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A Algorithmic Approach to Dataset
Construction

We present here an algorithmic approach to col-
lecting a dataset of image pairs with natural lan-
guage text describing their differences. The cen-
tral challenge is to balance empirical desiderata—
mainly, sample coverage and model relevance—
with practical constraints of data quality and cost.
This algorithmic approach underpins the dataset
collection we outlined in the paper body.

A.1 Goals

Our goal is to collect a dataset of tuples (i1, i2,t),
where ¢; and i are images, and t is a tex-
tual comparison of them. We can consider each
image ¢ as drawn from some domain D €
{furniture, trees, ...}, or a completely open do-
main of all concepts. There are several criteria we
would like to balance:

1. Coverage A dataset should sufficiently cover
D so that generalization across the space is
possible.

2. Relevance Given the capabilities for mod-
els to distinguish ¢; and ¢2, ¢ should provide
value.

3. Comparability Each pair (i1, i2) must have
sufficient structural similarities that a human
annotator can reasonably write ¢ comparing
them. Pairs that are too different will yield
lengthy and uninteresting descriptions with-
out direct contrasting statements. Pairs that
are too similar for human perception may
yield “I can’t see any difference.”!

!This hints at the same sweet spot the fine-grained visual
classification (FGVC) community studies, like cars (Krause
et al., 2013), aircraft (Maji et al., 2013), dogs (Khosla et al.,
2011), and birds (Wah et al., 2011; Van Horn et al., 2018).

4. Efficiency Image judgements and textual an-
notations require human labor. With a fixed
budget, we would like to yield a dataset of the
largest size possible.

We describe sampling algorithms for addressing
these issues given the choice of a domain.

A.2  Pivot-Branch Sampling

Drawing a single image ¢ from domain D, there
is a chance p € [0, 1] that each image is ill-suited
for comparisons. For example, ¢ might be out-of-
focus or contain multiple instances.

If a pair of images is drawn, and each has proba-
bility p of being discarded, then ﬁ times more
pairs must be selected and annotated. For exam-
ple,if p = %, then the annotation cost is scaled by
2.25. This severely impacts annotation efficiency.

To combat this, we employ a stratified sampling
strategy we call pivot-branch sampling. Each im-
age on one side of the comparison (say, ¢pivor) 18
vetted individually, and & images on the other side
(say, ibranch) are sampled to produce pairs. With
k-times fewer ipiyo images, it is feasible to check
each instance for usability. This lowers the anno-
tation cost scale to ﬁ (e.g., with p = %, this is
1.5).

Splitting our selection from D into two parts al-
lows us to define two distinct sampling strategies.
One choice is for spivoi(D) to select pivot images.
The second is for spranch (D, ipivot; k) to sample k
images given a single pivot image.

A.3 Designing spivet (D)

Selecting pivor are important because each will
contribute to k image pairs in a dataset. Here
we consider the case where there are class labels
¢ € C available for each image in the domain.
We propose selecting spivor to sample uniformly
over C. This strategy attempts to provide coverage
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over D using class labels as a coarse measure of
diversity. It accounts for category-level dataset
bias (e.g., where most images belong to only a
few classes). This pushes the need to address rel-
evance and comparability to the sampling proce-
dure for branched images.

A.4 Designing spranch (D, ipivot; k)

Given each pivot image ipivor, we will choose &
images from D for comparison. We can make use
of additional functions and structure available on
D:

V(il,ig) — [O, 1] ] o
A function that measures the visual similarity
between any two images.

T(D)
A taxonomy over D, with image class labels
c € C as leaves.

We can partition £ = k, + k; to sample k,
visually-similar images using and k; taxonomi-
cally related images. A simple strategy for visu-
ally similar images is to pick

argmin  V(ipivot, i')
i €D 1! v

k., times without replacement. This samples the
k, most visually similar images to ipiyor, excluding
the image itself.

To employ taxonomic information, we propose
a walk over mutually exclusive subsets of T (D).
We define a function a7(p)(c, ) that gives the set
of other taxonomic leaves that share a common an-
cestor exactly ¢ taxonomic levels above ¢, and no
levels lower. More formally, if we use p(c, ¢, ¢)
to express that ¢ and ¢’ share a parent £ taxonomic
levels above ¢, then we can define:
aT (D) (07 f) = {Cl : p(C, Cla f) A ﬂf’<£ p(C, Cla ‘6/)}

The function ar(py(c,£) partitions the taxon-
omy 7 (D) into disjoint subtrees. For example,
ar(p)(c, 1) are the set of sibling classes to ¢ which
share its direct parent; ar(p)(c,2) are the set of
cousin classes to ¢ which share its grandparent, but
not its parent.

We can employ ar(p(c, ¢) by choosing class
c from our pivot image ipivor and varying £. As
we increase ¢, we define mutually exclusive sets
of classes with greater taxonomic distance from c.

