MRL 2023

The 3rd Workshop on Multi-lingual Representation Learning

Proceedings of the Workshop

December 7, 2023



©2023 Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street

Stroudsburg, PA 18360

USA

Tel: +1-570-476-8006

Fax: +1-570-476-0860

acl@aclweb.org

ISBN 979-8-89176-056-1



Organizing Committee

Organizers

Duygu Ataman, New York University

Hila Gonen, Meta, University of Washington
Sebastian Ruder, Google

David Ifeoluwa Adelani, Google Deepmind and UCL
Gozde Giil Sahin, Koc University

Chris Emezue, TU Munich

Benjamin Muller, Meta

Omer Goldman, Bar-Ilan University
Mammad Hajili, Microsoft

Francesco Tinner, University of Amsterdam
Genta Indra Winata, Bloomberg

ii



Program Committee

Reviewers

Saksham Bassi, New York University

Jannis Vamvas, University of Zurich

Ankur Bapna, Google

Ivan Vulié, University of Cambridge

Biao Zhang, Google

Sneha Kudugunta, Google

Ahmet Ustun, Cohere

Gozde Gul Sahin, Koc University

Duygu Ataman, New York University

Asa Cooper Stickland, New York University
Jonne Saleva, Brandeis University

Richard Yuanzhe Pang, New York University
Genta Winata, Bloomberg

Abhinav Arora, Meta

Constantine Lignos, Brandeis University
Xinyan Yu, University of Southern California
Antonios Anastasopoulos, George Mason University
Abdullatif Koksal, LMU Munich

Holy Lovenia, AISG

iii



Keynote Talk: Orhan Firat

Orhan Firat
Google Deepmind
2023-12-07 09:10 —

Bio: Orhan Firat is a senior research scientist at Google Deepmind where he works on cutting-edge
technologies on scalable and multi-lingual language models.

Y



Keynote Talk: Katharina Kann

Katharina Kann
UC Boulder
2023-12-07 09:50 —

Bio: Katharina Kann is an assistant professor at UC Boulder and JGU Mainz and her research focuses
on building natural language processing systems that work for all of the world’s languages.



Keynote Talk: Sunayana Sitaram

Sunayana Sitaram
Microsoft
2023-12-07 16:00 —

Bio: Sunayana Sitaram is a principal researcher at Microsoft Research India. Her research interests are
broadly in democratizing Al and making LLMs more inclusive to more languages and cultures.

vi



Table of Contents

UniBriVL: Robust Audio Representation and Generation of Audio Driven Diffusion Models
Sen Fang, Bowen Gao, Yangjian Wu and TeikToe Teoh........... ... ... ... it 1

Meta-learning For Vision-and-language Cross-lingual Transfer
Hanxu Hu and Frank Keller . ... ... e 12

Counterfactually Probing Language Identity in Multilingual Models
Anirudh Srinivasan, Venkata Subrahmanyan Govindarajan and Kyle Mahowald.............. 24

A General-Purpose Multilingual Document Encoder
Onur Galoglu Robert Litschko, Robert Litschko and Goran Glava$ ......................... 37

Zero-Shot Cross-Lingual Sentiment Classification under Distribution Shift: an Exploratory Study
Maarten De Raedt, Semere Kiros Bitew, Fréderic Godin, Thomas Demeester and Chris Develder
50

To token or not to token: A Comparative Study of Text Representations for Cross-Lingual Transfer
Md Mushfiqur Rahman, Fardin Ahsan Sakib, Fahim Faisal and Antonios Anastasopoulos . ... 67

Adapt and Prune Strategy for Multilingual Speech Foundational Model on Low-resourced Languages

Hyeon Soo Kim, Chung Hyeon Cho, Hyejin Won and Kyung HoPark ...................... 85
Multilingual Word Embeddings for Low-Resource Languages using Anchors and a Chain of Related
Languages

Viktor Hangya, Silvia Severini, Radoslav Ralev, Alexander Fraser and Hinrich Schiitze ... ... 95

TalaMT: Multilingual Machine Translation for Cabécar-Bribri-Spanish
Alex Jones, Rolando Coto-Solano and Guillermo Gonzéalez Campos.............c.oouenn... 106

Mergen: The First Manchu-Korean Machine Translation Model Trained on Augmented Data
Jean Seo, Sungjoo Byun, Minha Kang and Sangah Lee .................................. 118

Improving Cross-Lingual Transfer for Open Information Extraction with Linguistic Feature Projection
Youmi Ma, Bhushan Kotnis, Carolin Lawrence, Goran Glavas and Naoaki Okazaki......... 125

Geographic and Geopolitical Biases of Language Models
Fahim Faisal and Antonios Anastasopoulos ... ..........cuutireeiniieeeenniiieeennnns 139

Task-Based MoE for Multitask Multilingual Machine Translation
Hai Pham, Young Jin Kim, Subhabrata Mukherjee, David P. Woodruff, Barnabas Poczos and
Hany Hassan . ... ... e e e 164

Does the English Matter? Elicit Cross-lingual Abilities of Large Language Models
Leonardo Ranaldi and Giulia Pucci . ...... ..o i 173

CAPIVARA: Cost-Efficient Approach for Improving Multilingual CLIP Performance on Low-Resource
Languages

Gabriel Oliveira dos Santos, Diego Alysson Braga Moreira, Alef lury Ferreira, Jhessica Silva, Luiz
Pereira, Pedro Bueno, Thiago Sousa, Helena Maia, Nadia Da Silva, Esther Colombini, Helio Pedrini

and Sandra AVila. .. ... 184
Code-switching as a cross-lingual Training Signal: an Example with Unsupervised Bilingual Embed-
ding

Felix Gaschi, Ilias El-Baamrani, Barbara Gendron, Parisa Rastin and Yannick Toussaint. . . .. 208

vii



Learning to translate by learning to communicate
C.M. Downey, Xuhui Zhou, Zeyu Liu and Shane Steinert-Threlkeld ....................... 218

Contrastive Learning for Universal Zero-Shot NLI with Cross-Lingual Sentence Embeddings
Md Kowsher, Md. Shohanur Islam Sobuj, Nusrat Jahan Prottasha, Mohammad Shamsul Arefin
and Yasuhiko MOTImOtO . . . ... e et e e e e e 239

UD-MULTIGENRE — a UD-Based Dataset Enriched with Instance-Level Genre Annotations
Vera Danilova and Sara Stymne . ..........o i e 253

Embedding Structure Matters: Comparing Methods to Adapt Multilingual Vocabularies to New Lan-
guages
C.M. Downey, Terra Blevins, Nora Goldfine and Shane Steinert-Threlkeld ................. 268

Multi-EuP: The Multilingual European Parliament Dataset for Analysis of Bias in Information Retrieval
Jinrui Yang, Timothy Baldwin and Trevor Cohn.......... ... .. ... ... . ... 282

Generating Continuations in Multilingual Idiomatic Contexts
Rhitabrat Pokharel and Ameeta Agrawal......... ... oot 292

CUNI Submission to MRL 2023 Shared Task on Multi-lingual Multi-task Information Retrieval
Jindfich Helcl and Jindfich LibovicKy .. ... e 302

Findings of the 1st Shared Task on Multi-lingual Multi-task Information Retrieval at MRL 2023

