC systems. How-
ever, some works have explored adversarial ro-
bustness. First, Wang and Zheng (2020) perform
adversarial training to improve the performance
of their GEC system. Their adversarial training
scheme augments the training data with adversar-
ial examples, generated through the insertion of
common grammatical mistakes in grammatically
correct sentences, where the insertions are tuned
to exploit weak spots in the GEC system. Further,
Tang (2021) also seeks to increase robustness of
GEC systems in a post-training setting, through
further training on adversarial examples generated
from four different NLP adversarial attack schemes.
These adversarial attack methods again are de-
signed to fool the sequence-to-sequence GEC sys-
tem. Finally, Farkas et al. (2021) also augment the
training data with adversarial examples, but focus

on ensuring the adversarial examples mimic human
grammatical errors by introducing noise at both a
token level and embedding level.

However, the above schemes are inappropriate
for the attack setting in this work. First, the aim of
the attack in this work is to perturb grammatically
incorrect sentences to conceal grammatical errors.
Second, the existing works consider attacks specific
to each input, whereas this work considers the more
realistic setup of a universal adversarial attack.

3 Grammatical Error Correction

Grammatical Error Correction (GEC) systems per-
form a sequence-to-sequence task, where an input
word sequence, x1.7, containing grammatical er-
rors, is corrected for these errors by the system,
with parameters, @ to predict the grammatically
correct output word sequence, 1.7,

1.0 = argmax{p(yr.c|r1.7;0)}. (1)
Y1:L

To evaluate the performance of a GEC system,
it is necessary to identify the edits made by the
system and compare to the reference edits. An edit
is defined as a modification (insertion, deletion or
substitution) required on the input sequence x1.7
to make it match the target sequence, y;.1,. A pop-
ular edit extraction tool is ERRANT (Bryant et al.,
2017), which uses a linguistically-enhanced align-
ment algorithm proposed by Felice and Briscoe
(2015). Edits between the input sequence, x.7,
and hypothesised prediction sequence 3.7, can be

found, é1.p,

é1.p = edits(z1.7, U1.1)- 2
These edits are to be compared to reference edits,
é1.r = edits(zr7, §1:1), 3)

where 9.7, is the reference output sequence. The
precision = TP/(TP+FP) and recall = TP/(TP+
FN) can now be computed, where TP, FP and FN
are the standard definitions of true-positive, false-
positive and false-negative. As a single perfor-
mance score, Fo 5 = 1.25xpreckrec/(0.25«prec)+
rec) is used, giving greater weight to precision over
recall, as in GEC systems it is more important to be
correct in the hypothesised edits, €;.p, as opposed
to identifying all reference edits, €;1.r.

In this work GEC systems are considered for
automated assessment. Here, the fluency score,
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Sg(z1.7), of a candidate is measured by the count
of edits between the input sequence, x1.7, and hy-
pothesised prediction sequence .1, i.€.

Sp(x1.7) = count(ér.p) = P, 4)

where Sy(z1.7) = 0 is a perfect fluency score.

Beyond extracting edits and reporting the overall
performance of a GEC system, it is useful to cat-
egorize the error types. Inspired by Swanson and
Yamangil (2012), the ERRANT tool uses a rule-
based error type framework. Here edits are classi-
fied as either: Missing, where a token is present
in the target sequence, yi.;, but not in the input
sequence, x1.7; Replaced, where a substitution is
made; or Unnecessary, representing edits where a
token is present in the input sequence, x1.7 and not
the output target sequence, yi.r,.

4 GEC Adversarial Attack

A targeted adversarial attack on an input text se-
quence, z1.7 aims to perturb it to generate an ad-
versarial example z/ -, that ensures the output of a
classifier, F(), is t,

‘F(xll:T’) = t? s.t. H($1:T7$/1;T/) S €. (5)

() is some distance metric between the origi-
nal and adversarial input sequences, ensuring the
change is imperceptible. It is not simple to define
an appropriate function #() for word sequences.
Perturbations can be measured at a character or
word level. Alternatively, the perturbation could be
measured in the vector embedding space, using for
example [,-norm based (Goodfellow et al., 2015)
metrics or cosine similarity (Carrara et al., 2019).
However, constraints in the embedding space do
not necessarily achieve imperceptibility in the orig-
inal word sequence space. This work uses a sim-
ple variant of a Levenshtein edit-based measure-
ment (Li et al., 2018) which counts the number of
changes between the original sequence, x;.7 and
the adversarial sequence z.;», where a change is
a swap/addition/deletion, and ensures it is smaller
than a maximum number of changes, N. For a
candidate planning to perturb their input sentence,
the simplest attack is concatenation, where a fixed
phrase is appended to their input (Wang and Bansal,
2018; Blohm et al., 2018; Raina et al., 2020),

/
Ty = 17 POLLN =T1,...,T7,01,...,0N

where 1.y is a N-word adversarial attack phrase.

The aim of the adversarial attack on a GEC sys-
tem used for automated assessment, F() = Sy()
(Equation 4), is to maximally decrease the count of
edits between the input sequence and the predicted
sequence, i.e. a candidate wants to conceal their
grammatical errors from the GEC system. A single
universal adversarial phrase, 51: N 1s to be used for
all candidates, i.e. once this universal phrase has
been learnt from a set of J candidates, it can be
sold to other candidates. Hence, the cost function
an adversary seeks to optimise is

01.§ = arg min

J
1 )
- So(xy7 & 01.n) ¢ (6)
51;N€Vk J]ZI v

where V¥ is the set of all k length word sequences
that can be constructed from a selected language
vocabulary, V.

It is important to consider the interpretation of
imperceptibility in the automated assessment set-
ting. In many applications, measuring impercep-
tibility by counting number of added words, N,
is inadequate as it can result in incomprehensible
phrases that can easily be identified by a human
reader. However, in this setting, there is no hu-
man reader, which demands the use of automated
systems for identifying incomprehensible phrases.
Therefore, this work includes experiments to fil-
ter for adversarial attack words that do not com-
promise the integrity of an input sentence, when
measured using a perplexity detector (introduced
as a detection mechanism in Section 5, Equation
9) based on a state of the art language model. This
ensures that an attack phrase remains imperceptible
in an automated assessment setting.

This work also investigates variations in the
punctuation a candidate can use to concatenate an
adversarial phrase to an input sentence. If ‘*’ repre-
sents the form of punctuation, then to concatenate
an adversarial phrase to the original phrase, we do:
original phrase* adversarial phrase.

5 Defence

For deployed systems, defence strategies that re-
quire re-training are undesirable. It is easier to use
detection processes to identify and flag adversar-
ial examples. This section considers how state of
the art detection approaches can be applied to uni-
versal concatenation adversarial attacks on GEC
assessment systems, described in Section 4.

All detection approaches, D(), use a selected
threshold, /3 to classify an input sequence, x1.7
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as adversarial or not. When D(x1.7) > (3, then
the input sequence x1.7 is flagged as an adversar-
ial example. To examine the performance of the
detection process, this work uses precision-recall
curves, where precision and recall values are calcu-
lated for a sweep over the threshold 5. Here, for
each value of (3, the precision and recall values are
calculated (as in Section 3), with adapted defini-
tions for true-positive (number of samples correctly
classified as adversarial), false-positive (number of
samples incorrectly classified as adversarial) and
false-negative (number of samples incorrectly clas-
sified as non-adversarial). A single-value summary
is again obtained with the Fy 5 score, giving greater
weighting to precision over recall, as it is more
important to be correct in accusing candidates of
mal-practice than finding all the candidates that
cheat. The threshold with the highest Fy 5 score is
selected for the detector D().

The recently dominating, Frequency Guided
Word Substitution (FGWS) (Mozes et al., 2020)
algorithm is adapted for attacks on an assessment
GEC system. For the FGWS algorithm, we gen-
erate a sequence x7,, from the original input se-
quence, x1.7 by substituting out low frequency
words for higher frequency words. Precisely, a
subset of eligible words (for substitution) is found
Xp = {z € z1.7|¢(x) < v}, where ¢(z) gives
frequency of word = and v € R+ is a frequency
threshold. Then, for each eligible word z € Xg
a set of replacement candidates, U(x) is found
using synonyms. A replacement word z* is se-
lected as 2* = arg max,,¢y(;) ¢(w). Hence, 27,7
is generated by replacing each word x in x1.7 if
¢(z*) > ¢(z). For the GEC assessment system,
So(), defined in Equation 4, the FGWS detection
score is,

Drgws(z1.1) = %(SQ(J;l:T) — Sp(z1.p)) - (D
Smith and Gal (2018) describe the use of uncer-
tainty for adversarial attack detection, where ad-
versarial samples are thought to result in greater
epistemic uncertainty. In this work, negative con-
fidence is selected as a simple measure of uncer-
tainty. It is easiest to measure the confidence using
the grammatically correct sequence output by the
GEC system, 9;.7, (Equation 1). The negative con-
fidence detector score is calculated as,

1

Die(z1:1) = -7 log(p(91:|z1:7)).  (8)

This works also explores the positive confidence
detector, Dpc(z1:7) = —Drc(z1.7). A final pop-
ular NLP detection approach is to consider the
perplexity (Minervini and Riedel, 2018) of the in-
put sequence. It is expected that adversarial se-
quences have a greater perplexity than original sam-
ples. The perplexity detector, using some language
model (LM), can be defined as,

1
Dy(z1.7) = _fIOg(pLM<$1:T))- )

6 Experiments

6.1 Setup

Training of systems in this work uses a range of
different popular grammatical error correction cor-
pora. Cambridge Learner Corpus (CLC) (Open-
CLC, 2019) is made up of written examinations for
general and business English of candidates from
86 different mother tongues. Grammatical errors
are annotated and this is used to generate reference
sentences for GEC training. Cambridge English
Write & Improve (WI) (Yannakoudakis et al.,
2018) is an online web platform that assists non-
native English students with their writing. Specif-
ically, students submit letters, stories and essays
in response to various prompts, and the WI sys-
tem provides instant feedback. LOCNESS cor-
pus (Granger, 2014) is a collection of 400 essays
written by British and American undergraduates.
Evaluation of systems is performed on three dif-
ferent test sets. First Certificate in English (FCE)
corpus (Yannakoudakis et al., 2011) is a subset of
CLC, consisting of 33,673 sentences split into test
and training sets of 2,720 and 30,953 sentences
respectively. Building Education Applications
2019 (BEA-19) (Bryant et al., 2019) offers a test
set of 4477 sentences, sourced from essays written
by native and non-native English students”. Con-
ference on Computational Natural Language
Learning 2014 (CoNLL-14) (Ng et al., 2014) test
set consists of 1312 sentences sourced from 50
essays written by 25 non-native English speakers.
In recent years, Grammatical Error Correc-
tion systems have been dominated by large (up
to 11B parameters) Transformer based architec-
tures (Rothe et al., 2021; Stahlberg and Kumar,
2021). Using the Fy 5 metric defined in Section
3, Table 1 compares the performance of two pop-
ular Transformer-based architectures: the Gram-

’Evaluation: https://competitions.codalab.
org/competitions/20228.
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former (Damodaran, 2022) (223M parameters), a
T5-based (Raffel et al., 2019) sequence to sequence
system® and Grammarly’s Gector (Omelianchuk
et al., 2020a), using specifically the Roberta-based
architecture (Liu et al., 2019) (123M parameters)4.
The Gramformer is pre-trained on the WikEd Er-
ror Corpus (Grundkiewicz and Junczys-Dowmunt,
2014), and in this work, it is further fine-tuned
on the CLC (with FCE-test set removed), WI and
LOCNESS datasets. The finetuning uses Adam op-
timiser with a batch size of 256 and a learning rate
of 5e-4 with warm up. Maximum sentence length
is set at 64 and the final model parameters are aver-
aged over 5 best checkpoints. As the Gramformer
model was initialised from a large pre-trained sys-
tem, changing seed for the finetuning gave little
diversity in the ensemble.

Table 1 shows that the Gramformer and Gector
systems have a similar performance on the FCE
test set, but the Gector system significantly out
performs the Gramformer on the CoNLL-14 and
BEA-19 test sets. Nevertheless, to mimic a realistic
adversarial attack setting, the more easily available
Gramformer system” is used as an initial model
(adversary can access) for learning universal at-
tacks and the best attacks are then transferred for
evaluation on the target Gector system in Section
6.4.

Model Precision Recall Fg5
FCE Gramformer 51.6 4377 498
Gector 53.5 393 499
Gramformer 49.3 34.1 452
CONLL-14 Gector 620 426 568
Gramformer 353 46 37.1
BEA-19 " Gector 702 612 682

Table 1: GEC systems Fy 5 scores.

6.2 Attack Results

Greedy universal concatenation adversarial attacks
were performed on the Gramformer system as de-
scribed in Equation 6. As described in Section 4,
different punctuation types were considered for the
concatenation of the universal attacks. The impact
of each attack phrase is presented for each of the
three different GEC test sets in Figure 1, with N

3Gramformer model: https://github.com/
PrithivirajDamodaran/Gramformer

4Gector models: https://github.com/
grammarly/gector

3Stars on Github: Gramformer (1,110); Gector (611).

being the number of universal adversarial words at
the end of each input sentence. The universal attack
phrases were learnt on the FCE training split®.
The metric used to measure the success of the
attack is the fraction of samples with zero edits
from source to GEC prediction sequence. The ran-
dom attacks shown use a full-stop for concatenat-
ing randomly sampled words. A direct attack is
where no punctuation is used to separate the origi-
nal and the attack phrase. With percent increases
between 20% and 50% in the fraction of samples
with no edits shows that the GEC system is threat-
ened somewhat by the direct, colon and comma
attacks. However, for the full-stop universal adver-
sarial attack sequence, with even a N = 4 word
attack, the number of samples with zero edits in-
creases by almost 40% for the FCE test set and
more than 100% for the CoNLL-14 and BEA test
set. It is evident that the GEC system is suscepti-
ble to even a simple form of universal attack. The
greater susceptibility to the full-stop attack can be
explained to some extent by the nature of the data
used to fine-tune the Gramformer GEC system. Ta-
ble 2 shows the frequency count of the different
punctuation marks in the training set (CLC, WI and
LOCNESS datasets), where the full-stops present
at the end of sentences are not included 7. Note
that there are a total of ~3M input samples in the
training dataset. The count of full-stops is far less
than that of commas, meaning the GEC system is
not as familiar with multi-sentence inputs allow-
ing for greater susceptibility to attacks using the
full-stop. However, this count-based explanation
is inadequate to justify the less successful colon
concatenation attack. Nevertheless, the lack of sus-
ceptibility to colon concatenation can be explained
- in the training samples with colons, more than
50% samples have the colon followed by a list de-
limited with semi-colons. This means that the GEC
system easily learns this fixed colon usage, which
makes it difficult to have a successful colon-based
universal concatenation attack format. Due to the
potency of the full-stop concatenation attack, the
remainder of the analysis in this section focuses on
the full-stop attack 8. Examples of the impact of

®Note that the same universal attack phrase is evaluated
on the different datasets.

"For the full-stop concatenative attack we are interested in
the count of the number of instances where there is a multi-
sentence input to best represent the format of the attack.

8Equivalent analysis (in Appendix B) for the comma, colon
and direct attack formats gave the same trends as the analysis
presented for the full-stop attack format.
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Figure 1: Evaluation of Universal Attacks, length N, on GEC system with concatenation punctuation.

the universal attack are given in Table B.1.

Punctuation Count
Full-stop 214,064
Comma 1,790,282
Colon 97,964

Table 2: Count of punctuation in training set. Excludes
punctuation at end of inputs.