To sample images using this scheme, we can

further split our k; budget for taxonomically sam-
pled images into k; = k¢, + kg, + -+ - + ky, for £
different levels. Then, if we write the set of classes
Ce = ar(p)(c, ), we can sample k;, images from
C. One scheme is to perform round-robin sam-
pling: rotate through each class ¢, € C; and sam-
ple sample one image from each until k;, are cho-
sen.

A.5 Analyzing spranch (D, ipivot; k)

Given a good visual similarity function V, image
pairs will exhibit enough similarity to satisfy re-
quirement that they be semantically close enough
to be comparable. They may also be so visu-
ally similar that comparability is difficult. How-
ever, this aspect counter-balances with relevance:
if V(i1,42) is small under a visual model, but their
differences are describable by humans, their dif-
ference description has high value because it dis-
tinguishes two points with high similarity in visual
embeddings space.

The use of the taxonomy 7 (D) complements V
by providing controllable coverage over D while
maintaining relevance and comparability. Tuning
the range of ¢ values used in the taxonomic splits
at(p)(c,£) ensures comparability is maintained.
Clamping ¢ below a threshold ensures images have
sufficient similarity, and controlling the proportion
of k;, for small values of ¢ mitigates the risk of
too-similar image pairs.

Similarly, we can adjust the relevance of taxo-
nomic sampling by controlling the distribution of
ki, ... k¢, with respect to the particular structure
of the taxonomy 7 (D). If the taxonomy is well-
balanced, then fixing a constant k;, will draw pro-
portionally more samples from subtrees close to c.
This can be seen by considering that a1 (p)(c, )
defines exponentially larger subsets of 7 (D) as ¢
increases. Drawing the same number of samples
from each subset biases the collection towards rel-
evant pairs (which should be more difficult to dis-
tinguish) while maintaining sparse coverage over
the entirety of D.

B Details for Constructing
Birds-to-Words Dataset

We provide here additional details for constructing
the Birds-to-Words dataset. This is meant to link
the high level overview in Section 2 with the algo-
rithmic approach presented in the previous section
(Appendix A).



B.1 Clarity

To build a dataset emphasizing fine-grained
comparisons between two animals, we impose
stricter restrictions on the images than iNatural-
ist research-grade observations (photographs). An
iNaturalist observation that is research-grade indi-
cates the community has reached consensus on the
animal’s species, that the photo was taken in the
wild, and several other qualifications.> We include
four additional criteria that we define together as
clarity:

1. Single instance: A photo must include only
a single instance of the target species. Bird
photography often includes flocks in trees, in
the air, or on land. In addition, some birds
appear in male/female pairs. For our dataset,
all of those photos must be discarded.

2. Animal: A photo must include the animal it-
self, rather than a record of it (e.g., tracks).

3. Focus: A photo must be sufficiently in-focus
to describe the animal in detail.

4. Visibility: The animal in the photo must
not be too obscured by the environment, and
must take up enough pixels in the photo to be
clearly described.

B.2 Pivot Images

To pick pivot images, we first uniformly sample
from the set of 9k species in the taxonomic CLASS
Aves in iNaturalist. We consider only species with
at least four recorded observations to promote the
likelihood that at least one image is clear. We
also perform look-ahead branch sampling to en-
sure that a species will yield sufficient compar-
isons taxonomically. For each species, we manu-
ally review four images sampled from this species
to select the clearest image to use as the pivot im-
age. If none are suitable, we move to the next
species. With this manual process, we select 405
species and corresponding photographs to use as
pivot 71 images.

B.3 Branching Images

See Section 2.3 for the description of selecting
k, = 2 visually similar branching images using
a function V(i1,42). We highlight here the use of

2More details on iNaturalist research-grade specifi-

cation: https://www.inaturalist.org/pages/
help#quality

the taxonomy 7 (D) to select k; = 10 branching
images with varying levels of taxonomic distance.

For the class ¢ corresponding to image i1,
we split the taxonomic tree into disjoint subtrees
rooted £ € {1..5} taxonomic levels above c. Each
higher level excludes the levels beneath it. For ex-
ample, at £ = 1 we consider all images of the same
species as 41; at £ = 2, we consider all images
of the same genus as ¢;, but that have a different
species. We set each k;, = 2 for a total of k; = 10.

B.4 Annotations

Clarity Annotators first label whether ¢; and
12 are clear. While we manually verified each ¢; is
clear, each i, must still be vetted.® Starting from
405 pivot images 71, and selecting £ = 12 branch-
ing images i for each, we annotated a total of
4,860 image pairs. After restricting images to have
> % positive clarity judgments, we ended up with
the 3,347 image pairs in our dataset, a retention
rate of 68.9%.

Quality We vet each annotator individually
by manually reviewing five reference annotations
from a pilot round, and perform random quality
assessments during data collection. We found that
manually vetting the writing quality and guideline
adherence of each individual annotator vital for
ensuring high data quality.

C Model Details

For the image embedding component of our
model, we use a ResNet-101 network as our CNN.
We use a model pretrained on ImageNet and fix
the CNN weights before starting training for our
task. We also experimented with an Inception-v4
model, but found ResNet-101 to have better per-
formance.