Francesco Tinner, David Ifeoluwa Adelani, Chris Emezue, Mammad Hajili, Omer Goldman, Mu-
hammad Farid Adilazuarda, Muhammad Dehan Al Kautsar, Aziza Mirsaidova, Miige Kural, Dylan
Massey, Chiamaka Chukwuneke, Chinedu Mbonu, Damilola Oluwaseun Oloyede, Kayode Olaleye, Jo-
nathan Atala, Benjamin A. Ajibade, Saksham Bassi, Rahul Aralikatte, Najoung Kim and Duygu Ataman
310

viii



Program

Thursday, December 7, 2023

09:00 - 09:10

10:30 - 11:00

11:00 - 12:30

12:30 - 14:00

14:00 - 14:30

14:30 - 15:30

15:30 - 16:00

16:00 - 16:50

16:50 - 17:00

Opening Remarks

Coffee Break

Poster Session

Lunch Break

Shared task session

Best Paper Award Session
Coffee Break

Afternoon Oral Session

Closing Remarks

iX



Friday, December 8, 2023

09:10 - 10:30 Morning Oral Session



UniBriVL: Robust Universal Representation and Generation of
Audio Driven Diffusion Models

Sen Fang', Bowen Gao?* Yangjian Wu?, Teik Toe Teoh*
12Victoria University, *Hainan University, *Nanyang Technological University
{sen.fang, bowen.gao}@live.vu.edu.au, yangjian.wu@hainanu.edu.cn
ttteoh@ntu.edu.sg

Abstract

Multimodal large models have been recognized
for their advantages in various performance
and downstream tasks. The development of
these models is crucial towards achieving gen-
eral artificial intelligence in the future. In this
paper, we propose a novel universal language
representation learning method called UniB-
riVL, which is based on Bridging-Vision-and-
Language (BriVL). Universal BriVL embeds
audio, image, and text into a shared space, en-
abling the realization of various multimodal
applications. Our approach addresses major
challenges in robust language (both text and
audio) representation learning and effectively
captures the correlation between audio and im-
age. Additionally, we demonstrate the qualita-
tive evaluation of the generated images from
UniBriVL, which serves to highlight the po-
tential of our approach in creating images from
audio. Overall, our experimental results demon-
strate the efficacy of UniBriVL in downstream
tasks and its ability to choose appropriate im-
ages from audio. The proposed approach has
the potential for various applications such as
speech recognition, music signal processing,
and captioning systems.

1 Introduction

Sound and vision affect people’s core cognition
in many areas, such as feeling, information pro-
cessing and communication. Sound and vision are
closely related. However, most of the existing meth-
ods only have a single cognitive ability, and some
only study text-vision, text-voice, etc. Recent stud-
ies have shown that leveraging large-scale Internet
data for self-supervised pre-training of models of-
fers better results than relying on high-quality or
manually labeled data sets (Pan et al., 2022), such
as the recently popular chatGPT. Moreover, mul-
tiple studies demonstrate the effectiveness of mul-
timodal models over single or bimodal models in

* Collaborator Author.
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Fig. 1: Our UniBriVL architecture and training flow, we
train in conjunction with a SpeechLM encoder, enabling
a unified text and audio entry.

several fields and tasks (Chen et al., 2022a), such
as Microsoft’s latest BEiT3 (Wang et al., 2022),
Meta’s ImageBind (Girdhar et al., 2023), etc.
Data volume is the basic element for training
large-scale language models. Since BERT of De-
vlin et al. (2018) (perhaps even earlier (Ma and
Zhang, 2015)), the pre-training model of NLP
has been benefiting from large-scale corpora. Ac-
cording to the theory of Kaplan et al. (2020), the
language model gradually reflects a scaling law
(the rule that the model capacity increases with
the model volume). Manual annotation of large
amounts of data in supervised learning is very ex-
pensive, so self-supervised learning is valued for
large model training. In order to expand the bound-
ary of the research field and break the limitation of
the lack of relevant resources (Hsu et al., 2021), we
explore a new multimodal self-monitoring model
based on the latest excellent work: Bridging-
Vision-and-Language (Fei et al., 2022). It’s a
new effort similar to OpenAl CLIP (Radford et al.,
2021) and Google ALIGN (Jia et al., 2021). Like
CLIP, BriVL can rearrange images based on how
well they match text images to find the best match.
BriVL! model has excellent effect on image and
text retrieval tasks, surpassing other common mul-
timodal pre-training models in the same period.

1ht’cps: //github.com/BAAI-WuDao/BriVL
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In this work, we propose UniBriVL, an audio-
visual correspondence model that extracts training
from the BriVL model. As shown in Figure 1, the
principle of UniBriVL is to freeze the BriVL vi-
sual model, run video on the visual stream of the
model, and train a new model to predict BriVL em-
bedding independently from the audio stream. The
entry point for our selection of the new language
modality is Microsoft’s latest developed model,
SpeechLM (Zhang et al., 2023), which is a fu-
sion model of text and audio. It is capable of
outputting text and audio as the same represen-
tation. This allows us to input text, audio, or both
when using the model. Consequently, this signif-
icantly enhances the adaptability of the model to
various tasks, such as audio-text retrieval, image
retrieval, audio recognition, image captioning, and
even theoretically enables better perception of real-
life scenarios through simultaneous processing of
live speech and text. We conducted a comprehen-
sive evaluation of our model in the aforementioned
tasks. The experimental results demonstrate its
strong generalizability and excellent performance
in the main experiments.

Finally, we use UniBriVL to guide the genera-
tion of model Stable Diffusion? (Rombach et al.,
2022) output images, and intuitively verify that the
embedded space is meaningful. Experimental re-
sults show that this method can effectively choose
appropriate images from audio. This is a significant
contribution to the field of multimodal learning, as
prior methods mainly focused on generating im-
ages from text or image inputs, rather than audio in-
puts. In addition, compared with other fully super-
vised models, UniBriVL theoretically requires less
data to obtain competitive performance in down-
stream tasks, that is, it performs pre-training more
effectively than competitive methods, because it
does not need to completely re learn the visual
model, only needs to train the audio model. Itis a
reproducible and potential application model, and
we will provide our model and more code informa-
tion after publication.

2 Related Works

The impetus for our research is the considerable
progress noticed in multimodal learning, specifi-
cally during the early part of 2022. The compari-
son of BriVL’s performance with CLIP (Radford
et al., 2021) indicates noteworthy improvements

thtps://github.com/CompVis/stable—diffusion

across various benchmarks. Likewise, Microsoft’s
SpeechLM (Zhang et al., 2023) outshines the for-
mer Wav2Vec (Baevski et al., 2020) in several di-
mensions. We posit that fusing the strengths of
BriVL and SpeechLLM could indeed result in an
enhancement over Wav2CLIP3. Crucially, the field
is presently underexplored in terms of pioneering
endeavors concerning the use of audio-guided dif-
fusion models for image generation.

2.1 Audio dependent multimodal models

There have been many multimodal works that have
taken audio into account before, and some have
replaced text with audio as the main object for
matching with images (Ilharco et al., 2019; Chru-
pata, 2022). In addition to AudioCLIP (Guzhov
et al., 2021) and other similar but actually differ-
ent work, the most similar to us is Wav2CLIP (Wu
et al., 2022). For CLIP, the BriVL we use has
the following differences and advantages: Firstly,

Flyer Dreamland

) Future City ’

Fig. 2: Examples of CLIP (top) and BriVL (bottom) to
image generation from text, BriVL'’s labels in x-axis are
translated.

BriVL has more weak semantic relevance, so our
model is more imaginative (We also use naturally
distributed weak semantic data.). For example,
here are two groups of graphs in Figure 2 gen-
erated by using CLIP and BriVL respectively using
GAN for comparison and understanding in the field
of text-guided generation. Secondly, for our net-
work architecture, because there is not necessarily
a fine-grained area match between the image and
audio, we lost the time-consuming target detec-
tor and adopted a simple and more efficient dual
tower architecture. Thirdly, BriVL designed a cross
modal comparative learning algorithm based on the
single modal comparative learning method MoCo
(He et al., 2020), which has different advantages
than CLIP.