Table 3 shows the impact of the N = 4 con-
catenation adversarial attack on the performance
of the GEC system on the FCE test set. The ad-
versarial phrase is stripped from the output pre-
dicted sequence to discount the introduction of
false-positive edits in the adversarial part of the
input. As expected the Fy 5 score worsens due to
the drop in the recall, i.e. the GEC systems strug-
gles to find the grammatical errors with the attack
phrase concatenated at the end of the sentence - the
attack is successful in concealing the errors present
in the sentence.

Input Precision Recall Fo.5
Original 51.6 437 49.8
Attacked 51.3 30.7 452

Table 3: Gramformer Fy 5 score.

6.3 Detection Evasion

Although the Gramformer GEC system is suscepti-
ble to a universal attack, it can be defended using
detection methods. Figure 2 compares the success
of detectors from Section 5 when attempting to dis-
tinguish adversarial samples from original samples
(on FCE test). The threshold for each detector is
selected such that it gives the best Fy 5 score. Re-
sults are presented for original FCE test samples
with and without the full-stop universal adversarial
phrase appended to the end of the samples. It is
interesting to note that FGWS, although successful

0.95

— FGWS
Perplexity
—— Neg Conf

—— Pos Conf

0.90
0.85
0.80
n
o 0.75
[
0.70
0.65

0.60

0.55

Figure 2: Adversarial attack detection using F 5 score
to distinguish between original and adversarial samples.

in other NLP adversarial attack tasks, has little suc-
cess here. This is perhaps expected as the FGWS
vocabulary is now trained with grammatically in-
correct sentences containing mis-spellings. Further,
the FGWS algorithm is tuned to word substitution
attacks, meaning it is less appropriate for the con-
catenation setting here. The perplexity score is
calculated using a pre-trained distilled GPT-2 lan-
guage model (Radford et al., 2019) applied to the
input sequence. Perplexity has some success here
in detecting adversarial samples, but the success is
limited because many original input sequences are
grammatically incorrect and thus naturally have an
inflated perplexity score, meaning it is easy for the
detector to mistake them for adversarial samples.

Interestingly, negative confidence has no suc-
cess in detection here, whilst positive confidence
dominates as the best detection approach. This is
surprising because one would expect adversarial
samples to cause systems to be less confident in
their predictions, as the system is operating in a less
well understood input space. Nevertheless, superior
performance of positive confidence is explainable.
GEC systems are trained on data where the tokens
present in the input are also present in the refer-
ence, meaning in most cases there is a strong bias
towards simply predicting tokens that are present
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Figure 3: Evaluation of detector evasion adversarial attacks.

in the input sequence. When an obscure adversarial
word is present in the input sequence, the GEC sys-
tem at prediction time naturally has a much larger
probability mass associated with this obscure word,
i.e. it is excessively confident in predicting it.

An adversary may have knowledge of the power-
ful detectors used here and would tailor the adver-
sarial attack to avoid detection. Figure 3 shows the
impact of the greedy attack approach modified to
evade detection from the confidence detector and
the perplexity detector (detector thresholds set to
the value corresponding to the Fg 5 score in Figure
2) °. The attack phrases are learnt on the FCE train
set and evaluated on the FCE, CoNLL-14 and BEA
test sets. It is interesting to note that the confidence
detection evading attack phrases are only slightly
less effective than the original attack phrases - the
fraction of zero edits saturate at around 0.50 as
opposed to 0.56 (on FCE test set). However, con-
sidering the attack to evade the perplexity detec-
tor, the potency of this universal phrase is surpris-
ingly greater than the original greedy attack phrase
learnt (for all datasets). This suggests that con-
straining an attack to more human phrases (as mea-
sured by perplexity of a powerful GPT-2 language
model), allows for even stronger adversarial attacks.
These phrases are considered particularly threaten-
ing as their similarity to natural language allows for
greater imperceptibility to human observers (not
just automated detection systems).

6.4 Transfer Attack

The aim of this section is to investigate the impact
of transferring an attack learnt for an initial system
(Gramformer) to a target system (Gector).
Concatenation universal adversarial attacks on
the Gramformer system are found to be most power-
ful when the adversary greedily generates a phrase

A adversarial word is accepted if the average confi-
dence/perplexity is less than the detector threshold.

that evades a perplexity detector, as demonstrated
in Figure 3. Hence, this universal adversarial
phrase is simply evaluated on the Gector system.
The results in Table 4 show that this transferred uni-
versal adversarial phrase has some level of threat:
across all test sets, this universal adversarial phrase
is able to increase the fraction of samples with no
edits by at the least 10%. Table 4 also gives the
impact of learning a universal attack phrase (using
FCE train dataset and also avoiding a perplexity
detector as in Section 5) for the Gector system. In-
terestingly, the direct attack is only around twice as
effective as the transferred attack. This highlights
the potency of these forms of adversarial attacks:
the same adversarial phrase can transfer to different
unseen, GEC systems.

Data | Attack | N=0 N=9
| B 0 0
o || o8 8
|| 0 0

Table 4: Fraction of samples with zero edits, attack on
Gector.

6.5 Analysis

This section carries out a more in-depth analysis
to understand the aspects of the GEC systems ex-
ploited by adversarial attacks. The analysis pre-
sented here is for the concatenative full-stop attack
learnt for the Gramformer system.

We want to analyse the nature of the attack -
precisely which type of edits is the adversarial at-
tack phrase targeting. If for a dataset of J input-
reference sentence pairs, there exist a total R ref-
erence edits, €1.r (Equation 3) and P hypothesis
edits, é1.p (Equation 2), then the performance due
to the GEC system correctly hypothesising edits
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can be measured by the correction rate, cor and
the failure measured by the insertion rate, ins,

1< . 1< .
R z; @n™ TR ; ™
where {é;. R}C gives the complement set. Sec-
tion 3 classifies an edit as Missing, Replaced or
Unnecessary. Figure 4 shows how the correction
and insertion rates change (on FCE test) for each
of these edits classes separately. Note that there are
a total of R = 919, R = 2954 and R = 596 refer-
ence edits for Missing, Replaced and Unnecessary

classes respectively.
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Figure 4: Edit rates by edit type class.

The edit classes (M, R and U) all undergo a sim-
ilar drop in correction rate with an increasingly
powerful adversarial attack. However, Figure 4b
demonstrates that smaller [V adversarial attacks
struggle to reduce Unnecessary inserted edits more
than other edit type classes. Only when the re-
ductions from removing Missing and Replaced
inserted edit types have saturated, does increas-
ing N reduce the Unnecessary inserted edit types.
The flattening of the performance curve (fraction
of samples with zero edits) suggests that this re-
duction in inserted Unnecessary edits has little
benefit to the adversarial attack. The apparent
robustness of Unnecessary inserted edits can per-
haps be explained simply. An inserted edit is the

creation of an edit, é, by the GEC system that is
not present in the reference edits, ;.. When
a GEC system creates specifically Unnecessary
edits it means a token present in the input se-
quence is not present in the output prediction se-
quence. A well trained GEC system will remove
the adversarial phrase appended to the input se-
quence, creating an Unnecessary edit, é, which
does not exist in the reference edits, €1.p - it is
an inserted edit. Hence, there is an artificial in-
crease in inserted Unnecessary edits. Edits in the
adversarial phrase only contribute to 4% of to-
tal edits on average (analysis presented in Figure
A.1), where 91% of the adversarial phrase edits
are Unnecessary edit types. This gives on average
an increase in the inserted Unnecessary edit rate
by 10% (0.04 % 0.91 % count(é;1.p)/596), where
596 is the count of Unnecessary reference edits.
This increase of 10% explains the shift between
the Replaced and Unnecessary curves in Figure
4b. Hence, all edit types in an input sequence are
susceptible to the simple universal attack.

7 Conclusions

Grammatical Error Correction (GEC) systems can
contribute to automated fluency assessment. The
count of edits between a candidate’s input and the
grammatically correct output sequence from the
GEC system, is a measure of the candidate’s ability
in the language: fewer the number of edits, the
better the candidate. However, this work showed
that deep learning based GEC systems are suscep-
tible to adversarial attacks, where a candidate can
cheat by adjusting their input sentence such that
the predicted sequence from the GEC system does
not correct the existing grammatical errors.

To model a realistic adversarial attack setting,
this work restricts itself to a blackbox, universal
attack approach, where the same adversarial phrase
is appended to the end of all candidates’ input se-
quences. This setting is particularly threatening
because a candidate can cheat without querying
the GEC system even once - the candidate only
has to acquire the attack phrase. It is found that
the same universal attack phrase can be effective
across multiple datasets and more interestingly can
be transferred to deceive new, unseen architectures.
This demonstrates that all GEC systems have a
worrying susceptibility to even the simplest attack
forms.
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8 Limitations

This work identified methods to adversarially attack
state of the art GEC systems. Defence strategies in
the form of detection were also considered. How-
ever, there has been less focus on adversarial train-
ing to improve robustness of systems. Although
adversarial training is not an option available to
deployed GEC systems, future work in this area
would be useful in understanding the increase in ro-
bustness from adversarial training to the universal
attack form considered in this work.

9 Risks and Ethics

Adversarial attacks, by nature, are of ethical con-
cern in high stakes’ environments. The approaches
proposed in this work can be used to inspire candi-
dates to engage in mal-practice in an education set-
ting. However, this is of little concern because the
development of attacks requires significant know-
how of the GEC assessment process, which candi-
dates are unlikely to have.
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A More Analysis

It is perhaps surprising to observe a reduction in
the number of edits made by a GEC system, when
a potentially grammatically incorrect adversarial

phrase is concatenated at the end of each input.

To investigate this, Figure A.1 presents the split
in the number of edits; i.e. on average how many
edits are found in the original part of the input
and the concatenated adversarial part of an input
separately (using the full-stop concatenation attack

on the Gramformer evaluated on the FCE test set).

The adversarial phrase appears to have a length
independent small contribution to the total number
of edits, whilst the larger reduction in the number
of original part edits allows for an overall decrease
in the total edits.

m Adversarial
= Original

Average edit count
o o o =
> o o o

o
N

=4
=}

Figure A.1: Average edit count split between original
and adversarial parts of inputs.
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B Examples and More Results

Input I have received your letter, which was about that you would like me to inform you. ink.

Pred I have received your letter, which was about what you would like me to inform you about.

Adv Pred I have received your letter, which was about what you would like me to inform you. ink.

Input When I was a child I always wanted to get the lyrics of the songs that I liked, but it was nearly
impossible to have them. ink.

Pred

When I was a child I always wanted to get the lyrics of the songs that I liked, but it was nearly
impossible to get them.

AdvPred WhenI was a child I always wanted to get the lyrics of the songs that I liked, but it was nearly
impossible to have them. ink.

Input As you know, it is not suitable to wear a jean or something. ink.

Pred As you know, it is not fashionable to wear jeans or something.

Adv Pred  As you know, it is not suitable to wear jeans or something. ink.

Table B.1: Examples of GEC prediction sequences with and without universal adversarial sequence concatenated to
input.

= Adversarial 14
== Original

12 1.2
1.4 1.0
0. £ 08
o. 0.6
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® o
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Average edit count
Average edit count

=

(a) Comma (b) Direct (c) Colon

Figure B.1: Average edit count split between original and adversarial parts of inputs for each type of punctuation
attack (on FCE test) for the Gramformer.
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Abstract

The use of deep neural models for diagnosis
prediction from clinical text has shown promis-
ing results. However, in clinical practice such
models must not only be accurate, but provide
doctors with interpretable and helpful results.
We introduce ProtoPatient, a novel method
based on prototypical networks and label-wise
attention with both of these abilities. ProtoPa-
tient makes predictions based on parts of the
text that are similar to prototypical patients—
providing justifications that doctors understand.
We evaluate the model on two publicly avail-
able clinical datasets and show that it outper-
forms existing baselines. Quantitative and qual-
itative evaluations with medical doctors further
demonstrate that the model provides valuable
explanations for clinical decision support.

1 Introduction

Medical professionals are faced with a large
amount of textual patient information every day.
Clinical decision support systems (CDSS) aim to
help clinicians in the process of decision-making
based on such data. We specifically look at a sub-
task of CDSS, namely the prediction of clinical
diagnosis from patient admission notes. When
clinicians approach the task of diagnosis predic-
tion, they usually take similar patients into account
(from their own experience, clinic databases or by
talking to their colleagues) who presented with
typical or atypical signs of a disease. They then
compare the patient at hand with these previous en-
counters and determine the patient’s risk of having
the same condition.

In this work, we propose ProtoPatient, a deep
neural approach that imitates this reasoning process
of clinicians: Our model learns prototypical char-
acteristics of diagnoses from previous patients and

This Patient

newly admitted

to the ICU -

Looks Like

CHIEF COMPLAINT: headaches
PRESENT ILLNESS: 62yo male

patient. L with sovar,

That Patient
with prototypical signs
of intracerebral
hemorrhage

... complained of worst

hed ... severe headaches.
vol He felt nauseous and
vg vomited multiple

lev{ times...

headache of her life ...

... episodes of nausea
and problems keeping

pempril, multi-vit, trazadone
FAMILY HISTORY: fhx significant

for DMII & HTN, father with [...]

food down ...

showed signs of a large [...]

Figure 1: Basic concept of the ProtoPatient method.
The model makes predictions for a patient (left side)
based on the comparison to prototypical parts of earlier
patients (right side).

bases its prediction for a current patient on the sim-
ilarity to these prototypes. This results in a model
that is both inherently interpretable and provides
clinicians with pointers to previous prototypical
patients. Our approach is motivated by Chen et al.
(2019) who introduced prototypical part networks
(PPN5s) for image classification. PPNs learn proto-
typical parts for image classes and base their classi-
fication on the similarity to these prototypical parts.
We transfer this work into the text domain and ap-
ply it to the extreme multi-label classification task
of diagnosis prediction. For this transfer, we apply
an additional label-wise attention mechanism that
further improves the interpretability of our method
by highlighting the most relevant parts of a clinical
note regarding a diagnosis.

While deep neural models have been widely
applied to outcome prediction tasks in the past
(Shamout et al., 2020), their black-box nature re-
mains a large obstacle for clinical application (van
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Aken et al., 2022). We argue that decision support
is only possible when model predictions are ac-
companied by justifications that enable clinicians
to follow a lead or to potentially discard predic-
tions. With ProtoPatient we introduce an architec-
ture that allows such decision support. Our evalua-
tion on publicly available data shows that the model
can further improve state-of-the-art performance
on predicting clinical outcomes.

Contributions We summarize the contributions
of this work as follows:

1. We introduce a novel model architecture based
on prototypical networks and label-wise attention
that enables interpretable diagnosis prediction. The
system learns relevant parts in the text and points
towards prototypical patients that have led to a cer-
tain decision.

2. We compare our model against several state-
of-the-art baselines and show that it outperforms
earlier approaches. Performance gains are espe-
cially visible in rare diagnoses.

3. We further evaluate the explanations provided
by our model. The quantitative results indicate
that our model produces explanations that are more
faithful to its inner working than post-hoc expla-
nations. A manual analysis conducted by medical
doctors further shows the helpfulness of prototypi-
cal patients during clinical decision-making.

4. We release the code for the model and experi-
ments for reproducibility. !

2 Task: Diagnosis Prediction from
Admission Notes

The task of outcome prediction from admission
notes was introduced by van Aken et al. (2021)
and assumes the following situation: A new pa-
tient p gets admitted to the hospital. Information
about the patient is written into an admission note
ap. The goal of the decision support system is to
identify risk factors in the text and to communicate
these risks to the medical professional in charge.
For outcome diagnosis prediction in particular, the
underlying model determines these risks by pre-
dicting the likelihood of a set of diagnoses C being
assigned to the patient at discharge.