For both the Transformer encoder and decoder,
we use N = 6 layers, a hidden size of 512, 8 at-
tention heads, and dot product self-attention. Each
paragraphs is clipped at 64 tokens during training
(chosen empirically to cover 94% of paragraphs).
The text is preprocessed using standard techniques
(tokenization, lowercasing), and we replace men-
tions referring to each image with special tokens
ANIMALI and ANIMAL?2.

For inference, we experiment with greedy de-
coding, multinomial sampling, and beam search.

3 Annotators would occasionally agree that a particular 7,
images was in fact unclear, upon which we removed it and all
corresponding pairs from the dataset.
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Photograph Attribution

Fig. 1: Top and bottom left salticidude (CC BY-NC 4.0) https://www.inaturalist.org/observations/20863620

Fig. 1: TOp right Patricia Simpson (CC BY-NC 4.0) https://www.inaturalist.org/observations/1032161

Fig. 1: Bottom right kalamurphyking (CC BY-NC-ND 4.0)  https://www.inaturalist.org/observations/9376125
Fig. 2: TOp left Ryan Schain https://macaulaylibrary.org/asset/58977041

Fig. 2: TOp right Anonymous eBirder https://www.allaboutbirds.org/guide/Song_Sparrow/media-browser/66116721
Fig. 2: Right, 2nd from top Garth McElroy/VIREO https://www.audubon.org/field-guide/bird/song-sparrow#photo3
Fig. 2: Right, 3rd from top Myron Tay  nhttp://orientalbirdimages.org/search.php?Bird_ID=2104&Bird_Image_ID=61509sp=73
Fig. 2: Right, 4th from top Brian Kushner  https://www.audubon.org/field-guide/bird/blue-jay

Fig. 2: Bottom, left A. IIlep6akos

Fig. 2: Bottom, right prepa3tgz-11bwv518 (CC BY-NC 4.0) https://www.inaturalist.org/observations/23184228
Fig. 4: Top jmaley (CCO 1.0) https://www.inaturalist.org/observations/31619615

Fig. 4: Bottom lorospericos (CC BY-NC 4.0) https://www.inaturalist.org/observations/30605775

Fig. 5: Top left, left wildlife-naturalists (CC BY-NC 4.0)  nttps://www.inaturalist.org/photos/13223248

Fig. 5: Top left, right Colin Barrows (CC BY-NC-SA 4.0)  nttps://www.inaturalist.org/photos/2642277

Fig. 5: TOp middle, left charley (CCBY—NC4.0) https://www.inaturalist.org/photos/13379419

Fig. 5: Top middle, right guyincognito (CC BY-NC 4.0)  https://www.inaturalist.org/photos/26314681

Fig. 5: Top right, left Chris van Swaay (CC BY-NC 4.0)  https://www.inaturalist.org/photos/18941543

Fig. 5: Top right, right Jonathan Campbell (CC BY-NC 4.0)  nhttps://www.inaturalist.org/photos/20120523

Fig. 5: Middle left, left John Ratzlaff (CC BY-NC-ND 4.0) https://www.inaturalist.org/photos/647514

Fig. 5: Middle left, right Jessica (CC BY-NC 4.0) https://www.inaturalist.org/photos/5595152

Fig. 5: Middle middle, left i_c_riddell (CC BY-NC 4.0) https://www.inaturalist.org/photos/1331149

Fig. 5: Middle middle, right  Pronoy Baidya (CC BY-NC-ND 4.0)  https://www.inaturalist.org/photos/5027691

Fig. 5: Middle right, left Nicolas Olejnik (CC BY-NC 4.0)  nttps://www.inaturalist.org/photos/2006632

Fig. 5: Middle right, right Carmelo Lépez Abad (CC BY-NC 4.0)  nttps://www.inaturalist.org/photos/892048

Fig. 5: Bottom left, left Luis Querido (CC BY-NC 4.0) https://www.inaturalist.org/photos/13052253

Fig. 5: Bottom left, right copper (CC BY-NC 4.0) https://www.inaturalist.org/photos/22043211

Fig. 5: Bottom middle, left vireolanius (CC BY-NC 4.0)  nttps://www.inaturalist.org/photos/13550702

Fig. 5: Bottom middle, right Mathias D’haen (CC BY-NC 4.0)  nttps://www.inaturalist.org/photos/14943695

Fig. 5: Bottom I‘ight, left tas47 (CC BY-NC 4.0) https://www.inaturalist.org/photos/10691998

Fig. 5: Bottom right, right Nik Borrow (CC BY-NC 4.0) https://www.inaturalist.org/photos/13776993

Table 1: Attributions for photographs in main paper body.

Beam search performs best, so we use it with a
beam size of 5 for all reported results (except the
decoding ablations, where we report each).

We train with Adagrad for 700k steps using a
learning rate of .01 and batch size of 2048. We
decay the learning rate after 20k steps by a factor
of 0.9. Gradients are clipped at a magnitude of 5.

D Image Attributions

Table 1 provides attributions for all photographs
used in the main paper body.
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