3https://github.com/descriptinc/
lyrebird-wav2clip
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2.2 Audio driven image generation

For many years, people have been trying to give
Al people multimodal perception and thinking, and
one of the main ideas is to simulate people’s im-
pressions of different external inputs, namely im-
age generation. The pursuit of applications and
methods for generating different images is the di-
rection of researchers’ efforts. With the emergence
of different generation models, such as Goodfel-
low introduced GAN in 2014, there has been a lot
of excellent work in the field of GAN-based im-
age generation (Karras et al., 2017; Cudeiro et al.,
2019; Yi et al., 2020; Zhang et al., 2021a; Song
et al., 2022; Zhang et al., 2021b,c; Wu et al., 2021;
Labhiri et al., 2021; Richard et al., 2021; Thies et al.,
2020; Wen et al., 2020; Chen et al., 2020b). Then,
from single mode to multi-mode, from text guid-
ance about 15 years later to audio guidance (Qiu
and Kataoka, 2018) 20 years later (of course, there
are more and earlier attempts and exceptions), sev-
eral impressive works appeared (Xu et al., 2018;
Zhu et al., 2021; Hessel et al., 2021; Saharia et al.,
2022b,a). At a time when diffusion models have
achieved success in many fields, exploring based
on this work is meaningful.

2.3 Background information

SpeechLM (Zhang et al., 2023) is a neural net-
work model that combines speech and text infor-
mation to perform language modeling. It con-
sists of two parts: a Speech Transformer and a
Shared Transformer, which are enhanced with a
random swapping mechanism. The Speech Trans-
former uses a standard Transformer with relative
position embedding to process the speech wave-
form into speech features, which are then masked
and further processed by the Speech Transformer
to obtain higher-level representations. A speech
waveform S is first processed into a sequence
of speech features X = (z1,2z9,...,x) by a
stack of 1-D convolutional layers. They follow
HuBERT to mask the speech feature X with the
mask probability of 8% and the mask length of
10. Then the masked features, X , are fed into the
Speech Transformer for higher level representa-
tions H'! = Transformer(H'~!), where [ means
the layer and H® = X indicates the input. The
Shared Transformer has the same architecture, but
takes in both the encoded speech representations
and the embeddings derived from tokenized text
units. To better align the speech and text repre-

sentations in the same latent space, they introduce
a random swapping mechanism that randomly re-
places some speech features with corresponding
text embeddings. They randomly select some po-
sitions from the unmasked region of speech and
replace the lower representations hf/ ? with the cor-
responding unit embeddings u;, where the units are
extracted from the input speech sample. In this way,
the speech and text modalities can be shuffled into
one sequence and treated equally. This is also one
of the advantages of our model, we can use it for
tasks that require text-image matching as well as
voice-image matching, which is very convenient.

3 Methodology And Experiments

BriVL is a model trained on 650 million text im-
age weak semantic datasets. They designed a cross
modal comparison learning algorithm based on the
monomodal comparison learning method MoCo
(He et al., 2020), and maintained the negative sam-
ple queue in different training batches through a
mechanism called Memory Bank, so as to obtain
a large number of negative samples for use in the
comparison learning method. In simple terms, it
does not incorporate momentum encoders or nega-
tive sample queues, instead relying on computing
the InfoNCE loss (Oord et al., 2018) within each
batch. Specifically, the number of negative sam-
ples for each positive image-text pair is determined
by the mini-batch size, affording greater flexibility
and efficiency in training. It also shows the SOTA
results in such scenes as image annotation, image
zero sample classification, and input features of
other downstream multimodal tasks. Even the guid-
ance generation model has excellent performance.
As mentioned in the introduction, UniBriVL re-
places the text encoder with the audio/shared en-
coder encoder by model of BriVL (In fact, as men-
tioned in the background information, SpeechLM’s
feature extraction is shared across text and audio
types. The model is retrained after changing the
BriVL code, and then fine-tuned together with
SpeechLLM.), runs the image through it, and trains
the new model to predict that only the matching im-
age embedded content is obtained from the audio.
We refer to the exclusive multilayer perceptron of
BriVL, which can not only enhance performance
but also prepare for possible downstream tasks. Af-
ter the audio encoder is fine-tuned, we freeze it and
use it in the UniBriVL image generation task as a
qualitative evaluation of our experimental results.



3.1 Dataset for performance test

We select diverse set of data ranging from various
number of clips, number of categories, and perform
diverse tasks including classification, retrieval, and
generation. For evaluation, we use relevant metrics
detailed in Table 1 for each task.

3.2 Dataset for training

To train audio-image correspondence, we use the
files of the AudioSet (Gemmeke et al., 2017) video
datasets as the audio input for our rearrangement
of the generated images. AudioSet comprises a
growing ontology that encompasses 632 distinct
audio event classes and a comprehensive corpus of
2.1 million videos. These clips are annotated by
human experts and extracted from YouTube videos,
each lasting ten seconds. The ontology is struc-
tured as a hierarchical graph of event categories,
encompassing a diverse spectrum of human and
animal sounds, musical genres and instruments, as
well as everyday environmental sounds. We ran-
domly select one image from each sample video,
cut them into squares, and sample them down to
64 x 64. The audio sampling rate is 16,000Hz. We
use it to train the model, which helps to increase
the applicability of the model. In total, we ran-
domly selected 200,000 segments for training and
then selected some additional audio for our image
generation task.

3.3 Feature extraction processing methods

For image and audio encoders, we use EfficientNet-
B7 (Tan and Le, 2019) as the CNN in the image
encoder, and the backbone SpeechLM (Zhang et al.,
2023) as the basic transformer in the audio en-
coder. The self concerned block is composed of
4 Transformer encoder layers and MLP block re-
spectively, with two fully connected layers and one
ReLU activation layer. For all models, we use
grid search to find the best hyperparameter. For
other hyperparameters (such as batch size, training
steps, learning rate, etc.), we directly use the sug-
gested values in the original papers. Note that for
per-instance perturbation, we adopt the appropriate
quantity compared to the original epochs.

Picture Encoding. The technique employed by
BriVL utilizes random grayscale conversion for
the input picture, along with random color jitter
for data enrichment. A 720P resolution is utilized
for all videos in the dataset, with non-compliant
ones being converted to 480P. The pictures are

then trimmed to 360 x 360 pixels. Patch features
from the picture are captured via a Transformer,
followed by employing an average pooling layer
for feature integration. To further refine the ex-
traction and depiction of interrelations among the
picture patch features, a self-attention (SA) block
containing multiple Transformer encoder layers is
employed by the BriVL team®*. Each Transformer
encoder layer encompasses a multi-head attention
(MHA) layer and a feed-forward network (FFN)
layer (Fei et al., 2022):

T’ = LayerNorm(T + MHA(T)) (1)
T = LayerNorm(T' + FEN(T'))  (2)

Post this, they make use of an average pooling layer
to amalgamate the extracted patch features:

N,

. 1 <
q¥ =D T eR 3)

p j=1

wherein T stands for the j-th column of T. To
project q') to the joint cross-modal embedding
space, a two-layer MLP block equipped with a
ReLU activation layer is used. This results in gen-
erating the ultimate d-dimensional picture embed-
ding y( € R?.