Data We evaluate our approach on the diagnosis
prediction task from the clinical outcome predic-
tion dataset introduced by van Aken et al. (2021).

"Public code repository:
https://github.com/bvanaken/ProtoPatient

Number of samples per diagnosis code
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N 20% of total samples

1,000

100
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10
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Figure 2: Distribution of ICD-9 diagnosis codes in
MIMIC-III training set.

The data is based on the publicly available MIMIC-
III database (Johnson et al., 2016). It comprises
de-identified data from patients in the Intensive
Care Unit (ICU) of the Beth Israel Deaconess Med-
ical Center in Massachusetts in the years 2001-
2012. The data includes 48,745 admission notes
written in English from 37,320 patients in total.
They are split into train/val/test sets with no over-
lap in patients. The admission notes were created
by extracting sections from MIMIC-III discharge
summaries which contain information known at
admission time such as Chief Complaint or Family
History. The notes are labelled with diagnoses in
the form of 3-digit ICD-9 codes that were assigned
to the patients at discharge. On average, each pa-
tient has 11 assigned diagnoses per admission from
a total set of 1266 diagnoses.

Challenges Challenges surrounding diagnosis
prediction can be divided into two main categories:

¢ Predicting the correct diagnoses The number of
possible diagnoses is large (>1K) and, as shown
in Figure 2, the distribution is extremely skewed.
Since many diagnoses only have a few samples,
learning plausible patterns is challenging. Fur-
ther, each admission note describes multiple con-
ditions, some being highly related, while others
are not. The text in admission notes is also highly
context dependent. Abbreviations like SBP (i.a.
for systolic blood pressure or spontaneous bacte-
rial peritonitis) have completely different mean-
ings based on their context. Our models must cap-
ture these differences and enable users to check
the validity of features used for a prediction.

e Communicating risks to doctors Apart from as-
signing scores to diagnoses, for a high-stake task
such as diagnosis prediction, a system must be
designed for medical professionals to understand
and act upon its predictions. Therefore, models
must provide faithful explanations for their pre-
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Figure 3: Schematic view of the ProtoPatient method.
Starting at the bottom, document tokens get a contextual-
ized encoding and are then transformed into a label-wise
document representation vc. The classifier simply con-
siders the distance of this representation to a learned
prototypical vector u.. The prototypical patient v/, is
the training example closest to the prototypical vector.

dictions and give clues that enable further clinical
reasoning steps by doctors. These requirements
are challenging, since interpretability of models
often come with a trade-off in their prediction
performance (Arrieta et al., 2019).

3 Method: ProtoPatient

To address the challenges above, we propose a
novel model architecture called ProtoPatient, which

adapts the concept of prototypical networks (Chen
et al., 2019) to the extreme multi-label scenario
by using label-wise attention and dimensionality
reduction. Figure 3 presents a schematic overview.
We further show how our model can be efficiently
initialized to improve both speed and performance.

3.1 Learning Prototypical Representations

We encode input documents a,, (p indexes patients)
into vectors v with dimension D and measure
their distance to a learned set of prototype vectors.
Each prototype vector u. represents a diagnosis
¢ € C in the dataset. The prototype vectors are
learned jointly with the document encoder so that
patients with a diagnosis can best be distinguished
from patients without it. As a distance measure
we use the Euclidean distance dp. = ||vp — uc|2
which Snell et al. (2017) identified as best suited
for prototypical networks. We then calculate the
sigmoid o of the negative distances to get a predic-
tion Yp. = o(—dp.), so that documents closer to a
prototype vector get higher prediction scores. We
define the loss L as the binary cross entropy (BC'E)
between g, and the ground truth y,,. € {0, 1}.

L= ZZBCE(meypc) (D
P c

Prototype initialization Snell et al. (2017) de-
fine each prototype as the mean of the embedded
support set documents. In contrast, we learn the
label-wise prototype vectors end-to-end while op-
timizing the multi-label classification. This leads
to better prototype representations, since not all
documents are equally representative of a class, as
taking the mean would suggest. However, using
the mean of all support documents is a reasonable
starting point. We set the initial prototype vectors
of a class as ug, ;,, = (V). i.e. the mean of all doc-
ument vectors v, with class label c in the training
set. We then fine-tune their representation during
training. Initial experiments showed that this ini-
tialization leads to model convergence in half the
number of steps compared to random initialization.

Contextualized document encoder For the en-
coding of the documents, we choose a Transformer-
based model, since Transformers are capable of
modelling contextualized token representations.
For initializing the document encoder, we use the
weights of a pre-trained language model. At the
time of our experiments, the PubMedBERT (Tinn
et al., 2021) model reaches the best results on a
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range of biomedical NLP tasks (Gu et al., 2020).
We thus initialize our document encoder with Pub-
MedBERT weights? and further optimize it with a
small learning rate during training.

3.2 Encoding Relevant Document Parts with
Label-wise Attention

Since we face a multi-label problem, having only
one joint representation per document tends to pro-
duce document vectors located in the center of mul-
tiple prototypes in vector space. This way, impor-
tant features for single diagnoses can get blurred,
especially if these diagnoses are rare. To prevent
this, we follow the idea of prototypical part net-
works of selecting parts of the note that are of in-
terest for a certain diagnosis. In contrast to Chen
et al. (2019), we use an attention-based approach
instead of convolutional filters, since attention is
an effective way for selecting relevant parts of text.
For each diagnosis c, we learn an attention vector
we. To encode a patient note with regard to c, we
apply a dot product between w. and each embed-
ded token gy,5, where j is the token index. We then
apply a softmax.

Spej = softmam(ggj W) @)

We use the resulting scores s).; to create a doc-
ument representation vy as a weighted sum of
token vectors.

Vpc = Z Spcj 8pj (3)
J

This way, the document representation for a cer-
tain diagnosis is based on the parts that are most
relevant to that diagnosis. We then measure the
distance dp. = ||Vpec — uc||2 to the prototype vec-
tor u. based on the diagnosis-specific document
representation vpc.

Attention initialization The label-wise attention
vectors w determine which tokens the final docu-
ment representation is based on. Therefore, when
initializing them randomly, we start our training
with document representations which might carry
little information about the patient and the corre-
sponding diagnosis. To prevent this cold start, we
initialize the attention vectors we, . with tokens
informative to the diagnosis c¢. This way, at train-
ing start, these tokens reach higher initial scores

“Model weights from: https://huggingface.co

/microsoft/BiomedNLP-PubMedBERT-base-unc
ased—-abstract-fulltext

Spcj- We consider tokens t informative that surpass
a TF-IDF threshold of h. We then use the aver-
age of all embeddings g ; from t in documents
corresponding to the diagnosis.

= (8ct) “)

with £ = ¢ : tf-idf(t) > h. We found h=0.05 suit-
able to get 5-10 informative tokens per diagnosis.

Wcinit

3.3 Compressing representations

Label-wise attention vectors for a label space with
more than a thousand labels lead to a considerable
increase in model parameters and memory load.
We compensate this by reducing the dimensionality
D of vector representations used in our model. We
add a linear layer after the document encoder that
both reduces the size of the document embeddings
and acts as a regularizer, compressing the informa-
tion encoded for each document. We find that re-
ducing the dimensionality by one third (D = 256)
leads to improved results compared to the full-size
model, indicating that more dense representations
are beneficial to our setup.

3.4 Presenting prototypical patients

For retrieving prototypical patients v, for decision
justifications at inference time, we simply take the
label-wise attended documents from the training
data that are closest to the diagnosis prototype. By
presenting their distances to the prototype vector,
we can provide further insights about the general
variance of diagnosis presentations. Correspond-
ingly, we can also present patients with atypical
presentation of a diagnosis by selecting the ones
furthest away from the learned prototype.

4 Evaluating Diagnosis Predictions

4.1 Experimental Setup

Baselines We compare ProtoPatient to hierarchi-
cal attention models and to Transformer models
pre-trained on (bio)medical text, representing two
state-of-the-arts approaches for ICD coding and
outcome prediction tasks, respectively.

 Hierarchical attention models Hierarchical At-
tention Networks (HAN) were introduced by
Yang et al. (2016). They are based on bidi-
rectional gated recurrent units, with attention
applied on both the sentence and token level.
Baumel et al. (2018) built HA-GRU upon
this concept using only sentence-wise attention,
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ROC AUC macro ROC AUC micro PR AUC macro
HAN (Yang et al., 2016) 83.38 £0.13 96.88 +0.04 13.56 40.01
HAN + Label Emb (Dong et al., 2021) 83.49 +0.18 96.87 +0.12 13.07 +0.14
HA-GRU (Baumel et al., 2018) 79.94 +0.57 96.65 +0.12 9.52 +1.01
HA-GRU + Label Emb (Dong et al., 2021) 80.54 +1.67 96.67 +0.22 10.33 £1.70
Clinical BERT (Alsentzer et al., 2019) 80.95 +0.16 94.54 +0.93 11.62 +0.64
DischargeBERT (Alsentzer et al., 2019) 81.17 £0.30 94.70 40.48 11.24 4+0.88
CORe (van Aken et al., 2021) 81.92 +0.09 94.00 +1.10 11.65 +0.78
PubMedBERT (Tinn et al., 2021) 83.48 +0.21 95.47 +0.22 13.42 +0.57
Prototypical Network 81.89 +0.22 95.23 +0.01 9.94 +0.36
ProtoPatient 86.93 +0.24 97.32 +0.00 21.16 +0.21
ProtoPatient + Attention Init 87.93 +0.07 97.24 +0.02 17.92 +0.65

Table 1: Results in % AUC for diagnosis prediction task (1266 labels) based on MIMIC-III data. The ProtoPatient
model outperforms the baselines in micro ROC AUC and PR AUC. The attention initialization further improves
the macro ROC AUC. =+ values are standard deviations. Label Emb: Label Embeddings. Attention Init: Attention

vectors initialized as described in Section 3.2.

while adding a label-wise attention scheme com-
parable to ProtoPatient. Dong et al. (2021) fur-
ther show that pre-initialized label embeddings
learned from ICD code co-occurrence improves
results for both approaches. We thus evaluate the
models with and without label embeddings.>

* Transformers pre-trained on in-domain text
Alsentzer et al. (2019) applied clinical language
model fine-tuning on two Transformer models
based on the BioBERT model (Lee et al., 2020).
Clinical BERT was trained on all clinical notes
in the MIMIC-III database, and DischargeBERT
on all discharge summaries. They belong to the
most widely used clinical language models and
achieve high scores on multiple clinical NLP
tasks. The CORe model (van Aken et al., 2021)
is also based on BioBERT, but further pre-trained
with an objective specific to patient outcomes,
which achieved higher scores on clinical outcome
prediction tasks. Tinn et al. (2021) introduced
PubMedBERT which was, in contrast to the
other models, trained from scratch on articles
from PubMed Central with a dedicated vocabu-
lary. It is currently the best performing approach
on the BLURB (Gu et al., 2020) benchmark.

Training We train all baselines on the dataset
introduced in Section 2. For training HAN and HA-

3*Note that Dong et al. (2021) also propose the H-LAN
model, which is a combination of HAN and HA-GRU using
label-wise attention on sentence and token level. However, the
model is only applicable to smaller label spaces (<100) due to
its memory footprint and thus cannot be evaluated on our task.

GRU we use the code and best performing hyperpa-
rameters as provided by Dong et al. (2021). We fur-
ther use their pre-trained ICD-9 label embeddings
(for details, see Appendix A.1). For training the
Transformer-based models and ProtoPatient, we
use hyperparameters reported to perform best for
BERT-based models by van Aken et al. (2021) and
additionally optimize the learning rate and number
of warm up steps with a grid search. We further
truncate the notes to a context size of 512. See A.2
for all details on the chosen hyperparameters. We
report the scores of all models as an average over
three runs with different seeds.

Ablation studies ProtoPatient combines three
strategies: Prototypical networks, label-wise at-
tention and dimensionality reduction. We conduct
ablation studies to measure the impact of each strat-
egy. To this end, we apply both label-wise attention
and dimensionality reduction to a PubMedBERT
model using a standard classification head. We fur-
ther train a prototypical network without label-wise
attention and ProtoPatient with different dimension
sizes. The results are found in Table 2 and 7.

Transfer to second data set Clinical text data
varies from clinic to clinic. We want to test whether
the patterns learned by the models are transferable
to other data sources than MIMIC-III. We use an-
other publicly available dataset from the i2b2 De-
identification and Heart Disease Risk Factors Chal-
lenge (Stubbs and Uzuner, 2015) further processed
into admission notes by van Aken et al. (2021). The
data consists of 1,118 admission notes labelled with
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ROC AUC macro

Dimensionality reduction

ProtoPatient 768 83.56 £0.17
ProtoPatient (our proposed model with D=256) 86.93 +0.24
Transformer vs. Prototypical

PubMedBERT 768 83.48 £0.21
PubMedBERT 768 + Label Attention 84.10 £0.25
ProtoPatient 768 83.56 £0.17
Label-wise attention

PubMedBERT 256 83.61 £0.04
PubMedBERT 256 + Label Attention 84.68 +0.52

Table 2: Ablation studies comparing different dimen-
sion sizes and how a standard Transformer (PubMed-
BERT) performs with additional label-wise attention.

the ICD-9 codes for chronic ischemic heart disease,
obesity, hypertension, hypercholesterolemia and di-
abetes. We evaluate models without fine-tuning on
the new data to simulate a model transfer to another
clinic. The resulting scores are reported in Table 3.

4.2 Results

We present the results of all models on the diagno-
sis prediction task in Table 1. In addition, we show
the macro ROC AUC score across codes depending
on their frequency in the training set in Figure 4.
We summarize the main findings as follows.

ProtoPatient outperforms previous approaches
The results show that ProtoPatient achieves the best
scores among all evaluated models. Pre-initializing
the attention vectors further improves the macro
ROC AUC score. Ablation studies show that all
components play a role in improving the results.
A prototypical network without label-wise atten-
tion is not able to capture the extreme multi-label
data. PubMedBERT using a standard classification
head also benefits from label-wise attention, but
not to the same extent. Combining prototypical
networks and label-wise attention thus brings ad-
ditional benefits. The choice of dimension size is
another important factor. Using 768 dimensions
(the standard BERT base size) appears to lead to
over-parameterization in the attention and proto-
type vectors. Using 256 dimensions also improves
generalization, which is shown in producing the
best results on the i2b2 data set in Table 3.

Improvements for rare diagnoses Figure 4
shows that the ROC AUC improvements are partic-
ularly large for codes that are rare (<50 times) in
the training set. Prototypical networks are known
for their few-shot capabilities (Snell et al., 2017)

—— PubMedBERT

-=- PubMedBERT 256 + Label Attention
Prototypical Network
ProtoPatient

—— ProtoPatient + Attention Init

<5 5-10 11-50 51-100 101-1K >1K

code frequency

Figure 4: Macro ROC AUC scores regarding the fre-
quency of ICD-9 codes in the training set. ProtoPatient
models show the largest performance gain in rare codes
(<100 samples). Attention initialization leads to large
improvement for very rare codes (<10 samples).