Audio Encoder. For audio input, we first convert
the original audio waveform (1D) into a spectrum
(2D) as the input of SpeechLLM, and pool the entire
512 dimensional audio sequence to output an em-
bedding. The SpeechLM embedding is computed
by the weighted average of outputs from all trans-
former layers. The SpeechLM> model inspired by
HuBERT (Hsu et al., 2021) consists of a Speech
Transformer and a Shared Transformer, which are
enhanced with the random swapping mechanism.
The Transformer is optimized to predict the dis-
crete target sequence z, in which each z; € [C]is a
(C'-class categorical variable. The distribution over
the classes is parameterized with

exp(sim(K'nl, e.)/7)
_ 4
p(c‘nt) 25:1 eXp(Slm(KPntL, ec’)/T) ( )

where K is a projection matrix, n} is the output
hidden state for step ¢, e. is the embedding for
class ¢, sim(a, b) means the cosine similarity be-
tween a and b, and 7 = 0.1 scales the logit (Chen

4https: //github.com/BAAI-WuDao/BriVL
5https: //aka.ms/SpeechlLM
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Dataset Task  Clip (Split)  ClassMetric
ESC-50 (Piczak, 2015) MC/ZS 2k (5 folds) 50 ACC
UrbanSound8K (Salamon et al., 2014) MC/ZS 8k (10 folds) 10 ACC
VGGSound (Chen et al., 2020a) MC/ZS 185k 309 mAP
DESED (Turpault et al., 2019) AR 2.5k (valid) 10 F1
VGGSound (Chen et al., 2020a) CMR 15k (test) 309 MRR
Clotho (Drossos et al., 2020) AC 5k (evaluation) COCO

Table 1: Downstream tasks, including 1. classification: multi-class (MC), zero-shot (ZS), 2. retrieval: audio (AR)
and cross-modal retrieval (CMR), and 3. audio captioning (AC) task, with various of clips, classes, and common

metrics.

et al., 2022b). The SpeechLM embedding is cal-
culated by the weighted average of all transformer
layer outputs of SpeechLM, where the weights are
learned during fine tuning. In the process of fine-

tuning, we either update or freeze the parameters
of SpeechLM.

3.4 Training process

Adhering to BriVL’s method, we employ a sim-
ilar cross modal comparative loss delineated
upon the concept of MoCo (He et al., 2020),
a mechanism that facilitates dynamic sample
queue formation for contrastive learning. Our
approach, with two negative queues, enables
a larger negative sample size without equiva-
lent mini-batch size, thereby economizing GPU
resources.  The cross projection loss func-
tion, CXLoss = L(f(Image), Language) +
L(Image, g(Language)) (f,g: projection func-
tions and L: contrastive loss). For all models, we
use grid search to find the best hyperparameter. For
other hyperparameters (such as batch size, training
steps, learning rate, etc.), we directly use the sug-
gested values in the original papers. Note that for
per-instance perturbation, we adopt the appropriate
quantity compared to the original epochs. The topk
parameter is set to 1, which indicates that we only
consider the top-scoring prediction for each input
instance. The queue_size parameter is set to 9600,
which controls the number of instances that can be
processed in parallel. We use a momentum value
of 0.99 to stabilize the learning process and prevent
oscillations during training. The temperature pa-
rameter is set to 0.07, which scales the logits output
of the model to control the softness of the predicted
probability distribution. Finally, we use a grid_size
of 4 to divide the input image into a grid of smaller
sub-regions for object detection tasks.

4 Task 1: UniBriVL Performance Test

We begin by discussing the training, development,
and evaluation process of the UniBriVL model.
We use publicly available datasets of varying sizes
and tasks, including classification, retrieval, and au-
dio captioning tasks. We compare UniBriVL with
some widely used as strong benchmarks in this
field and evaluate its performance in these tasks.
Additionally, we investigate the effect of sound vol-
ume on the generated images. We hypothesize that
the volume of sounds can influence the generated
images. Hence, we explore the influence of sound
volume on image features extracted from the sound
using the sound correlation model. We also per-
form quantitative image analysis to evaluate the per-
formance of UniBriVL compared to previous work,
such as S2I and Pedersoli et al. We test model with
five categories from VEGAS (Zhou et al., 2018)
and compare its performance with other methods
in terms of generating visually plausible images.

4.1 Training, development, and evaluation

We selected publicly available audio classification
data of different sizes, which are generally used for
evaluation (Cramer et al., 2019), and also included
some audio tasks/data, as shown in table 1, includ-
ing classification, retrieval and audio captioning.
ESC-50 (Piczak, 2015) is a simple data set with
only 2 thousand samples, while UrbanSound8K
(Salamon et al., 2014) is a large environmental data
set with 10 categories. VGGSound (Chen et al.,
2020a) is a huge set of audio and video materials
as we said before, including the widest and most di-
verse range of audio molds. DESED is used again
as an audio extraction (AR) job because DESED
can perform sound extraction at the fragment level.
Finally, Clotho (Drossos et al., 2020) is a unique
set of audio subtitles.



Classification Retrieval
Model ESC-50 UrbanSound8K VGGSound DESED (AR) VGGSound (CMR)
ACC ACC mAP F1 A—I(MRR) I—A (MRR)
Supervise 0.5200 0.6179 0.4331
OpenL3 0.733 0.7588 0.3487 0.1170 0.0169 0.0162
Wav2CLIP 0.8595 0.8101 0.4663 0.3955 0.0566 0.0678
UniBriVL 0.9307 0.8722 0.4885 04111 0.0641 0.0612
SOTA 0.959 0.8949 0.544
UniBriVL (ZS) 0.412 0.4024 0.1001

Table 2: In the subsequent classification and acquisition work, there will be supervised training, other audio
representation modes, OpenL.3, and the latest SOTA (Guzhov et al., 2021; Kazakos et al., 2021). ZS is based on

UniBriVL as a zero sample size model, some of which are derived from the original literature.

2.0 times 3.0 times

Original

0.5 times

Fig. 3: Generated images by inputting different volumes

of sounds. The numbers in the table is the relative
loudness to the original sound.

For multi-class (MC) classification problems, an
MLP-based classifier is employed, with a corre-
sponding number of classes as output. In DESED,
we use the way of simulating UniBriVL and
sed_eval® to realize audio retrieval (AR). At the
same time, we also explore the performance of
ours when dealing with multimodal tasks, and how
to transfer zero samples to other modalities.

4.2 Sound volume

To establish the reliability of our method’s capa-
bility to learn the connection between sound and
vision, we analyzed the influence of sound volume
on generated images. Specifically, we explored
how changes in sound volume may affect the gener-
ated image. To achieve this, we adjusted the sound
volume levels during testing and extracted features
for the corresponding sound files. These modified
sound features were then input into our pre-trained

6https ://github.com/TUT-ARG/sed_eval

VEGAS (5 classes)

Method
R@l FID{) IS
(A) Pedersolietal. 23.10 118.68 1.19
B) S21 39.19 114.84 1.45
(©) S2v 77.58 34.68 4.01
(D) Ours 81.31 31.48 5.42

Table 3: Comparison to the baseline: Pedersoli et al.
(2022) and existing sound-to-image/video method:
S2I and S2V (Fanzeres and Nadeu, 2021; Sung-Bin
et al., 2023). Our method outperforms the others both
qualitatively and quantitatively in the VEGAS dataset.

generator, which was trained on a standard volume
scale. The final three sets of images can prove
our hypothesis that the magnitude of different vol-
ume levels is usually positively correlated with the
effects and meanings displayed in the images.

4.3 Quantitative image analysis

We conducted a comparative analysis of our pro-
posed model against publicly available prior works
S217 (Fanzeres and Nadeu, 2021; Sung-Bin et al.,
2023) and Pedersoli et al. (2022). It should be noted
that while the latter is not primarily designed for
sound-to-image conversion, it employs a VQVAE-
based model to generate sound-to-depth or segmen-
tation. We trained our model and Pedersoli et al.
using the same training setup as S2I, including five
categories in VEGAS, to ensure a fair comparison.
As shown in Table 3, our proposed model outper-
forms all other models while generating visually
compelling and recognizable images. We assert
that this superior performance can be attributed to
the combination of visually enriched audio embed-
dings and a powerful image generator.

7https: //github.com/leofanzeres/s2i
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Model B1 B4 M RL Cr

Baseline  0.389 0.015 0.084 0.262 0.074
Wav2CLIP 0.393 0.054 0.104 0.271 0.100
UniBriVL  0.434 0.107 0.115 0.268 0.126

Table 4: Results of audio captionin, ASR, compared
with baseline (Drossos et al., 2020). We tested some
tasks on the test tools we worked on previously® and
we exclude Bleu2/3, list Bleul/4 (B1/4), METEOR (M),
ROUGEL (RL), CIDEr (Cr).

4.4 Downstream task result analysis

As shown in Tables 2 and 4, in training, we monitor
the benchmark by training from scratch on each
downlink (with random initialization of the encoder
weights). Next, we compare UniBriVL with other
publicly available Openl.3 (Cramer et al., 2019)
pre-trained on different pretext tasks in OpenL3.
OpenL3 multimodal self-monitoring training with
AudioSet. It serves as a strong benchmark for dif-
ferent audio tasks, such as audio classification and
retrieval. We extract features from OpenL3 (512
dim) and UniBriVL (512 dim) and apply the same
training scheme to all downstream classification
and retrieval tasks. In the chart, we can see that in
the retrieval of classification, we are slightly better
than our previous work, with an average increase
of about 0.04, and only some deficiencies in AR.
But it’s only about 0.02. We approach or slightly
outperform our previous work in retrieval tasks.
On tasks such as BLEU and audio captioning, we
have some advantages over the baseline, which
to our knowledge are not state-of-the-art, but are
sufficient to prove their effectiveness.

In sumary, our model has good effects in both
data sets of audio retrieval classification, for the
source of our strengths: In the Classification tasks,
on the four datasets, three of us achieved good re-
sults close to or exceeding SOTA. one of reason
may be related to our data, and the other may be the
effect of BriVL. As for the lack of excellent perfor-
mance in AR tasks, it may be due to the excessive
divergence of the BriVL dataset. If we retrain the
basic model on a large scale, we may achieve better
results. In the Retrieva tasks, such mrr tasks from
Ato], from I to A we have also achieved excellent
results, which mainly comes from the excellent
training effect of the previous two towers model
and the pre-training model. In addition, we believe
that increasing the amount of data has the potential
to further improve performance on audio tasks.
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Fig. 4: UniBriVL controls the concept map of the sta-
ble diffusion model after the model matches the image
features through the input language.

S Task2: Speech Generation Picture
Based on Diffusion Model

Our method uses the UniBriVL model to guide
the generation of Stable Diffusion. This process
utilizes meaningful embedding in the embedding
space, by calculating the matching score between
audio and image to rearrange the image, and this
rearrangement idea is like CLIP. Our code is im-
proved from the official model code and similarity
calculation tools’. In the reasoning stage, as shown
in Figure 4, the matching score of the audio and
the generated image can be calculated through the
pre-trained UniBriVL, ultimately achieving the ef-
fect of guiding the generation of the most matched
image. The rearranged images are all provided by
selecting from the 100th epoch of the same 20 text
inputs. We found that this method can generate im-
ages that are appropriate for a given audio input, as
confirmed by feedback from related experiments.

5.1 Correlation between sounds and images

This section aims to investigate whether the pro-
posed method generates graphs that are also rele-
vant to humans. Because simply proving authen-
ticity is not enough to prove the deep connection
between sound and image, to demonstrate the con-
nection between the two, we conducted a test simi-
lar to previous work (Ilharco et al., 2019; Wan et al.,
2019). Participants were presented with two im-
ages, each with different sound categories as input
and the image closest to the given sound. We con-
ducted three tests and obtained a series of option
values. By collecting participants’ options, we aim
to evaluate the effectiveness of the model in gener-
ating images related to different sound categories.

9ht’cps: //github.com/BAAI-WuDao/BriVL
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Wav2CLIP

UniBriVL
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Rock
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Engine Sound

Fig. 5: Images generated from five-piece audio in AudioSet (Gemmeke et al., 2017). Top: Wav2CLIP, Bottom:
UniBriVL - corresponding audio input labels in x-axis. Experiments have shown that our tools are effective.

Options Positive Negative Neither
Wav2CLIP  75% 13% 12%
UniBriVL  79% 10% 11%

Table 5: Human scores on correlation between sounds
and images, Wav2CLIP works for comparison

The experimental results are shown in Table 5,
which collected participants’ reactions and classi-
fied them as positive, negative, or neutral. A posi-
tive option indicates that participants have chosen
images generated from input sound, while a neg-
ative option indicates their preference for images
generated from different categories of sound. Par-
ticipants who believe that neither of these images
represents the sound they hear are considered neu-
tral. Our research results indicate that the majority
of participants believe that the generated images
are related to the input sound, thus verifying our
method’s ability to generate images related to a
given sound, and it was a good match.

5.2 Comparison with previous work

In previous work, Wav2CLIP also tried to generate
text/audio maps. Here are two sets of pictures for
comparison with our work. Figure 2 shows the text
output image of CLIP and BriVL. Figure 5 shows
another group of pictures generated by Wav2CLIP
and UniBriVL using audio.

However, in general, they all generated appro-
priate images, and they have their own characteris-
tics: for example, in their understanding of "Tiger
Roads", UniBriVL is more realistic, and WavCLIP
is more abstract. When they faced the input of
"Water Sound", our work generated a small stream,

WavCLIP generated symbolic images similar to
fish fossils, and the other images have similar fea-
tures. Even considering the characteristics of the
GAN model, this result can further prove the supe-
riority of our work, which also indicates that our
exploration and attempt to generate images using
a universal audio guided diffusion model is mean-
ingful; For the generation of audio, they exhibit
two characteristics of convergence and divergence
between the two models, as we can see, conver-
gence still corresponds to the image. Divergence
is reflected in Figure 5 generated by audio, which
is more imaginative than Figure 2 generated by
text. This is because our BriVL weak semantic text
image dataset has strong imagination, and another
reason is that audio itself has strong divergence
ability, which will enhance the associative ability
of audio driven models.

6 Summary & Conclusion

This article introduces a UniBriVL method for gen-
erating generic representations. The results show
that UniBriVL is able to output general, robust
sound representations, and that UniBriVL can be
easily transferred to multimodal jobs, such as audio
classification, audio retrieval, audio captioning and
audio image generation. In future research, we will
explore a number of interpretable machine learning
methods, consider extending to 6 modalities to our
work, just like ImageBind (Girdhar et al., 2023).
We will also consider exploring more efficient pre-
sentation and using the Consistency Models (Song
et al., 2023) and the NeRF (Mildenhall et al., 2020)
as the next version of the work and method.



Limitations

We fine-tune the language encoder on SpeechLM-
large model, but are limited by the fact that we
use part of the AudioSet data, which is a bit less
than the original Microsoft training data, perhaps
making performance limited. Lastly, it is essen-
tial to consider the potential influence of external
factors such as background noise, reverberation,
or speaker variability on the performance of the
speech recognition system. These factors were not
extensively addressed in our study, and their impact
on the model’s performance may be a subject for
further investigation.

In summary, our study is subject to limitations
concerning the representativeness of the training
data, potential language and accent bias, and the
focus solely on the language encoder component.
These limitations should be taken into account
when interpreting our results and considering the
application of the model in real-world scenarios.
Further research, incorporating diverse datasets and
investigating other components of the speech recog-
nition system, would be valuable to overcome these
limitations and enhance the overall performance of
speech recognition technology.