ROC AUC macro
PubMedBERT 82.11 £0.12
Prototypical Network 69.65 +0.22
ProtoPatient 768 85.28 £0.49
ProtoPatient 87.38 +0.20
ProtoPatient + Attention Init 86.72 £1.52

Table 3: Performance on a second data set based on clin-
ical notes from the i2b2 challenge (Stubbs and Uzuner,
2015). ProtoPatient shows the highest degree of trans-
ferability. Further metrics shown in Table 8.

which also prove useful in our scenario with mixed
label frequencies. For extremely rare codes that
appear less than ten times, the attention initializa-
tion described in Section 3.2 further improves re-
sults. This indicates that the randomly initialized
attention vectors need at least a number of sam-
ples to learn the most important tokens, and that
pre-initializing them can accelerate this process.

PubMedBERT and HAN are the best baselines
The pre-trained PubMedBERT and the HAN model
achieve the highest scores among the baselines. In-
terestingly, PubMedBERT outperforms the Trans-
former models pre-trained on clinical text. This
indicates that training from scratch with a domain-
specific vocabulary is beneficial for the task. The
scores of the HAN model further emphasize the
importance of label-wise attention. The addition of
label embeddings to HAN and HA-GRU, however,
does not add significant improvements in our case.
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Figure 5: Evaluating faithfulness of highlighted tokens.
Lower scores indicate more faithful explanations. Pro-
toPatient’s token highlights are part of the model deci-
sion and thus more faithful than post-hoc explanations.

5 Evaluating Interpretability

We evaluate the interpretability of ProtoPatient with
quantitative and qualitative analyses as follows.

Quantitative study on faithfulness Faithfulness
describes how explanations correspond to the inner
workings of a model, a property essential to their
usefulness. We apply the explainability benchmark
introduced by Atanasova et al. (2020) to compare
the faithfulness of ProtoPatient’s token highlights
to post-hoc explanation methods. Following the
benchmark, faithfulness is measured by incremen-
tally masking highlighted tokens, expecting a steep
drop in model performance if the tokens are in-
deed relevant to the model prediction. See B.1 for
details. Due to the high computational costs of
the evaluation, we limit our analyses to three di-
agnoses with a high severity to the ICU: Sepsis,
intracerebral hemorrhage and pneumonia. We com-
pare against four common post-hoc explanation
methods, namely Lime (Ribeiro et al., 2016), Oc-
clusion (Zeiler and Fergus, 2014), InputXGradient
(Kindermans et al., 2016), and Gradient Backpropa-
gation (Springenberg et al., 2014), which we apply
to the PubMedBERT baseline. Figure 5 shows the
results, for which lower scores mean more faithful
explanations (i.e. a steeper drop in model perfor-
mance). We see that ProtoPatient’s explanations
reach the lowest scores for all three labels, proving
that they are more faithful than the post-hoc expla-
nations. This is a result of the interpretable struc-
ture of ProtoPatient, in which model decisions are

directly based on the highlighted parts. We show
these parts, i.e. the tokens that are most frequently
highlighted by the model for the three analyzed
diagnoses, in B.2.

Manual analysis by medical doctors We con-
duct a manual analysis with two medical doc-
tors (one specialized, one resident) to understand
whether highlighted tokens and prototypical pa-
tients are helpful for their decisions. They used
a demo application of ProtoPatient* and analyzed
20 random patient letters with 203 diagnoses in
total. The results are shown in Table 4. The doc-
tors first identified the principal diagnoses and then
rated the corresponding prototypical patients pre-
sented by the model. Note that some patients have
more than one principal diagnosis. In 21 of 23
cases, the prototypical samples were showing typi-
cal signs of the respective diagnosis and 17 of them
were rated as helpful for making a diagnosis deci-
sion. Cases in which they were not helpful included
very rare conditions or ones with a strong differ-

*Demo URL available at:
https://protopatient.demo.datexis.com

Analysis of prototypical patient cases
(principal diagnoses)
Q1: Prototypical patient shows typical clinical signs

yes

no

21

2

mostly

partially

Q2: Highlighted prototypical parts are relevant

hardly

21

2

0

yes

Q3: Prototypical patient is helpful for diagnosis decision

no

17

6

Analysis of highlighted parts
(all diagnoses)

Q4: Highlighted tokens are relevant for diagnosis
(i.e. describe diagnosis, symptoms or risk factors)

mostly partially hardly
TPs 78 3 7
FPs 50 12 9
FNs 22 10 12
Q5: Important tokens are missing from highlights

yes no
TPs 17 71
FPs 13 58
FNs 2 42

Table 4: Results of the manual analysis conducted by
medical doctors on ProtoPatient outputs. The prototypi-
cal patients were analyzed for the principal diagnoses
only, while the highlighted parts of the patient letter at
hand were analyzed for all diagnoses. Q1..5 denote the
questions answered regarding each patient case.
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ence to the specific case. They further analyzed
the highlighted tokens for all diagnoses and found
that they contained mostly relevant information in
150 cases. Examples of highlighted risk factors
judged as plausible were obesity known to relate
to diabetes type 11, untreated hypertension to heart
failure or a medication history of anticoagulant
coumadin to atrial fibrillation. They also identified
cases in which the highlighted tokens were partially
or hardly relevant. In these cases, the highlighted
tokens often included stop words or punctuation,
indicating that the attention vector failed to learn
relevant tokens. This was mainly observed in very
frequent diagnoses such as hypertension or anemia,
which corresponds to the lower model performance
on these conditions (see Figure 4). This is because
conditions very common in the ICU are often either
not indicated in the clinical note or not labelled, so
that the model cannot learn clear patterns regarding
their relevant tokens.

6 Related Work

Diagnosis prediction from clinical notes Pre-
dicting diagnosis risks from clinical text has been
studied using different methods. Fakhraie (2011)
analyzed the predictive value of clinical notes with
bag-of-words and word embeddings. Jain et al.
(2019) experimented with adding attention mod-
ules to recurrent neural models. Recently, the use
of Transformer models for diagnosis prediction
has outperformed earlier approaches. van Aken
et al. (2021) applied BERT-based models further
pre-trained on clinical cases to predict patient out-
comes. However, the black-box nature of these
models hinders their application in clinical prac-
tice. We therefore introduce ProtoPatient, which
uses Transformer representations, but provides in-
terpretable predictions.

Prototypical networks for few-shot learning
Prototypical networks were first introduced by
Snell et al. (2017) for the task of few-shot learning.
They initialized prototypes as centroids of support
samples per episode and applied the approach to
image classification tasks. Sun et al. (2019) adapted
the approach to text documents with hierarchical at-
tention layers. Recently, related approaches based
on prototypical networks have been used for mul-
tiple few-shot text classification tasks (Wen et al.,
2021; Zhang et al., 2021; Ren et al., 2020; Deng
et al., 2020; Feng et al., 2023). In contrast to this
body of work, we do not train our model in a few-

shot scenario using episodic learning. However,
our model shows related capabilities by improving
results for diagnoses with few available samples.

Prototypical networks for interpretable models
Chen et al. (2019) used prototypical networks in
a different setup to build an interpretable model
for image classification. To this end, they learn
prototypical parts of images to mimic human rea-
soning. We adapt their idea and show how to apply
it to clinical natural language. Recently, Ming et al.
(2019) and Das et al. (2022) applied the concept
of prototypical networks to text classification and
showed how prototypical texts help to interpret pre-
dictions. In contrast to their work and following
Chen et al. (2019), we identify prototypical parts
rather than whole documents by using label-wise
attention. This makes interpreting results easier
and enables multi-label classification with over a
thousand labels.

Label-wise attention Mullenbach et al. (2018)
introduced label-wise attention for clinical text
with the CAML model. Since then, the method
has been further improved by hierarchical attention
approaches (Baumel et al., 2018; Yang et al., 2016;
Dong et al., 2021). Label-wise attention has mainly
been used for ICD coding, a task related to diag-
nosis prediction that differs in the input data: ICD
coding is done on notes that describe the whole
stay at a clinic. In contrast, outcome diagnosis pre-
diction uses admission notes as input and identifies
diagnosis risks rather than the diagnoses already
mentioned in the text. Our method-combining
prototypical networks with label-wise attention—is
particularly focused on detecting and highlighting
those risks to enable clinical decision support.

7 Discussion

7.1 Reflection on the Challenges

Rudin (2019) urges to stop explaining black-boxes
and to build interpretable models instead. With
ProtoPatient we introduce a model with a simple
decision process—this patient looks like that patient—
that is understandable to medical professionals and
inherently interpretable. An exemplary output is
shown in Table 5. Our results indicate that the
model is able to deal with contextual text in clini-
cal notes, e.g. when identifying SBP as a risk factor
for sepsis in B.2. In addition, it improves results
on rare diagnoses, which are especially challeng-
ing for doctors to detect due to lack of experience
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Admission note Relevant parts of admission note similar to  Parts of prototypical patient notes
PRESENT ILLNESS: Patient is a 35-year-old male il by @ ity R Icereb:jal hen_mrrhage
pedestrian Struckby abicyele from behind with positive loss of consciousness for 6 minutes ...~ — (t)ss T( gonsct:,‘"llsness -
loss of consciousness for 6 minutes at the scene after struck by veicie ...
: . . N coma score 9 .. with a ges of 10
landing on his head. At arrival at ER patient was confused, i
had multiple contusions noted on a head CT scan including | head CT scan ... skull fracture
bilateral frontal and right temporal contusions. His cervical | pjlateral contusions ... head wound ... )
spine and abdominal examinations were negative . right and left contusions ...
radiologically. The patient was then transferred to the hemodynamically stable . . stable blood circulation ...
]jmgrge;c;;] Roo(;n(i Pe.xtien;1 had several eiisod;s of vomiting | transferred to Emergency Room . .. shock
uring flight and during the trauma workup. He was ; ; i ¢ i

assesfed fnd was intub%ned for airway progection The several episodes of vomiting ... Patlzm h adll;:uglple episodes of vomil-

¢ A rote - ing during the day ...
patient was [given coma score of 9 upon initial assessment. . fosed - Tail
Patient remaining hemodynamically stable throughout the [PETETE WA EoT TCE a“‘?‘e resP‘fﬁ‘”W aldure
transfer and throughout the workup in the ED. [...] intubated for airway protection ... — patient was disoriented ...

later intubated for protection. ..

Table 5: Exemplary output of ProtoPatient. The model identifies parts in an admission note that are similar to (i.e.
"look like") parts from prototypical patient notes seen during training, leading to the prediction of this diagnosis.

and sensitivity towards their signs. Overall, our
approach demonstrates that interpretability can be
improved without compromising performance. The
modularity of the prototype vectors further allows
clinicians to modify the model even after training.
This can be done by adding prototypes whenever
a new condition is found, or by directly defining
certain patients as prototypical for the system.

7.2 Limitations of this work

Our model currently learns relations between diag-
noses only indirectly, due to the label-wise nature
of the classification. However, considering rela-
tions or conflicts between diagnoses is an impor-
tant part of clinical decision-making. One way to
include such relations is the addition of a loss term
incorporating diagnosis relations, as proposed by
Mullenbach et al. (2018). Another limitation is that
the current model only considers one prototype per
diagnosis, even though most diagnoses have mul-
tiple presentations, varying among patient groups.
We therefore propose further research towards in-
cluding multiple prototypes into the system.

8 Conclusion and Future Work

In this work, we present ProtoPatient which en-
ables interpretable outcome diagnosis prediction
from text. Our approach enhances existing meth-
ods in their prediction capability—especially for
rare classes—and presents benefits to doctors by
highlighting relevant parts in the text and pointing
towards prototypical patients. The modularity of
prototypical networks can be explored in future
research. One promising approach is to introduce
multiple prototypes per diagnosis, corresponding
to the multiple ways diseases can present in a pa-
tient. Prototypes could also be added manually by

medical professionals based on patients they con-
sider prototypical. Another approach would be to
initialize prototypes from medical literature and
compare them to those learned from patients.
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A Training Details

A.1 Label Embeddings for HAN and
HA-GRU

We apply label embeddings to the HAN and HA-
GRU network as proposed by Dong et al. (2021).
In particular, we use the pre-initialized embeddings
provided by the authors. Since they use a larger
label set, we map their embedding vectors to the
ICD-9 groups we use in our study. The mapping is
done by averaging all subcodes for one group. If
no code is available for an ICD-9 group, we use a
randomly initialized vector.

A.2 Hyperparameter setup

Batch size Since we work with 1266 labels, the
label-wise attention calculations limit the batch
size that fits into memory. We therefore use a batch
size of 20 for all models without label-wise atten-
tion, 10 for label-wise attention models reduced to
a dimensionality of 256 and 5 for the others. Ini-
tial experiments showed that the batch sizes have
no influence on model performance in our experi-
ments, only on memory consumption and training
duration.

Learning rates We choose different learning
rates for the document encoder weights and the
prototype and label-wise attention vectors. Since
we expect the encoder weights from the pre-trained
Transformer models to be already well aligned with
clinical language, we choose a small learning rate
between Se-04 and 5e-06. Since the prototypical di-
agnosis vectors and the label-wise attention vectors
need more adjustments to enable the classification
task, we search in a range of 5e-02 and Se-04. We
further apply an AdamW (Loshchilov and Hutter,
2017) optimizer and a linear learning rate sched-
uler with a warm-up period of 1K to 5K steps. We
provide the best hyperparameters per model in the
public code repository.

B Interpretability Evaluation Details

B.1 Measuring faithfulness

We use the evaluation setup proposed by Atanasova
et al. (2020) to measure the faithfulness of Pro-
toPatient’s explanations. The framework evaluates
different methods that output saliencies indicating
token importance for a model decision. The evalu-
ation then takes place by masking the most salient
tokens via multiple thresholds and measuring the
model’s performance for each one. Thresholds are
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Diagnosis 15 most attended words - with medical relation to diagnosis

Sepsis 1. hypotension symptom, 2. sepsis , 3. fever symptom, 4. hypotensive symptom,
5. fevers symptom, 6. septic , 7. lactate indicator, 8. shock s
9. bacteremia , 10. febrile symptom, 11. vancomycin medication, 12. SBP risk factor,
13. levophed medication, 14. swelling symptom, 15. cirrhosis risk factor
Intracerebral 1. hemorrhage , 2. bleed , 3. headache symptom, 4. ICH ,
Hemorrhage 5. IPH , 6. CT diagnostic, 7. weakness symptom, 8. stroke , 9. brain
10. intracranial , 11. hemorrhagic , 12. intraventricular s
13. hemorrhages , 14. hemiparesis symptom, 15. aphasia symptom
Pneumonia 1. pneumonia , 2. cough symptom, 3. PNA , 4. COPD risk factor,

5. infiltrate symptom, 6. distress complication, 7. fever symptom, 8. breath ambiguous,
9. hypoxia symptom, 10. sputum symptom, 11. respiratory complication, 12. sepsis complication,
13. SOB symptom, 14. consolidation symptom, 15. CAP

Table 6: Words from the test set with the highest attention scores assigned by ProtoPatient. All words are directly
related to the diagnoses and mostly describe symptoms or direct descriptors (in various forms). The highlights can
therefore help doctors to quickly identify important parts within a note and to compare them to prototypical parts.

going from masking only the top 10% of salient
tokens in steps of 10pp until 100% of tokens are
masked. The final faithfulness score is then calcu-
lated as the area under the curve of model perfor-
mance over all thresholds. As a performance mea-
sure, we choose macro ROC AUC to stay consistent
with the rest of our experiments. We compare to-
kens highlighted by ProtoPatient’s label-wise atten-
tion vectors to four post-hoc explanation methods
as described in 5. We apply these methods to the
PubMedBERT baseline, corresponding to a typi-
cal post-hoc explanation approach for an otherwise
black-box model.

B.2 Finding most relevant words per
diagnosis

We want to examine which parts of the clinical
notes are highlighted by ProtoPatient per diagno-
sis. To that end, we collect the tokens with the
highest attention scores over all training samples
per label. We again use the three diagnoses sep-
sis, intracerebral hemorrhage and pneumonia for a
closer analysis. We further map the tokens to their
corresponding words. We then let doctors define
the words’ medical relations to understand which
features the model considers important. Table 6
shows that the most attended words are mainly
symptoms or descriptors of the condition at hand,
which meets the objective of ProtoPatient to point
doctors to relevant parts of a note.
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ROC AUC macro ROC AUC micro PR AUC macro
Dimensionality reduction
ProtoPatient 768 83.56 +0.17 96.65 +0.03 14.36 +0.16
ProtoPatient 256 86.93 +0.24 97.32 4+0.00 21.16 +0.21
Transformer vs. Prototypical
ProtoPatient 768 83.56 +0.17 96.65 +0.03 14.36 +0.16
PubMedBERT 768 + Label Attention 84.10 +0.25 96.66 +0.17 19.74 +1.27
Label-wise attention
PubMedBERT 256 83.61 +0.04 95.76 +0.05 13.35 +0.25
PubMedBERT 256 + Label Attention 84.68 +£0.52 96.86 +£0.14 17.15 £1.52
ProtoPatient 256 86.93 +0.24 97.32 40.00 21.16 +0.21

Table 7: Full results of our ablation studies. Smaller dimension sizes benefit ProtoPatient, while the effect is less
notable on PubMedBERT. Adding label-wise attention, however, increases PubMedBERT results clearly. Overall,
the combination of prototypical network, label-wise attention, and reduced dimension in ProtoPatient reaches the
best results.

ROC AUC macro ROC AUC micro PR AUC macro

PubMedBERT 82.11 +0.12 85.48 +0.64 84.38 +0.54
PubMedBERT 256 + Label Attention 79.78 +5.30 83.43 +4.54 84.70 £2.84
Prototypical Network 69.65 +0.22 74.31 4£0.19 78.53 40.19
ProtoPatient 768 85.28 +0.49 88.63 +0.43 87.78 +0.10
ProtoPatient 87.38 +0.20 90.63 +0.23 89.72 +0.24
ProtoPatient + Attention Init 86.72 £1.52 89.84 +1.16 89.71 £1.20

Table 8: Full results of the evaluation on i2b2 data with five classes. Note that the baseline PR AUC is much higher
for this task than for the task based on MIMIC-III. ProtoPatient models reach the highest scores, indicating that they
are more robust towards changes in text style than the PubMedBERT baselines. The PubMedBERT model with
label-wise attention, in particular, shows quite inconsistent results regarding different seeds.
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Abstract

Related works used indexes like CKA and
variants of CCA to measure the similarity of
cross-lingual representations in multilingual
language models. In this paper, we argue that
assumptions of CKA/CCA align poorly with
one of the motivating goals of cross-lingual
learning analysis, i.e., explaining zero-shot
cross-lingual transfer. We highlight what valu-
able aspects of cross-lingual similarity these
indexes fail to capture and provide a motivating
case study demonstrating the problem empir-
ically. Then, we introduce Average Neuron-
Wise Correlation (ANC) as a straightforward al-
ternative that is exempt from the difficulties of
CKA/CCA and is good specifically in a cross-
lingual context. Finally, we use ANC to con-
struct evidence that the previously introduced
“first align, then predict” pattern takes place not
only in masked language models (MLMs) but
also in multilingual models with causal lan-
guage modeling objectives (CLMs). Moreover,
we show that the pattern extends to the scaled
versions of the MLMs and CLMs (up to 85x
original mBERT).!

1 Introduction

Similarity indexes like Canonical Correlation Anal-
ysis (CCA, Hotelling, 1936) or Centered Kernel
Alignment (CKA, Kornblith et al., 2019) aim to
find a similarity between parallel sets of different
representations of the same data. The deep learn-
ing community adapted these indexes to measure
similarity between representations that come from
different models (Raghu et al., 2017; Morcos et al.,
2018; Kornblith et al., 2019). Another line of work
used the same methods to measure similarity be-
tween different languages which come from a sin-
gle multilingual model (Kudugunta et al., 2019;
Singh et al., 2019a; Conneau et al., 2020; Muller
et al., 2021).

'Our code is publicly available at https://github.
com/TartuNLP/xsim

In this paper, we argue that while CCA/CKA
methods are a good fit for the first case, they are a
suboptimal choice for the second scenario.

First, we employ a real-world motivating exam-
ple to demonstrate that CKA can fail to capture the
notion of similarity that we consider helpful in a
cross-lingual context. We also discuss the general
problems of CKA/CCA indexes and conclude that
they are not well aligned with some of the goals of
cross-lingual analysis (Section 4).

Next, we propose and verify an Averaged
Neuron-Wise Correlation (ANC) as a straightfor-
ward alternative. It exploits the fact that represen-
tations from the same model have apriori-aligned
neurons, which is the desired property in a cross-
lingual setup (Section 5).

Finally, Muller et al. (2021) demonstrated the
so-called “first align, then predict” representational
pattern in a multilingual model: the model first
aligns representations of different languages to-
gether, and then (starting from the middle layers)
makes them more language-specific again (to ac-
company the language-specific training objective).
The finding is insightful but only considers mBERT
(Wu and Dredze, 2019) which is a masked language
model (MLM) with 110M parameters. Thus, it is
unclear if the “first align, then predict” pattern is
specific to this model or more general. In this study,
we use ANC to show that the pattern generalizes to
the GPT-style (Brown et al., 2020) causal language
models (CLMs, Lin et al., 2021) and extends to
large-scale MLMs and CLMs (Section 6).

In this paper we are interested specifically in the
scenario of measuring the strength of cross-lingual
similarity of representations that come from a sin-
gle multilingual language model. This scenario is
very common in the field as it is often not feasable
to train a separate models for each language and
we present a method that allows for better represen-
tational similarity analysis then CKA/CCA.
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In summary, our contributions are three-fold:

e conceptual and empirical critique of
CKA/CCA for cross-lingual similarity
analysis (Section 4);

* Average Neuron-Wise Correlation as a simple
alternative method designed specifically for
cross-lingual similarity (Section 5);

* scaling laws of cross-lingual similarity in both
multilingual MLLMs and CLMs (Section 6).

2 Related work

Hotelling (1936) introduced CCA as a method for
measuring canonical correlations between two sets
of random variables. Raghu et al. (2017) proposed
a variant of the CCA called SVCCA and used it
to analyze representations between different neural
networks. Morcos et al. (2018) proposed PWCCA,
another improvement to CCA for the network anal-
ysis, and Kornblith et al. (2019) analyzed CCA,
SVCCA, PWCCA, and other methods concluding
that CKA is superior to them.

In a cross-lingual setting, we have a single net-
work, and we compare representations that come
from different languages. Following the introduc-
tion of SVCCA, Kudugunta et al. (2019) used it
to compare language representations (at different
layers) in a multilingual neural machine translation
system. The method we present in this work applies
to the seq2seq models, but in this work, we focus
on models trained with CLM and MLM objectives
while leaving seq2seq for future work. Singh et al.
(2019a) performed a similar study where they fo-
cused on the multilingual BERT model? and em-
ployed PWCCA as a similarity index. The conclu-
sion was that language representations diverge with
network depth.

On the other hand, Conneau et al. (2020) and
Muller et al. (2021) used CKA and behavior anal-
ysis to show that the opposite pattern takes place:
language representations align with the network
depth and only moderately decrease towards the
end. In other words, representations first converge
towards language neutrality and then recover some
language-specificity. The alignment makes zero-
shot cross-lingual transfer possible, and slight di-
vergence accompanies language-specific training
objectives (such as English downstream prediction

https://github.com/google-research/
bert/blob/master/multilingual .md

task or predicting words in the particular language
as in masked language modeling objective). Fol-
lowing Muller et al. 2021, we call this phenomenon
the “first align, then predict” pattern.

Eventually, Del and Fishel (2021) showed that
the similarity analysis was different because Singh
et al. (2019a) used CLS-pooling while Muller et al.
(2021) used mean-pooling to convert token embed-
dings into a sentence representation. They also
showed that mean-pooling is a better option.

Finally, Li et al. (2015) aligned most correlated
neurons between layers of two different networks
and then computed similarity from the recovered
correspondence. The method we propose in this
paper is similar in spirit to this one, except we
focus on the cross-lingual analysis of multilingual
models and thus have no need to find the alignment
between neurons.

In this work, we build on these studies in three
ways: we demonstrate that even CKA can fail to
provide relevant cross-lingual similarity, we pro-
pose another method to compare multilingual repre-
sentations, and we reveal that the “first align, then
predict” pattern generalizes across training objec-
tives and holds for models of large sizes.

3 Similarity Indexes Background

In this section, we provide some background on
CKA and CCA, SVCCA, and PWCCA similarity
indexes®. We focus on the parts of the methods
most relevant to the key points we make in this
work. For the full mathematical description refer
to Kornblith et al. (2019).

Neuron Following related works, we define a
neuron as a vector of values it takes over a dataset
(Lietal., 2015; Raghu et al., 2017; Morcos et al.,
2018; Kornblith et al., 2019). Formally, let D be a
dataset consisting of data examples d:

D:{j{’...@:}

Let ; be a function that returns a neuron activation
value for the training example at the ¢-th unit of
the I-th layer of the network. The neuron 7; is the
vector of network activations recorded by applying
; over the elements of D), i.e.

- — d—>

2' = [pi(dr), -, pi(dm)]

*In the paper, we refer to both SVCCA and PWCCA sim-
ply as CCA unless otherwise specified.
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In practice, we pass a set of data examples to the
network and record activations for each unit at ev-
ery layer. The vector of these activations is what
we consider a representation of a neuron .

Layer The frequent goal of representational sim-
ilarity analysis is to compare layers of neural net-
works. Under our definition, the layer L is the list
of vectors (matrix) that consists of the neurons at a
particular depth, i.e.

where n is the number of neurons at layer L. Alter-
natively, we can think of layer_) L as the subspace of
R™ spanned by its neurons (z°, - - - ,z_ﬁ), where m
is the number of examples in the dataset.

CCA/CKA indexes rely on the idea of subspaces
spanned by the neurons, making them powerful
when comparing representations across different
networks. There can be more neurons in the first
layer than in the second; the neurons also do not
need to be aligned. CCA/CKA uses neurons only to
describe the vector subspaces and then compare the
subspaces as opposite to the neurons themselves.

That is why methods like CKA and CCA try
to find some second-order descriptions of repre-
sentational spaces (e.g., gram matrices/canonical
vectors) and compare these. The decisions on what
second-order information to consider and what
comparison technique to use define the differences
between the indexes.

Dominant Correlations The first step for all
methods is to center each neuron in the layer repre-
sentations:

X :=L; —mean(Ly)
Y := Ly — mean(Ls)

Let X and Y have p; and p2 neurons (columns).
Consider gram matrix X X '. Because neurons in
X are centered, X X T is proportional to covariance
matrix of X. Therefore, the elements in X X T
correspond to all pairwise covariance similarities
data points in X (the same holds for YYT).

Now consider doing eigendecomposition of
XTX. Eigenvectors u'|i € {1,...,m}, 0% €
R™ will represent directions of the most dominant
correlations of data points in X. Also, we can think
about vectors U as of eigenneurons, the ones that
explain the most variance in the representational
space of other neurons. A’ is then the i eigen-
value of X XT (the strengths of the eigenneurons).

CCA The directions % x and 'y are orthogonal
by the definition of the eigendecomposition. The
pair of vectors with the maximum dot product (% x,
Uy ) is called the first pair of canonical directions.
The value of their dot product is the first CCA coef-
ficient. Then the second pair produces the second
canonical coefficient, and so on.

The formula for the CCA similarity index is then
as follows (from Kornblith et al., 2019):

p1 P2 - —
CCAXXTYYT) =) ) (u,u})?/pr.
i=1 j=1

ey

CKA We might also consider weighting the CCA
correlations by their eigenvalues. This results in
Linear CKA (from Kornblith et al., 2019):

CKA(XXT YYT) =

I D I O AT S
VI 02 T (4,2
In this work, we focus on Linear CKA because
related works such as Muller et al. (2021) and Con-
neau et al. (2020) use it.

SVCCA If we also decide to apply SVD as the
preprocessing step after centering, we get SVCCA.
CCA then computes correlation coefficients only
for top K components from SVD transformed data
(right singular values) and thus can be better aver-
aged (see Equation 1).

PWCCA Finally, instead of taking a simple av-
erage of CCA coefficients or weighting them by
singular values (as in CKA), we might weight them
weights (loosely speaking) related to the CCA di-
rections that encapsulate the most data when pro-
jected.

In summary, all these methods are related and
based on the idea that we can deduce some dom-
inant correlation directions in X and Y and then
compare these. Another way to look at it is that
if CCA/CKA can represent neurons in Y as linear
combinations of neurons in X, these correlation
methods will generally respond with high scores.

The differences between methods make them
invariant to the data scaling, centering, and orthog-
onal transformations. At the same time, CCA and
SVCCA will not change their scores under any in-
vertible linear transformations of either X or YV
(see Kornblith et al., 2019 for more details).
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4 Problems With CKA/CCA

By performing an illustrative experiment, let us
introduce problems with CKA and CCA indexes.
Specifically, we want to check if different nor-
malization choices of the Transformer (Vaswani
et al., 2017) layers impact the zero-shot cross-
lingual transfer capabilities of the model and the
similarity of cross-lingual representations it learns.
This section presents a two-fold case against
CKA/CCA for cross-lingual similarity analysis:

» empirical: CKA fails to uncover relation-
ships between similarity after the architectural
change that does not hurt the performance of
the model;

* conceptual: lack of interpretability and unsat-
isfying underlying assumptions in CCA/CKA.

4.1 Experiments Setup

Models We train the following three XLM-
Roberta (Conneau and Lample, 2019) language
models (base size versions) from scratch (each
with a different normalization schema):

* Post-LN (scale_post): normalization
block is placed after the residual connections
in the transformer block (part of the original
Transfomer);

* Pre-LN (scale_pre): normalization block
is placed before the residuals (this was shown
to improve training by Xiong et al., 2020);

e Normformer (scale_normformer): nor-
malization block is placed before the resid-
uals and FeedForward, Residual, and Self-
Attention layers are also normalized (Shleifer
et al., 2021).

Pre-Training We pre-train a model based on
XLM-R Base using 5S0M sentences uniformly sam-
pled from four languages: English, French, Esto-
nian, and Bulgarian. We chose the languages to be
reasonably diverse: French is the most similar to
English in both grammar and alphabet, Bulgarian
is from a different language group (Slavic), and
Estonian is from a completely different language
family (Finno-Ugric). We train the model for 1M
batches of 512 sentences from the CCI00 dataset
using two Nvidia A100 GPUs. The only architec-
tural difference from the original XLLM-Roberta is
that we change normalization types to Pre-LN and
Normformer; other setup details are painstakingly
identical.

Experiment 1: XNLI Fine-Tuning After hav-
ing three models pretrained, we fine-tune each of
them on XNLI sentence classification task (Con-
neau et al., 2018). We use only English data for
training but evaluate on English and other language
evaluation sets (we only skip Estonian since it is
not a part of XNLI). This setup, where we tune on
one language but use another at test time, is called
zero-shot cross-lingual transfer.

Experiment 2: CKA Similarirty After having
the XNLI zero-shot cross-lingual transfer scores,
we extract sentence representations from all layers
of each model and compare layers using the CKA
similarity index.