Ethics Statement

All datasets we train actively exclude harmful,
pornographic, and private content, and are only
used for research purposes. The participants we re-
cruited, except for some who volunteered, received
satisfactory compensation for the rest. The aca-
demic tools and human assessment related tests
used in this article comply with all regulations or
relevant permits.

Biases & Content Acknowledgment Although
our ability to generate images through audio is im-
pressive, it should be noted that this model may
be influenced by human factors to output content
that enhances or exacerbates social biases. In addi-
tion, we note a parallel work called WavBriVL, but
they are based on simple representation matching,
while we use the latest text-audio fusion feature ex-
traction methods and train them with the help of a
novel loss. They use Gans to generate images, and
we use diffusion models to generate images. Our
submission time and their appearance are within
three months, so there is no need to compare it to
their model or data.
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Abstract

Current pre-trained vision-language models
(PVLMs) achieve excellent performance on a
range of multi-modal datasets. Recent work
aims at building multilingual versions of such
models, and a range of multilingual multi-
modal datasets have been introduced for this
purpose. However, current PVLMs typically
perform poorly on such datasets when used
for zero-shot or few-shot cross-lingual trans-
fer, especially for low-resource languages. To
alleviate this problem, we propose a novel
meta-learning fine-tuning framework. Our
framework makes it possible to rapidly adapt
PVLMs to new languages by using Model-
agnostic Meta-learning (MAML) in a novel
cross-lingual multi-modal manner. Experi-
ments show that this new method boosts the per-
formance of current PVLMs in both zero-shot
and few-shot settings on four different vision-
language tasks across 14 languages.

1 Introduction

Multi-modal models focus on jointly learning repre-
sentations from multiple modalities, such as vision
and language. Many tasks require the integration
of information of vision and language, including
image captioning (Vinyals et al., 2015), natural lan-
guage visual reasoning (Zhou et al., 2017; Suhr
et al., 2019), and cross-modal retrieval (Zhen et al.,
2019). Multi-modal learning captures the inter-
action between different modalities, allowing the
resulting representations to be used in multimedia
applications that enhance human-computer interac-
tion.

Recently, pre-trained vision-language models
(PVLMs; Chen et al. 2020; Lu et al. 2019; Tan and
Bansal 2019) have achieved significant advances
in multi-modal tasks. However, the data which
PVLMs learn from is mostly for high-resource
languages such as English. The resulting mod-
els rely on large amounts of training data for good
performance, and often the models acquire biases
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Figure 1: Examples in IGLUE (Bugliarello et al., 2022)
benchmark. The left example comes from MaRVL (Liu
et al., 2021) dataset, and the right example comes from
XVNLI dataset proposed in IGLUE.

that mean they perform poorly in low-resource
languages such as Indonesian or Swahili. To ad-
dress this, several multilingual PVLMs have been
proposed (Zhou et al., 2021; Ni et al., 2021). A
number of studies have used multilingual multi-
modal datasets (Bugliarello et al., 2022; Liu et al.,
2021) and Figure 1 shows two examples from such
datasets. The authors of these datasets used them
to evaluate current famous PVLMs and demon-
strated they do not perform well in low-resource
cross-lingual transfer settings.

In this paper, we conjecture that meta-learning
can mitigate this issue. This is a learning ap-
proach that enables machine learning models to
adapt quickly to new tasks by learning the learn-
ing algorithm itself. Model-agnostic Meta-learning
(MAML,; Finn et al. 2017) is one of the most
widely used meta-learning frameworks. It is based
on gradient-descent optimization, does not re-
quire multiple models or complex settings, and
can be used for a range of models. In previ-
ous work (Verma et al., 2020; Finn et al., 2017;
Nooralahzadeh et al., 2020), MAML-based meth-
ods have been shown to be useful in low-resource
and cross-lingual transfer scenarios, including
both few-shot and zero-shot cross-lingual tasks.
However, prior work has only attempted to use
MAML for cross-lingual transfer in text-only tasks
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(Nooralahzadeh et al., 2020).

Inspired by previous works about using MAML
for natural language tasks, this paper proposes
XVL-MAML, a novel variant of MAML that ad-
dresses the limitations of previous PVLMs in
vision-language tasks for low-resource cross-
lingual transfer. Our framework combines a tra-
ditional supervised loss for learning down-stream
tasks with a contrastive loss to encourage the align-
ment between modalities, resulting in a cross-
lingual, multi-modal MAML optimization proce-
dure.

The intuition underlying our method is that a con-
trastive loss can align representations of different
modalities, and MAML allows the model to gen-
eralize quickly to unseen tasks (languages, in our
case). We show that XVL-MAML can lead to sig-
nificant improvements in PVLM performance for
cross-lingual transfer. We also find that using con-
trastive learning in a MAML framework on its own
can bring improvements in PVLM performance in
unsupervised settings.

In sum, our contributions are as follows: (1) We
propose a novel framework called XVL-MAML
which is the first meta-learning method special-
ized for vision-language cross-lingual transfer, and
doesn’t require the translation or pre-training data.
(2) We show that using only contrastive learning in
the MAML framework in an unsupervised setting
can also be useful. (3) We demonstrate that our
proposed framework can boost the performance of
current PVLMs across 14 languages and four tasks
in both zero-shot learning and few-shot learning.
(4) We conduct an ablation study to verify the effect
of contrastive learning in both supervised and un-
supervised settings and present an analysis across
languages and tasks.

2 Related Work

2.1 Multilingual Vision-and-Language

Methods and Tasks

Recent work has investigated vision-and-language
cross-lingual transfer tasks. Elliott et al. (2016)
proposed Multi30K, an image description dataset
which contains descriptions in multiple languages.
Previous methods (Gella et al.,, 2017; Rotman
et al., 2018) propose ways of bridging languages
through images, but they mainly focus on image-
text retrieval and only consider high-resource lan-
guages such as English and German. Pfeiffer et al.
(2022) built a multilingual visual question answer-
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ing dataset xGQA. Liu et al. (2021) proposed a
multilingual version of the grounded visual rea-
soning dataset MaRVL, which follow the same
setting as the natural language visual reasoning
dataset NLVR2 (Su et al., 2019), but considers both
cross-lingual transfer and domain shift between lan-
guages.

Several pre-trained models are recently proposed
for vision-and-language cross-lingual transfer. Ni
et al. (2021) proposed M3P, a transformer-based
pre-trained model that maps the same concepts in
different modalities and languages into a common
semantic space. Similar to M3P, Liu et al. (2021)
extended UNITER (Chen et al., 2020), propos-
ing mUNITER based on M-BERT (Devlin et al.,
2019), and xUNITER based on XLM-R (Conneau
et al., 2020). Zhou et al. (2021) proposed UC2, a
model using a data augmentation method based on
machine translation for cross-lingual cross-modal
pre-training. Although pre-training methods have
proven powerful across multiple tasks, they require
large amounts of training data and show a clear per-
formance gap between English and low-resource
languages on the IGLUE benchmark (Bugliarello
et al., 2022).

Recently, some adapter-based efficient tuning
methods (Pfeiffer et al., 2022; Wang et al., 2023)
and translation augmented methods (Qiu et al.,
2022) were proposed for multilingual multimodal
tasks. But they still require a large amount of
data or machine translated data for training. Our
method, in contrast, only requires a small amount
of auxiliary data.