The parallel corpus is composed of Singh et al.
(2019b)’s extension of the XINLI dataset (10k ex-
amples for each pair)*.

We embed the source and target sentences with
the models and perform mean-pooling over tokens
at each layer for each language pair (as suggested
by Del and Fishel, 2021). Next, we compare two
parallel sets of sentence representations using the
CKA similarity index to get a similarity score for
each layer.

Experiment 3: Per-Layer Matching Accuracy
Lastly, to get insight into some cross-lingual behav-
ioral capabilities of representations at each layer,
we analyze them with a sentence-matching probing
task.

We use the same data and pooling strategy as
in the CKA analysis. For each English sentence,
we find the closest target sentence in the opposite
language (out of all 10k targets) by cosine similar-
ity. If this sentence is the actual parallel counter-
part (translation) of the English sentence, we say
the model got this English example correct. Then
we compute the accuracy of this sentence match-
ing as the ratio between correctly labeled English
examples and the total number (10k) of English
examples.

Throughout this work, we conduct experiments
across languages sampled from the four language
families: Germanic, Romance, Slavic, Baltic, and
Finno-Ugric. While the results hold across the
complete set of languages from our work, we show-
case different subsets of languages from language
families in different experiments to introduce more
diversity while keeping the plots concise.

*+Using XNLI for both fine-tuning and CKA analysis al-
lows us to avoid domain mismatch scenarios entirely
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4.2 Experiments Results

Experiment 1: XNLI Fine-Tuning See Table 1
for our models’ zero-shot cross-lingual transfer per-
formance on the XNLI validation set.

Normalization en fr bg
scale_post 079 0.72 0.70
scale_pre 0.81 0.72 0.72

scale_normformer 079 0.72 0.71

Table 1: Accuracy of XLLM-Roberta Base Transformers
pre-trained with different normalization schemes and
fine-tuned on the English portion of the XNLI sentence
classification task. The models show similar zero-shot
cross-lingual transfer performance.

The Table shows that all three models achieve
solid zero-shot transfer performance with a
cross-lingual transfer gap of 7-9%. We see
no significant gains from the scale_pre or
scale_normformer, but crucially we see no
significant losses either.

Experiment 2: CKA Similarirty We present
per-layer CKA similarity results for the pre-trained
(untuned) models in Figure 1.

Figure 1 reveals that while for scale_post
and scale_pre CKA show fairly high cross-
lingual performance at all layers, the Normformer
results are drastically different. While the similarity
for the first half of the layers increases (layers 0-5),
the CKA score drops dramatically at the middle
layer of the network and continues to hang around
zero for all remaining layers (layers 6-12).

This result is especially surprising because CKA
confidently gives similarity scores that are almost
zero, while Table 1 shows no substantial differ-
ence in the zero-shot cross-lingual transfer results
between English and other languages. For tuned
models the CKA also fails to reveal similarity for
layers 6-11 (Figure 8 in Appendix A).

In this example, CKA is not capturing the no-
tion of similarity that would coincide with zero-
shot cross-lingual transfer performance for XLM-
Normformer. Zero-shot transfer (say) from English
requires language representations that converge to
English values so the other languages can re-use
the linear prediction head (calibrated for English).

To double-check the result we also retrain the
scale_normformer the second time with a dif-
ferent random restart and get the same CKA results
(see Figure 7 in Appendix A).
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Figure 1: Motivating example 1: counter-intuitive CKA
(dis)similarity of XLM-Normformer layers. CKA index
shows drastic dissimilarity for layers 6-12 despite re-
markable zero-shot cross-lingual transfer performance
of the model.
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Figure 2: Per-layer sentence matching accuracy for the
XLM-Normformer. The result again shows relatively
high matching scores for the deeper layers in contrast
to the CKA result from Figure 1. There is some decline,
but nothing like zero similarity of CKA.

Experiment 3: Per-Layer Matching Accuracy
However, let us also see the results of our sentence
matching task to verify whether these deep rep-
resentations in Normformer are useful. Figure 2
shows the resulting per-layer accuracy.

The pattern shows that layers 6-12 show some
significant cross-lingual matching scores (>50%
for French) with only a slightly decreasing trend.
This experiment confirms that there are aspects of
cross-lingual similarity in these multilingual repre-
sentations that CKA failed to reveal.

4.3 Downsides of CCA

This section shows that the family of CCA-like
similarity indexes suffers from similar issues as
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CKA. The first downside is that CCA is hard to
interpret. CCA is a second-order similarity index
(similarly to CKA), which makes it hard to trace
the reasons for high/low CCA scores to specific
neurons or give any other fine-grained explanation.
The second downside is that it is also not robust and
has led to the misleading conclusion in the related
literature (as demonstrated in Del and Fishel 2021).
We discuss these downsides in more detail below.

Interpretability Another interesting aspect of
our Normformer case is that PWCCA and SVCCA
similarity indexes show correlations of about 0.5-
0.8 for the layers 6-12 (see Figure 9 in Appendix
A for verification). It indicates something special
about CKA eigenvalue weighting, normalization
(the denominator in Equation 2), or both. One pos-
sibility is that dominant eigenneurons (the ones that
also have high eigenvalues) in monolingual repre-
sentational spaces are unproportionally similar to
each other (and this causes a high denominator and
thus the low CKA scores).

In any case, even if we recover what eigen-
values/normalization components cause these ex-
tremely low values, it would be even harder to track
down which individual neurons cause the problem
and to what extent (CCA/CKA methods essentially
find linear combinations of the neurons and so mix
them up). It highlights the interpretability issue
with CKA/CCA indexes that arises when these in-
dexes disagree with our sanity check and with oth-
ers.

Conflicting Literature The disagreement be-
tween CCA/CKA also caused a problem of conflict-
ing evidence in the literature. Namely, Singh et al.
(2019a) used PWCCA to conclude that mBERT
representations diverge starting from the early lay-
ers. However, this contradicts the evidence from
the multiple behavior studies of mBERT that argue
that the opposite is true (Wu and Dredze, 2019;
Pires et al., 2019; Liu et al., 2020; Libovicky et al.,
2020; Conneau et al., 2020; Muller et al., 2021).
Del and Fishel (2021) find that merely changing the
index from PWCCA to SVCCA or CKA in (Singh
et al., 2019a) produces results consistent with re-
lated works. It highlights the reliability issue with
CKA/CCA.

In summary, similarity indexes value different
aspects of representations and correspond to differ-
ent concepts of similarity. It is, therefore, necessary
to consult the specific analysis goal to define what

we want the similarity to capture. It brings us to
Section 5 where we propose a simple alternative
method that aligns well with the goals of cross-
lingual similarity analysis.

5 Method: Average Neuron-Wise
Correlation (ANC)

In Section 4 we demonstrated multiple drawbacks
that CCA/CKA similarity indexes have in the cross-
lingual context.

5.1 Definition

Assumption In this section, we propose a
straightforward alternative method that builds on
the assumption that neurons in representations for
different languages are aligned one-to-one a priori.
We find this assumption reasonable to make for
several reasons.

First, it aligns well with the goal that moti-
vated most cross-lingual similarity analysis works:
zero-shot cross-lingual transfer learning. Zero-
shot transfer is possible because a linear prediction
head fine-tuned (usually) for English can exploit di-
rect linear relationships between English and (say)
French representations. Indeed, the linear predic-
tion head calibrates each weight to work with the
specific English neuron. Having that specific neu-
ron similar to the French neuron allows the linear
head to work on French.

Second, it allows us to decompose the similar-
ity index into correlations of individual neurons,
thus facilitating interpretability. We can explicitly
see which neurons contribute to the similarity the
most/the least, and these neurons have an interpreta-
tion of being the most language-specific/language-
natural.

Third, it captures the most natural objectives
that many cross-lingual alignment literature con-
sider (Wu and Dredze, 2020): representations of
the same sentences should have the exact represen-
tations (in case the network is aligned). Residual
connections strengthen this assumption for hidden
layers.

Description The solution is straightforward: we
compute individual correlations between pairs of
English and (say French) neurons and calculate
an average score. We also take absolute values of
the correlations because the network can swap a
negative correlation into a positive with a simple
negative weight at the next layer.
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Thus, we define Average Neuron-Wise Correla-
tion (ANC) as follows.

Let the centered (by neurons) layer representa-
tions be

X =Ly —mean(L)
Y := Ly — mean(Ls)

The (Pearson) correlation corr between two neu-
rons 2, and z, form X and Y is defined as:

(72, 2y)

1Zz1111Z5]

3)

corr(zy, z_y>) =

We thus define The ANC similarity between two
layers Ly and Lo as:

- —
S, abs(corr(2L, )

ANC(X,Y) =
n

“4)

It is only possible for us to construct such an
index because the neurons come from a single net-
work where we already know what alignment be-
tween neurons is (and ought to be). The method
will not work if neurons come from layers of two
different networks, for example. In these cases,
CCA-like indexes are likely the best fit.

5.2 Sanity Checks

In this subsection, we verify that our method gives
plausible predictions in the cases where we already
know what the result should be.

Based on the Insight From the Literature We
based this sanity check on the known insight from
the literature. The multilingual BERT model
(bert-base-multilingual-cased) is
widely studied in the literature (Wu and Dredze,
2019; Pires et al., 2019; Liu et al., 2020; Conneau
etal.,2020). Muller et al. (2021) provided direct be-
havioral evidence that representations in mBERT
(bert-base-multilingual-cased)
should follow the “first align, then predict” pattern:
they first converge towards each other and diverge
slightly only at deep layers.

Libovicky et al. (2020) and Del and Fishel (2021)
demonstrated that the said pattern generalizes
to the XLM-Roberta (x1lm-roberta-base)
model (Conneau and Lample, 2019), which is simi-
lar in size and training objective to mBERT with the
main differences being the removal of the next sen-
tence prediction loss and training on the segments
of texts (irrespectively to sentence boundaries)
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Figure 3: ANC result for the mBERT and XLM-R mod-
els. Our method captures the “first align, then translate”
pattern presented in Muller et al. (2021) and Del and
Fishel (2021).

So our method should reveal the “first align, then
predict” pattern in these two cases. Otherwise,
we conclude that it fails to capture the relevant
properties of similarity we desire.

Figure 3 shows the resulting ANC scores for
mBERT and XLM-R base models.

The result demonstrates that our method passes
the proposed sanity check by being able to reveal
the “first align, then predict” pattern. Also, the cor-
relation at the most language natural layers is about
0.7, which indicates that the ANC’s strong assump-
tion of one-to-one aligned neurons is informative.
Lastly, we can see that the ANC distance between
English and other languages is more considerable
for mBERT than for XLM-R, which corresponds
to how these models perform in a cross-lingual
transfer (Conneau and Lample, 2019).

Based on the Experiment in Section 4 We base
this sanity check on the same XLLM-Roberta Norm-
former experiment that we used to present the CKA
failure case in Section 4. Our method should be
able to reveal that representations at deeper lay-
ers in scale_normformer are somehow cross-
lingually similar. Moreover, it should also keep
the results for the analogous scale_post and
scale_pre models models in agreement.

We present ANC results for the Section 4 exper-
iment in Figure 4.

The figure shows that unlike CKA (Figure 1), the
ANC is able to reveal the “first align, then predict”
pattern for the scale_normformer and better
explains the evidence we provided in Table 1 and
Figure 2.
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Figure 4: ANC result for the three models we pre-
sented in Section 4. Our method, unlike CKA (Fig-
ure 1), does capture the cross-lingual similarity exist-
ing in the deeper layers of XLLM-Roberta Normformer
(scale_normformer).

In summary, this section demonstrated that our
method passes the sanity checks of both related
literature and the Section 4 experiment (that made
CKA fail). In addition, considering how simple it
is to interpret ANC scores (the score is a simple
average of neuron-wise correlations), the method
is a beneficial tool for comparing representation
between languages in a single multilingual model.

6 Scaling Laws of Cross-lingual
Representational Similarity in
Multilingual Models

In previous sections, we justified our claim that
ANC is better suited for cross-lingual analysis than
CCA/CKA methods. In this section, we present an
application of ANC to the analysis of representa-
tional similarity scaling in cross-lingual language
models.

Most related works that analyzed representa-
tional patterns in multilingual language models fo-
cused on a single model, such as base version
of mBERT or XLM-R. In Section 5.2 we cov-
ered these models showing that ANC accompanies
our representational similarity index demands from
these models. However, as the model scaling brings
significant improvements in downstream tasks per-
formance, we must focus our analysis efforts on
the large models and scaling laws (Bowman, 2022).

Name type  #params 1 n #lgs
xIm-roberta-base =~ MLM 270M 12 758 100
xlm-roberta-large MLM 550M 24 1024 100
xIm-roberta-x1 MLM 3.5B 36 2560 100
xlm-roberta-xx1 MLM 10.7B 48 4096 100
xglm-564M CLM 564M 24 1024 30
xglm-1.7B CLM 1.7B 24 2048 30
xglm-2.9B CLM 29B 48 2048 30
xglm-4.5B CLM 4.5B 48 4096 134
xglm-7.5B CLM 7.5B 32 4096 30

Table 2: Model details for XLM-R and XGLM models
we study. fype: training objective of the model, #params:
number of parameters, [: number of layers, n: number
of hidden units (neurons at each layer), #/gs: number of
languages used in pertaining.

In this section, we use ANC to explore if the “first
align, then predict” pattern generalizes to CLMs
and if it preserves in the large-scale versions of
multilingual MLMs and CLMs.

Model Details We describe the models we study
in Table 2. The Table shows that there are two
groups of models: MLMs (encoder only) and
CLMs (decoder only). Models in each group no-
tably vary in a number of parameters and neurons
at each layer.

Results Figures 5 and 6 reveal that the cross-
lingual similarity of multilingual representations in
all the networks we study follows the same “first
align, then translate” pattern. It happens despite
differences in training objectives, number of lan-
guages, and sizes. Therefore, this result provides
evidence that multilingual models rely on the exact
mechanism described in (Muller et al., 2021), in-
dependently of the size or the MLM/CLM training
objective.

xIm-roberta-base xIlm-roberta-large

0.75
o) Fic
2050 + *
< +
&
0.25 ¥
xIm-roberta-x| xIlm-roberta-xxl|
0.75
o ,38"””””“‘35 . é«‘««(««((«(««««««(«%
Z0.50 ¥ ’5;5‘ & «“
<< 3 4
v &
% .
0.25
0 20 40 0 20 40

layer layer

Figure 5: ANC cross-lingual representational similarity
for the XLM-R MLM-style models of different sizes.
All models follow a similar “first align, then predict”
pattern. We aggregate among en-fr, en-de, en-ru, and
en-et pairs and show similarity average and spread.
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Figure 6: ANC cross-lingual representational similarity
for the XGLM CLM-style models of different sizes.
All models follow a similar “first align, then predict”
pattern. We aggregate among en-fr, en-de, en-ru, and
en-et pairs and show similarity average and spread.

7 Conclusion

In this study, we introduced an example where CKA
drastically fails to reveal the cross-lingual similar-
ity between language representations across the
deeper layers of the multilingual model. We also
highlighted that CCA methods suffer from related
problems as well (despite passing that concrete
sanity check that CKA failed).

Then, we proposed a new approach: Average
Neuron-Wise Correlation (ANC), which builds
on the assumption of neuron alignment in cross-
lingual representations. We verified that our
method passes the sanity check at which CKA fails
and produces results harmonious with the evidence
from related work.

Finally, we used ANC to show that the “first
align, then translate” pattern of cross-lingual rep-
resentations generalizes to CLMs and the larger
scales of MLMs and CLMs.
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A Appendix

This appendix contains supplementary figures that
support some auxiliary claims throughout the pa-
per.
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Figure 7: The CKA score for another Normformer
(scale normformer) model that we pre-trained from the
different initialization. The cross-lingual similarity of
deeper layers is about zero according to CKA despite
evidence of the opposite from Section 4.2

—— en-fr

/xL e -« en-bg
Al -
il

en-et °
.

Mo o mrn f wr fre
0123456 7 8 9101112
layer

——0—g—p,
o—° ~e

L A
L e BV Y ®

o h.«."

0/. .l‘/‘ ’\‘“
i —— en-fr |
[ X4 -+~ en-bg
- en-et
025451 23456 7 8 9101112
layer

Figure 8: CKA and ANC results for the XLM-
Normformer tuned on XNLI. The last layer is a CLS-
pooled embedding (the one we tune for XNLI), while
others are mean-poolings. CKA captures the similarity
between CLS representations at the last layer but fails
to capture it at layers 6-11. ANC captures the similarity
across all layers.
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Abstract

Given the challenges and complexities intro-
duced while dealing with Dialect Arabic (DA)
variations, Transformer based models, e.g.,
BERT, outperformed other models in dealing
with the DA identification task. However, to
fine-tune these models, a large corpus is re-
quired. Getting a large number high quality la-
beled examples for some Dialect Arabic classes
is challenging and time-consuming. In this pa-
per, we address the Dialect Arabic Identifica-
tion task. We extend the transformer-based
models, ARBERT and MARBERT, with unla-
beled data in a generative adversarial setting
using Semi-Supervised Generative Adversarial
Networks (SS-GAN). Our model enabled pro-
ducing high-quality embeddings for the Dialect
Arabic examples and aided the model to bet-
ter generalize for the downstream classification
task given few labeled examples. Experimental
results showed that our model reached better
performance and faster convergence when only
a few labeled examples are available.

1 Introduction

While Arabic is the first language of most of the
Middle East and North Africa (MENA) region, dif-
ferent countries have different dialects of Arabic.
These Dialect Arabic (DA) forms are all different
from the Modern Standard Arabic (MSA). MSA
is used in formal writing and speaking situations,
like academia and media. In contrast, DA is the
language of the street. DA is spoken by people in-
formally in their daily conversations and on social
media platforms.

The task of automatically identifying the dialect
of Arabic is beneficial since it contributes to many
downstream tasks and applications, such as Speech
Recognition and Machine translation.

Some Arabic Dialects are very close to each
other (e.g. Levantine region dialects such as
Lebanese and Syrian). On the other hand, other
dialects are significantly different (e.g. Egyptian

mtorki,

nagwamakky}lalexu.edu.eg

Class Example
English Excuse me, can you take a
picture of me?
MSA  lail o) e o (5, 0me
VJ 8, g
Egyptian j,eai Ko 305150 Y
Lebanese 95,900 JAasU ol (i3l oo

Moroccan ¢ sble g;JJ""" g U o=

Qatarian

Table 1: Comparison between MSA and DA variations
for the same sentence

and Moroccan dialects) like in Table 1. This simi-
larity is affected by the geographic locations of the
countries and their respective dialects.

Similar dialects are one of the main challenges
in the Dialect Identification task. In addition, fur-
ther challenges are introduced due to the lack of
balanced datasets for DA.

Some datasets are imbalanced with few classes
dominating the whole dataset. Figure 1 illus-
trates the classes distribution in the NADI (Abdul-
Mageed et al., 2021b) 2021 dialect dataset. Some
other datasets suffer from a limited number of di-
alects. Another problem is mislabeled DA exam-
ples due to noise in the labeling procedure, e.g.,
depending only on the geographic location.

Given these challenges, getting a large corpus
of labeled DA examples for all Arab countries is
challenging and time-consuming. These complexi-
ties represent a major challenge in the Arabic Di-
alect Identification task. We aim to improve the
transformer-based models, i.e., BERT (Devlin et al.,
2019), that handle the task given the lack of large
enough datasets.

In this paper, we extend BERT-based models,
ARBERT and MARBERT (Abdul-Mageed et al.,
2021a), with a generative adversarial setting using
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Figure 1: NADI 2021 DA training set label distribution.
Only 4 classes represents more than 50% of the dataset

Semi-Supervised Generative Adversarial Networks
(SS-GAN) (Salimans et al., 2016). This setting
makes use of a set of unlabeled data, which can
easily be obtained, to better generalize for the Ara-
bic Dialect Identification task given a few labeled
examples. Semi-supervised learning with adver-
sarial nets was previously used for some tasks and
languages, but to the best of our knowledge, it has
not been used for Arabic Dialect Identification be-
fore.
The contributions of this work are:

* Adopting the semi-supervised setting using
GAN (Goodfellow et al., 2014) over ARBERT
and MARBERT models. This drastically re-
duces large dataset requirements for the DA
identification tasks. Our models outperformed
BERT-based models using very small training
datasets.

* We study the classification of Dialect Ara-
bic against very small training datasets us-
ing our extended GAN models. The training
sets were sampled from 4 different Arabic
datasets: QADI (Abdelali et al., 2021), NADI
2021 (Abdul-Mageed et al., 2021b), ArSar-
casm (Bashmal and AlZeer, 2021) and AOC
(Zaidan and Callison-Burch, 2011). The sam-
ple sizes varied from 0.01% to 10% of the full
training dataset.

* We applied a 2-stage setup, training the GAN
extended model for some epochs and then,
having a second stage of BERT-based model
training. These early GAN epochs boosted
BERT-based model convergence speed and

performance results. The 2-stages experiment
outperformed the BERT-based models for the
same number of epochs.

The rest of the paper is organized as follows: in
section 2, we discuss the related work in the Dialect
Arabic Identification task and variations of BERT-
based models. In section 3, we illustrate the system
components and model architectures. We show the
conducted experiments and their results, in section
4. Finally, we give a brief conclusion based on our
work and the obtained results.

2 Related Work

2.1 Evolution of DA Datasets

The main challenge in Arabic Dialect Identifica-
tion is the rarity of high-quality labeled datasets
that represent all Arabic dialects. Recently, some
datasets were introduced. However, most of them
have limitations as will be shown in the next para-
graphs.

The Arabic Online Commentary AOC (Zaidan
and Callison-Burch, 2011) introduced rich dialec-
tal content based on online commentary by readers
of online famous Arabic newspapers. The dataset
is labeled with MSA and three regional dialects:
Egyptian, Gulf, and Levantine. Despite the rela-
tively large corpus, country-level dialects are not
represented in this dataset, causing the lack of many
DA variations. In addition, social media data, e.g.,
Twitter became a richer source of DA with almost
all variations available.

Dialect Identification shared tasks impassioned
the Arabic DA work. The Multi Arabic Dialects
Application and Resources (MADAR) (Bouamor
et al., 2019) project introduced a parallel cor-
pus that was used in MADAR shared task kin
2019. However, the examples were a transla-
tion of the Basic Traveling Expression Corpus
(BTEC)(Takezawa et al., 2007). Hence, the data
examples were short, and unnatural, and do not
realistically represent the target dialects.

ArSarcasm (Bashmal and AlZeer, 2021) is a
dataset built relying on popular Arabic Sentiment
Analysis datasets, SEMEVAL 2017’s (Rosenthal
et al., 2017) and ASTD (Nabil et al., 2015). Ar-
Sarcasm was also annotated for dialects due to the
challenges urged by dialectal variations. ArSar-
casm adapted a manual annotation process with
strict guidelines to guarantee the quality of the an-
notations. However, most of the data is either in
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MSA or Egyptian dialect, and hence, the dataset
suffers the rare presentation of other dialects.

The First Nuanced Arabic Dialect Identification
Shared Task (NADI 2020) (Abdul-Mageed et al.,
2020) included sub-tasks for the country-level and
province-level DA identification. The NADI 2020
dataset covers 21 Arab countries, collected from
the Twitter domain. While this data was natu-
rally extracted from tweets, it was unbalanced with
few classes dominating the dataset. In addition,
the labeling criterion depends only on the user’s
geographic location which introduced wrong la-
bels that prevented deep learning models from bet-
ter generalization. The Second Nuanced Arabic
Dialect Identification Shared Task (NADI 2021)
(Abdul-Mageed et al., 2021b) dataset was based on
similar collecting and labeling methods and hence
has the same limitation. NADI 2021 introduced
2 new subtasks: country and province level MSA
identification.

QADI (Abdelali et al., 2021) is a recent tweet
dataset with a variety of country-level Arabic Di-
alects, with highly accurate labels and mostly
evenly distributed classes. QADI represented 18
different Arab countries. QADI conducted the Di-
alect Identification experiments using different ma-
chine learning and deep models.

2.2 Transformer based models for DA
Identification

BERT model variants showed impressive results
on text classification and other NLP tasks. (Man-
sour et al., 2020) fine-tuned Multilingual BERT
(mBERT) (Devlin et al., 2019) for the NADI 2020
(Abdul-Mageed et al., 2020) shared task on DA
Identification. AraBERT (Antoun et al., 2020) pre-
trained BERT for Arabic. AraBERT outperformed
multilingual BERT model in Arabic NLP tasks and
became the state-of-the-art model for these tasks in
2020.

(Abdul-Mageed et al., 2021a) introduced AR-
BERT and MARBERT, which are very powerful
transformer-based models trained on large and mas-
sive Arabic datasets from different domains. MAR-
BERT was pre-trained on dialectal Arabic which
helped for better generalization and more powerful
results on diverse tasks. ARBERT and MARBERT
models achieved state-of-the-art results in different
Arabic downstream NLP tasks. In Dialect Identi-
fication, both models outperformed AraBERT and
other previous models in all popular DA datasets.

In (AlKhamissi et al., 2021), the authors targeted
the NADI 2021 shared task using a MARBERT
model and their submission was ranked the first
for this shared task. However, the model still did
not overcome being biased toward the dominating
classes in the training dataset.

2.3 Semi-Supervised Models

Adversarial settings were also introduced on top
of BERT-based models to generate different ex-
amples, which help in various text classification
tasks. BAE(Garg and Ramakrishnan, 2020) pre-
sented a model for adversarially generating ex-
amples through perturbations based on the BERT
Masked Language Model. GAN-BERT (Croce
etal., 2020) extended fine-tuning BERT-based mod-
els with unlabeled examples using a Generative Ad-
versarial Network (GAN)(Goodfellow et al., 2014)
that helped train models with few labeled examples
and generally enhance BERT-based model classifi-
cation capabilities.

3 Adopted Model

3.1 Motivation

One of the key challenges in Arabic Dialect Iden-
tification research is insufficient labeled datasets.
Many datasets don’t fairly represent all classes, i.e.,
imbalanced datasets. Other datasets suffer from
labeling noise.

Although having a sufficient amount of unla-
beled data is extremely easy, e.g. crawling tweets,
the process of labeling these examples with cor-
rect labels is expensive, impractical, and time-
consuming. Some easier methods are adopted
while labeling such data, e.g., depending on Twit-
ter users’ geographic location or account metadata.
Unfortunately, these methods are not accurate to
representing correct classes and lead to many miss-
labeled examples.

Arabic is a highly inflected and derivational lan-
guage. The inflection and derivation rules may
change from one Arabic Dialect to another. More-
over, the same word might have totally different
meaning in different Arabic Dialects. For instance,
the word P e (Mahdoum) meaning in MSA and

Egyptian dialect is digested, which is used to de-
scribe food. While in Levantine Arabic (dialects
spoken in Syria, Lebanon, Jordan and Palestine),
its meaning is joyful or delightful, and used to de-
scribe persons. These specific characteristics of
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Figure 2: GAN-BERT model architecture. The discrim-
inator D input is: labeled L and unlabeled U examples
vector representations computed by BERT, in addition
to the fake examples F' generated by the generator G
given noise input. (Adapted from (Croce et al., 2020))

Arabic Dialects make it challenging to generate
human-like examples.

Traditional methods like Data Augmentation are
usually used to generate more examples to solve for
the rarity of available training examples. However,
these methods aren’t able to generate human-like
real examples in our case. Traditional data augmen-
tation like word swapping fail to generate meaning-
ful examples. Augmenting examples by changing
words to their synonyms is also inappropriate due
to rarity of synonyms resources for Arabic dialects.
Similarly, Back Translation always translate exam-
ples back to Modern Standard Arabic (MSA) which
leads to losing the dialectal nature of the examples.

In contrast, Semi-Supervised Generative Adver-
sarial Networks (SS-GAN) (Salimans et al., 2016)
can act as an additional source of information in
a semi-supervised setting. SS-GAN can capture
the characteristics of the training examples and
generate similar examples that are nearly indistin-
guishable from the real training examples.

3.2 Model Architecture

Our work is mainly based on GAN-BERT model
(Croce et al., 2020) that enriches the BERT fine-
tuning process with an SS-GAN perspective. Semi-
Supervised GAN (SS-GAN) (Salimans et al., 2016)
is a Generative Adversarial Network (Goodfellow
et al., 2014) with a multi-class classifier as its Dis-
criminator. Rather than learning to discriminate be-
tween only two classes (actual and fake), it learns
to distinguish between K + 1 classes, where K is
the number of classes in the training dataset, plus
one for the Generator’s fake generated examples.
The Generator input is a vector of random noise,
The Generator’s objective is to generate fake exam-
ples that are indistinguishable from the real dataset
examples.

The Discriminator has 3 inputs: fake examples

generated by the Generator (x*), real unlabeled
examples (x), and real labeled training examples (X,
y), with y denoting the label for the given example
X.

In this work, we extend BERT-based models
using SS-GAN. We use BERT-based models pre-
trained on Arabic datasets, namely ARBERT and
MARBERT (Abdul-Mageed et al., 2021a), and
adapt the fine-tuning by adding task-specific layer
in addition to the SS-GAN layers to enable semi-
supervised learning.

Given an input example, e = (t1,t2,,..,t,),
BERT model’s output is an n + 2 vector repre-
sentation in R?, i.e., (hcrs, h1, ha, .., hsgp). As
advised in (Devlin et al., 2019), hcrg is used a the
example sentence embedding for the identification
task.

The generator GG is a Multi-Layer Perceptron
(MLP) that takes an input of a 100-dimensional
random noise vector drawn from Normal Distribu-
tion N(u,o?) and outputs a vector hyer. € RY.
As shown in Figure 2, the discriminator D receives
input h, € R? which can be the fake generator
output A g4, or examples from the real distribution
hC'LS (labeled or unlabeled). The Discriminator
D is another Multi-Layer Perceptron (MLP) where
its last layer is a softmax layer that outputs a k + 1
vector of logits. True examples from the real dis-
tribution are classified into the (1, ..., k) classes,
while generated fake samples are classified into the
additional k£ + 1 class.

When updating the discriminator, BERT-based
model weights are also changed in order to consider
both labeled and unlabeled examples to better fine-
tune their inner representations. At evaluation the
generator is discarded while keeping rest of the
model, which means no additional cost at inference
time compared to standard BERT-based models.