2.2 Meta-Learning

Meta-learning has been increasingly popular in
machine learning. Whereas conventional ma-
chine learning methods learn by data points, meta-
learning learns by tasks. Previous meta-learning
work (Vinyals et al., 2016; Finn et al., 2017) fo-
cused on adapting to new tasks quickly. But meta-
learning can be applied to other scenarios as well,
including semi-supervised learning (Ren et al.,
2018), multi-task learning (Yu et al., 2020), and
domain generalization (Li et al., 2018).

Prior work has also explored the effectiveness
of meta-learning in NLP: Wang et al. (2021) ap-
plied meta-learning in semantic parsing for do-
main generalization based on MAML (Finn et al.,
2017; Li et al., 2018). Obamuyide and Vlachos
(2019) leveraged meta-learning under limited su-



pervision in a relation classification task. Recently,
there have been some applications using MAML
in cross-lingual transfer: Gu et al. (2018) and
Nooralahzadeh et al. (2020) regard languages as
tasks in their meta-learning framework. In con-
trast to these existing approaches, which explore
text-only scenarios, we are the first to utilize meta-
learning for cross-lingual transfer in multi-modal
tasks.

3 Meta-learning for Vision-and-language
Cross-lingual Transfer

We first formally define the problem of vision-and-
Language cross-lingual transfer in the context of
zero-shot and few-shot scenarios in Section 3.1.
Then, we introduce our overall fine-tuning frame-
work in Section 3.2. And we introduce the con-
trastive learning used for vision-and-language tasks
in Section 3.3. Finally, we introduce our XVL-
MAML algorithm in Section 3.4.

3.1 Problem Definition

Following the multilingual vision-language IGLUE
benchmark (Bugliarello et al., 2022), we formulate
the problem of cross-lingual transfer learning in
vision-and-language scenarios. For understanding
tasks, the input is a pair of an image V' and text U,
and the output Y is the result inferred by the multi-
modal model. We can thus formulate this problem
as computing Py(Y'|V, U), where 6 are the parame-
ters of the PVLMs. During training, the image-text
pairs come from datasets D; in a set of source lan-
guages, and our aim is to perform well on datasets
D, for the same task in the target languages. For the
zero-shot setup, the pre-trained model fine-tuned
on Dy is directly used in inference on D; for un-
seen target languages. For the few-shot setup, after
training on D, the model is continually fine-tuned
on several shots of the training set of D; and then
evaluated on the development set of D;.

3.2 Opverall Fine-tuning Framework For
Cross-lingual Transfer

The pipeline of our proposed meta-learning fine-
tuning framework can be divided into three parts:

1. Fine-tune the pre-trained vision-language
model on data of the down-stream task in En-
glish

2. Fine-tune the model on data in the auxiliary
language (one language other than English)
using our proposed XVL-MAML algorithm.
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3. Evaluate the fine-tuned model on data in the
target languages (languages other than En-
glish and the auxiliary language).

The traditional cross-lingual transfer learning
procedure described in Bugliarello et al. (2022)
only includes part 1 and 3. In part 3, if the set-
ting is zero-shot, the model is evaluated on data
in the target language directly, but if the setting is
few-shot, the model continues to be fine-tuned on
few-shot data in the target languages and is then
evaluated. The difference between our framework
and the traditional procedure is the additional fine-
tuning step of part 2. We will describe it specifi-
cally in Section 3.4, but before that, we will intro-
duce contrastive learning for vision-and-language
tasks.

3.3 Contrastive Learning for
Vision-and-language Tasks

The vision-and-language contrastive learning loss
proposed by Zhang et al. (2020) has proven ef-
fective in medical image scenarios and is used as
the pre-training objective function of CLIP (Rad-
ford et al., 2021). It can be regarded as an aux-
iliary task for representation learning, aiming to
enable models to gain better aligned multi-modal
representation for downstream tasks. In the con-
trastive learning scheme, a batch of embeddings
of images encoded by the model can be written
as I = {I1,...,In}, and a batch of embeddings
of texts encoded by the model can be written as
T = {T1,...,Tn}, where N is the size of batch,
(I;, T;) is an image-text pair. If the paired image-
text data describe the same or similar concepts,
then we can assume they are positive examples,
and non-paired data are negative examples. Then,
the embeddings of images and texts are fed into two
different linear transformation layers separately,
W1 and Wa:

U=I1-w,

V=T-W,

ey
2

Where U and V represent the batch of image-text
pairs. Then the cosine similarity of each pair can be
computed as (U;, V;) = #II%}H The objective is
to maximize the similarity of matched image-text
pairs and minimize the similarity of others. So the
image-text contrastive loss can be formulated as

follows:

S S T)
CT TSN (U W)

3



Following Zhang et al. (2020), the contrastive loss
should be symmetric for each modality, and the
text-image contrastive loss is:

o (Vi U)
LN exp((Vi, Uy))

The final contrastive loss of this batch of paired
data is then:

C))

N
Lo =Y (Li+L7)

i=1

(&)

Where L, is the overall contrastive loss. When
we minimize Loy, we maximize the similarity of
image-text pairs which are positive examples.

34 XVL-MAML

Inspired by the effectiveness of MAML for quickly
adapting to new tasks, we propose a novel vari-
ant of the MAML algorithm specialized for cross-
lingual transfer in vision and language tasks, called
XVL-MAML. Specifically, we first integrate con-
trastive learning into the MAML algorithm, making
it specialized for the visual-language task of cross-
lingual transfer learning. Our intuition is that we
can use MAML with a contrastive loss as its learn-
ing objective for quickly adapting vision-language
alignment to new languages. In this framework,
the alignment between image and text in a specific
language can be regarded as a task. Inspired by
Nooralahzadeh et al. (2020), we use the data of
one auxiliary language for fine-tuning, but with a
contrastive loss as objective function in the MAML
algorithm.

Specifically, we sample a batch of support data
Bs and a batch of query data B, in the data in
auxiliary language A for each virtual task 7. As-
suming the parameters of the model are 6 and the
contrastive loss on the support data is L7, (6)5.,
then the parameters of the model can be updated
by one step of gradient descent:

0 =0 —aVyLor(8)s, (6)

Following the MAML algorithm, our final objec-
tive for this task is to minimize Lcr,(60 )5 , on the
query data B, using gradient descent:

00— BVoLler()s, (7
0+ 60— BVOECL(Q — OKVGKCL(G)BS)BQ (8)

Optimized using this method, pre-trained vision-
language models can quickly adapt to new tasks
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in other languages without using any annotation in
the auxiliary language for downstream tasks, so we
will refer to this as an unsupervised scenario.

In supervised scenarios, where the downstream
tasks labels in the auxiliary language are available,
we combine the loss of the downstream task £ with
the vision-language contrastive loss L¢ 7, by adding
them together. So during fine-tuning, Equation (8)
is modified to:

00— B(VoL(0 s, + A\VoLcr(8)s,) )

Where the temporary parameters optimized for one
step by the downstream task loss £ on the support
set B, is 0", /3 is the meta-learning rate, and \ is
the scale factor of contrastive learning. By simply
adding the gradients of the downstream task and
contrastive learning in the meta-update, the model
learns downstream tasks and vision-language align-
ment simultaneously for cross-lingual transfer.

4 Experiments

In this section, we introduce both the base PVLMs
we use for vision-language cross-lingual transfer,
as well as the datasets and metrics we use to evalu-
ate our proposed method. Then we describe how
the experiments were conducted and discuss the
results.