4 Experimental Results

4.1 Semi-Supervised Setting:
GAN-MARBERT and GAN-ARBERT

In this section, we evaluate the impact of GAN-
BERT-Based models, namely GAN-MARBERT
and GAN-ARBERT over the Arabic Dialect Identi-
fication task under different training environments,
1.e., number of dialectal classes and number of la-
beled training examples. We compare our proposed
method with MARBERT / ARBERT which are the
existing methods that achieve state-of-the-art re-
sults in the Arabic Dialect Identification task. With

199



(a) ArSarcasm

1% 2%
Annotated %

(c) QADI

— Gl RT
Mal

20

15

10 /

(b) NADI 2021 Subtask 2.2

1%
Annotated %

(d) AOC

Figure 3: Learning curves for the Dialect Identification task against the 4 datasets. We run all the models for 10
epochs with the same learning rate 2e-5. The same sequence length of 40 was used in all experiments.

very few training examples, we assess our model in
the DI task against the following datasets: QADI
(Abdelali et al., 2021) that has 18 classes, NADI
2021 Subtask 2.2 (Abdul-Mageed et al., 2021b)
that has 21 classes, ArSarcasm (Bashmal and
AlZeer, 2021) that has 5 classes, and AOC (Zaidan
and Callison-Burch, 2011) that has 4 classes.

We use the macro-F1 score as the evaluation
metric for our models. The macro-F1 score is the
standard evaluation metric in the dialect identifica-
tion task.

As discussed in section 3, we extend BERT-
based models with a generative adversarial setting.
The generator G is an MLP with a single hidden
layer activated by a leaky relu function. The gener-
ator G input is a random noise vector drawn from
the Normal distribution N (0, 1). The generator G
output is a 768-dimensional vector that represents
the fake generated examples. The discriminator D
is another similar MLP with a final softmax layer
for the final dialect classification. We use a dropout
rate of 0.2 after the hidden layer in both GG and D.

We chose the best performing BERT-based pre-
trained model as the base model for each dataset,
as reported in (Abdul-Mageed et al., 2021a). For
QADI, NADI, and AOC, the chosen base model is
MARBERT. While for ArSarcasm, the base model
is ARBERT.

We start training the models by sampling only
0.01% or 1% of the full training dataset, depending
on the size of the dataset, in order to have a very
small training set. The process is repeated with
incremental larger training samples.

For the unlabeled examples, we use a set of 10K
randomly sampled tweets from the unlabeled set
provided in the NADI 2021 (Abdul-Mageed et al.,
2021b) dataset.

The ArSarcassm (Bashmal and AlZeer, 2021)
Dialect Identification task results are shown in fig-
ure 3a. The training dataset consists of 8438 exam-
ples, and the test dataset consists of 2111 examples,
labeled with 5 dialect classes. The plot shows the
macro-F1 scores of the GAN-ARBERT and AR-
BERT models. When 1% of the training data is
used (around 85 examples), ARBERT almost di-
verges, while GAN-ARBERT achieves F1 of more
than 25%. With 2% of the training data, GAN-
ARBERT achieved F1 of 38%, obviously outper-
forming ARBERT. The same trend continued until
10% of the training data is used.

For NADI 2021 (Abdul-Mageed et al., 2021b)
sub-task 2.2 dataset, similar outcomes were ob-
served as shown in figure 3b. The dataset consists
of 21000 training examples and 5000 test examples
labeled with 21 dialect classes. NADI has a large
number of classes with unbalanced training exam-
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Sample Size GAN-ARBERT ARBERT Sample Size GAN-MARBERT MARBERT
1% 324 20.5 1% 11.2 7.2
2% 37.9 28.9 2% 13.3 14.8
5% 43.7 47 5% 19.9 20
10% 45.3 48.5 10% 20.8 21.9
(a) ArSarcasm (b) NADI
Sample Size GAN-MARBERT MARBERT Sample Size GAN-MARBERT MARBERT
0.01% 8.8 2.2 0.01% 19.1 18.5
0.02% 174 4 0.02% 26.2 17.3
0.05% 26.9 20.5 0.05% 47.1 18.5
1% 45.9 45 1% 76.2 78.7
2% 49.5 49 2% 78 79.5
5% 51.7 52 5% 79 79.9
10% 54.4 54 10% 79.8 79.5
(c) QADI (d) AOC

Table 2: Experimental results for the Semi-Supervised setting. The evaluation metric is Marco F1 score.

Sample Size  2-Stage = ARBERT
1% 32 20.5
2% 38.1 28.9
5% 45.7 47
(a) ArSarcasm
Sample Size 2-Stage MARBERT
0.01% 7.8 22
0.02% 8.9 4
0.05% 23 20.5
(c) QADI

Sample Size 2-Stage MARBERT
1% 10.9 72
2% 16.5 14.8
5% 20.3 20
(b) NADI
Sample Size 2-Stage MARBERT
0.01% 20.2 18.5
0.02% 20.9 17.3
0.05% 43.9 18.5
(d) AOC

Table 3: Experimental results for the 2-stages setup. The evaluation metric is Marco F1 score.

ples distribution. GAN-MARBERT outperforms
the MARBERT model in most settings. When 1%
of the training set is used (210 examples), GAN-
MARBERT achieves more than 3 times the F1
score obtained by MARBERT, GAN-MARBERT
achieves F1 of 8% while MARBERT achieves F1
of 2.8%. The same trend continues with different
sample sizes. The semi-supervised setting shows
performance improvement over MARBERT for
most of the sample sizes.

The observations were confirmed against QADI
(Abdelali et al., 2021) dataset in figure 3c. QADI is
the largest dataset used in these experiments with
367,353 training examples and 3304 test examples
labeled with 18 dialects classes. QADI fairly rep-
resents most of the dialect classes and guarantees
clean and correct labels. However, the same trend
was shown in small training sample sizes. Using
0.01% (37 examples) and 0.02% (74 examples)
of the training dataset, GAN-MARBERT achieves
more than 4 times the macro-F1 score obtained by
MARBERT model for the corresponding number
of examples. Noticeable improvements in the F1
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score continued until 2% of the training set is used.

Finally, we evaluate the models against AOC
(Zaidan and Callison-Burch, 2011) dataset, which
consists of 86,542 training examples and 10,812
test examples, labeled with 4 classes. For 0.02%
of the training set (only 17 examples), GAN-
MARBERT obtains F1 of more than 26% while
MARBERT got 17% F1. When using a 0.05% of
the training set (184 examples), GAN-MARBERT
achieves F1 of 47% while MARBERT only got
F1 of 18%, i.e, more than 2.5X F1 improvement.
For larger training sample sizes, both models per-
formed similarly.

The experimental results scores against different
training dataset sample sizes are shown in Table 2

4.2 Two-Stages Setup: Using a BERT-based
model after the GAN-BERT

In this setup, we evaluate a 2-stages setup. The
first stage is training the BERT-based model with
the GAN extension for 5 epochs. In the second
stage, the GAN module is eliminated and the BERT-
based model is trained for another 5 epochs. With
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Figure 4: 2-stages experiments results. We used MARBERT as the base model for NADI, QADI and AOC datasets,
while using ARBERT for ArSarcasm. Each experiment consists of 10 epochs. In the 2-stage experiments, we train
the base model extended with GAN component for 5 epochs, then eliminate the GAN component and train the base

model alone for another 5 epochs.

smaller training set samples, the first stage gave a
performance boost to the overall model result when
compared to the BERT-based model alone.

Figure 4 shows the experiments results. In both
setups, we use the same learning rate 2e — 5 and
sequence length 40. For QADI and AOC datasets,
we used 0.01%, 0.02%, and 0.05% of the annotated
samples. For NADI and ArSarcasm, we used al%,
2%, and 5% of the training dataset.

The experiment showed that adding the first
stage with the semi-supervised setting helped the
base model to better generalize for a few labeled
examples and to converge faster.. Overall, the 2-
stages setup outperformed the base model.

For ArSarcasm (Bashmal and AlZeer, 2021)
dataset, figure 4a shows how the 2-stages setup
achieves higher scores and faster convergence with
smaller sample sizes. For example, when using
only 1% of the training set, the 2-stages setup
achieves F1 of 32, while ARBERT achieves only
F1 of 20.5. Similar outcomes were obtained for
NADI (Abdul-Mageed et al., 2021b) dataset in
figure 4b. When 1% of the training set is used,
the 2-stages setup achieves F1 of 10.9, compared
to 7.2 by MARBERT. For QADI (Abdelali et al.,
2021) dataset, figure 4c confirms the same out-

comes. When only 0.01% of the training sample is
used, the 2-stages setup achieves more than 3 times
the F1 score obtained by MARBERT. The 2-stages
setup achieves F1 of 7.8 compared to F1 of 2.2 by
the MARBERT model. The trend continues with
other sample sizes, with 0.02% of the training set,
the 2-stages setup achieves F1 of 8.9 compared to
4 by MARBERT. Finally, for AOC (Zaidan and
Callison-Burch, 2011) dataset, the 2-stages setup
converges way faster than MARBERT as shown
in figure 4d. With only a 0.05% training sample,
the 2-stages setup achieves more than 2 times the
F1 obtained by MARBERT. It achieves F1 of 43.9
compared to 18.5 for MARBERT.

The experimental results scores against different
training dataset sample sizes are shown in Table 3

5 Conclusion

One of the main challenges of the Arabic Dialect
Identification task is the rarity of high-quality la-
beled examples. This paper addresses this prob-
lem by adopting adversarial training to allow semi-
supervised learning. it applies this approach to two
BERT-based models, namely, MARBERT and AR-
BERT. Experimental results show that the GAN
extension improves the performance of the BERT-
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based models, given a few labeled examples. The
paper also introduces a 2-stages setup, where it
trains the base model extended with GAN compo-
nent for 5 epochs, then eliminate the GAN compo-
nent and train the base model alone for another 5
epochs. Using very small training sets, the adopted
approach helps the base model for better general-
ization and faster convergence, with no additional
cost at inference time.

Adding SS-GAN module on top of BERT-based
models, empirically showed enhancements in per-
formance and faster convergence given a few la-
beled examples of the datasets, which validates our
hypothesis.
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Abstract

Word embeddings and pre-trained language
models have become essential technical ele-
ments in natural language processing. While
the general practice is to use or fine-tune pub-
licly available models, there are significant ad-
vantages in creating or pre-training unique mod-
els that match the domain. The performance
of the models degrades as language changes
or evolves continuously (semantic shift), but
the high cost of model building inhibits regular
re-training, especially for the language mod-
els. This study designs a methodology for ob-
serving time-series performance degradation
of word embeddings and pre-trained language
models using semantic shift in a corpus. We
define an efficiently computable metric named
Semantic Shift Stability based on the degree
of semantic shift. In the experiments, we cre-
ate models that vary by time series and reveal
the performance degradation in two datasets,
Japanese and English. Several case studies
demonstrate that Semantic Shift Stability sup-
ports decision-making as to whether a model
should be re-trained. The source code is avail-
able at https://github.com/Nikkei/
semantic-shift-stability.

1 Introduction

The use of word embeddings and pre-trained lan-
guage models has become common practice in
natural language processing. Word embeddings
like word2vec (Mikolov et al., 2013) are used in
many applications, and pre-trained language mod-
els starting with BERT (Devlin et al., 2019) are
updating state-of-the-art performance on a daily
basis. Researchers and developers use or fine-tune
such kinds of models to their own tasks.

While the general practice is to start from pub-
licly available models, there are also significant
advantages in creating or pre-training unique mod-
els that match the domain. In regard to pre-trained

* These authors contributed equally.
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Figure 1: Methodology for observing time-series per-
formance degradation by Semantic Shift Stability. It is
difficult from a cost perspective to create a pre-train lan-
guage model each time and compare the performance.
Instead, by monitoring the degree of semantic shift of
the corpora from period to period, we can estimate time-
series performance degradation.

language models, for example, SciBERT (Beltagy
et al., 2019), BioBERT (Lee et al., 2020), and Fin-
BERT (Araci, 2019) are proposed. These models
have performed better than other BERT models on
downstream domain-specific tasks. A similar ap-
proach is traditionally used in word embeddings.
There are numerous studies and applications of
obtaining word embeddings in their own corpora.

In creating domain-specific language models,
we have to be careful of time-series changes in the
characteristics of the corpus. Language changes
continuously, especially when there are some so-
cially important events. The semantic shift (Kutu-
zov et al., 2018) of existing words and the appear-
ance of new words are occurring regularly. Some
have reported that such time-series changes cause
degradation of performance (Jaidka et al., 2018;
Sato et al., 2020; Loureiro et al., 2022). Hence-
forth, we refer to this phenomenon as time-series
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performance degradation.

One of the solutions to tackle time-series perfor-
mance degradation is re-training, but the high cost
of model building is a bottleneck especially with
language models. It is reported that large-scale pre-
training requires large amounts of computation. For
example, GPT-3 with 175B parameter consumed
several thousand petaflop/s-days of compute during
pre-training (Brown et al., 2020), and PaLM with
540B parameter was trained on 6144 TPU v4 chips
(Chowdhery et al., 2022). This trend is acceler-
ated by empirical scaling laws for language model
performance (Kaplan et al., 2020), where the loss
scales as a power-law with model size, dataset size,
and the amount of compute used for training.

This study designs a methodology for observing
time-series performance degradation of word em-
beddings and pre-trained language models using
semantic shift in a corpus. The degree of seman-
tic shift is computed by comparing two word2vec
models created from corpora of different time-
span. Monitoring performance leads to the decision
whether the model should be re-trained (Figure 1).

The methodology has the advantage of avoiding
large-scale training to measure performance. The
required input is two word2vec models, which can
be created much more efficiently than pre-training
of language models. For word embeddings, it is
also a benefit if we can infer the downstream task
performance without experiments.

Our contributions are as follows.

1. We define an efficiently computable metric
named Semantic Shift Stability based on the
degree of semantic shift, and propose to use it
for detecting time-series performance degra-
dation of word embeddings and pre-trained
language models (Section 3).

2. We create models that vary by time-series and
reveal the performance degradation via the
experiments on two corpora, not only English
but also Japanese. In particular, we pre-train
and analyze 12 RoBERTa models on a corpus
of Japanese financial news at different time-
span (Section 4).

3. We demonstrate case studies that the Seman-
tic Shift Stability supports decision-making
as to whether a model should be re-trained.
Our experiments report that a large time-series
performance degradation occurs in the years
when Semantic Shift Stability is smaller (Sec-
tion 5).

2 Related Work

This section describes the related work from three
perspectives and highlights our study.

2.1 Semantic Shift

Changes in human language have long been studied
from a variety of perspectives (Bloomfield, 1933).
There are known linguistic and cultural factors
(Hamilton et al., 2016). In addition to its linguistic
and sociological importance, changes in human lan-
guage also attract interest from the perspective of
data science, such as natural language processing
and information retrieval (Kutuzov et al., 2018).

As large corpora become available, there have
been accelerated efforts to capture the semantic
shift using word embeddings (Traugott, 2017).
For example, (Gulordava and Baroni, 2011) com-
pared the distribution in corpora from the 1960s
and 1990s and identified a cultural shift in which
the word sleep became more negative in meaning.
(Guo et al., 2021) analyzed a Twitter corpus over
time and observed changes in word meaning dur-
ing the COVID-19 pandemic. Furthermore, (Giu-
lianelli et al., 2022) detected semantic shift using
pre-trained language models. One of the challenges
is that there is limited research on this area in non-
English languages (Kutuzov et al., 2018).

2.2 Time-series Performance Degradation

Time-series performance degradation is a long-
standing problem in machine learning (Quinonero-
Candela et al., 2008). It is a common problem
in predictive modeling that occurs when the joint
distribution of inputs and outputs differs between
training and test stages. Differences in distribution
are often caused by the lapse of time.

This issue has also been discussed in the progress
of natural language processing. (Loureiro et al.,
2022) pointed out that the time variable has been
largely neglected in the literature on natural lan-
guage processing. They pre-trained multiple lan-
guage models on a time-split Twitter corpus and