4.1 Base models

In this paper, we choose xXUNITER (Liu et al.,
2021) and UC2 (Zhou et al., 2021) as our base
models, as they use different pre-training methods.
Then we applied XVL-MAML to both models to
show that this method works across different mod-
els.

xUNITER is a multilingual version of the
UNITER model (Chen et al., 2020). It has a simi-
lar architecture to UNITER and uses Faster-RCNN
(Ren et al., 2015) as a feature extractor for images.
The image features are pooled and reshaped as
vectors with the same dimensions as text embed-
dings. UNITER has four pre-training methods:
Masked Language Modelling (MLM), Masked
Region Modelling (MRM), Image-Text Matching
(ITM), and Word Region Alignment (WRA). xU-
NITER, in addition to these pre-training methods,
also uses Masked Language Modelling for multi-
lingual data and uses the same text embedder as
XLM-R (Conneau et al., 2020).



Model XNVLI

xGQA

xFlickr&Co

MaRVL

|
mUNITER 53.7 10.0 53.7 8.1 8.9
Baseline xUNITER 59.0 20.8 56.0 13.8 12.5
ucC2 62.5 29.0 56.4 19.7 17.0
M3p 58.2 28.2 56.0 12.9 11.9
Ours xUNITER | 63.0 (+4.0) 22.5(+1.7) 594 (+44) 163 (+2.5) 14.2(+1.7)
uc2 64.4 (+1.9) 299 (+0.9) 57.0(+0.6) 21.3(+1.6) 18.7(+1.7)

Table 1: Zero-shot performance (accuracy) of four baseline models only fine-tuned on English data (Baseline) and
two models fine-tuned by our meta-learning method (Ours) on four IGLUE datasets (Bugliarello et al., 2022).

UC2 wuses a similar model architecture as
UNITER, but different pre-training methods.
Specifically, UC2 augments pre-training on English
data by constructing a multilingual corpus via ma-
chine translation and then uses this augmented data
for pre-training. It also proposes the Visual Trans-
lation Language Modeling (VTLM) pre-training
method, which uses the image as a pivot to learn
the relationship between parallel texts in two lan-
guages and their corresponding images.

4.2 Datasets and Metrics

We use datasets for four tasks from the IGLUE
benchmark (Bugliarello et al., 2022), which in-
cludes xGQA (Pfeiffer et al., 2022), MaRVL (Liu
et al., 2021), XVNLI, and xFlickr&Co (Plummer
et al., 2015; Lin et al., 2014). We show examples
from MaRVL and XVNLI in Figure 1. Following
the convention in IGLUE, the evaluation metric is
accuracy for all tasks except cross-modal retrieval,
which uses Recall@1. The task format of these
four datasets are described below:

* MaRVL is a multicutural vision-language rea-
soning dataset, following the format of En-
glish NLVR2 (Suhr et al., 2019) which namely
to judge whether a sentence is correct or not
for a pair of images.

XVNLI is a multilingual version of visual nat-
ural language inference task, which requires
models to predict the relationships between
premise and hypothesis based on a given im-
age.

xGQA is a multilingual grounded question
answering task based on GQA (Hudson
and Manning, 2019) and machine translated
question-answer pairs.

xFlickr&CO is a multilingual image-text re-
trieval dataset collected from Flickr30k (Plum-
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mer et al., 2015) and COCO (Lin et al., 2015)

4.3 Implementation and Hyperparameters

We conduct all experiments based on the Visi-
olinguistic Transformer Architectures framework
VOLTA on four 2080Ti GPUs. We implement the
MAML algorithm using the Higher library. We use
the AdamW (Loshchilov and Hutter, 2018) opti-
mizer to fine-tune all models in PyTorch.

Fine-tuning on English Data Before evaluat-
ing models on data in low-resource languages, we
firstly fine-tune the pre-trained models on the cor-
responding English datasets: GQA (Hudson and
Manning, 2019), NLVR2 (Suhr et al., 2019), SNLI-
VE (Xie et al., 2019), and Flickr30k (Plummer
et al., 2015) for xGQA, MaRVL, XVNLI, and
xFlickr&Co, respectively, using the procedure of
Bugliarello et al. (2022) and Liu et al. (2021). We
follow the setting in IGLUE (Bugliarello et al.,
2022) and also use the IGLUE hyper-parameters
for each task when fine-tuning. We save the pa-
rameters of models in each epoch, then pick the
best performing model for each task as the initial-
ized parameters  for the meta-learning fine-tuning
stage.

Fine-tuning with Meta-learning For the XVL-
MAML algorithm, the size of the support set and
the query set is 64. We explore learning rates 5 x
1075,1x 107, 5 x 107%, 1 x 107 for both UC2
and xUNITER, and find the best learning rate is
5 x 1076 for both the normal fine-tuning stage and
the meta-update of MAML. For the inner learning
rate of XVL-MAML, we explore learning rates
5x107%,5x1075,5 x 10~* and 5 x 1073, and
find that 5 x 10~ is the best inner learning rate.
For the proposed meta-learning framework, we
find that models overfit after 300 iterations in most
situations (for each iterations, we sample a batch
of data as support set and a batch as query set),


https://github.com/e-bug/volta
https://github.com/facebookresearch/higher

METHOD ZH TA SwW TR ID avg
xUNITER

Base 54.34/4.774 55.40/6.55 56.41/7.61  57.53/10.99  56.44/7.79 56.02/7.54

Ours (zh — X) - 59.82/14.10  58.85/9.78  60.93/13.22 61.17/13.48 -
Ours (avg) 58.34/9.88  58.49/10.25 59.59/10.33  60.06/12.03  60.35/12.41  59.37/10.98
Ours (max) 59.75/10.28 59.82/14.10  60.83/10.14  62.20/15.25 61.17/13.48  60.75/12.65

ucC2

Base 57.81/12.25 60.06/11.15  51.81/1.09 55.76/7.46 56.56/8.51 56.40/8.09

Ours (zh — X) - 58.94/12.13  53.61/7.57 55.34/7.99 56.74/8.03 -
Ours (avg 58.35/13.44  58.35/12.71  53.99/7.93 56.80/9.61 56.54/9.41 56.81/10.62
Ours (max) 59.59/13.04 58.94/12.13  54.60/9.11  58.13/13.48 56.74/12.60  57.60/12.07

Table 2: Zero-shot performance (accuracy/consistency) of two baseline models fine-tuned only on English data
(Base) and then fine-tuned by our meta-learning method (Ours) on the MaRVL dataset (Liu et al., 2021), where the
definition of consistency following Liu et al. (2021). Columns indicate target languages. The avg column gives
the average performance across all target languages in this row. zh — X means the auxiliary language is Chinese,
and the target languages is other low-resource languages X. We also show the average and maximum performance

across all auxiliary languages for each target language.

so we set the number of iterations to 400 for all
our experiments, and evaluate the performance of
models for each 25 iterations to guarantee that we
can pick the model with best performance of each
setting for evaluation.

5 Results and Discussion

5.1 Zero-shot

We report the results of the baseline models and
the results for fine-tuning them using our meta-
learning framework in Table 1. In our setting, base-
line model means that the PVLM is only fine-tuned
on the English datasets. For simplicity, we report
the averaged results of all combinations of target
languages and auxiliary languages for each model
and task. We set the value of X in Equation (8) to
2 x 1072 for xUNITER and 5 x 102 for UC2 to
gain the best performance.

The results in the Table 1 indicate the effective-
ness of our meta-learning framework and show
that our method can boost the zero-shot perfor-
mance of UC2 and XUNITER on all four datasets
in IGLUE. Note that Table 1 shows average per-
formance across all languages. The performance
for individual languages can vary, and is shown in
detail in Appendix A, Table 4. We also show the
differences in improvements when using different
auxiliary languages for different target languages
in Figure 5.

5.2 Few-shot

We also conduct few-shot experiments following
the setting in IGLUE (Bugliarello et al., 2022) for
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Unsupervised Setting

Method/Models | UC2 xUNITER
Baseline 62.5+0.1 59.1+0.1
XVL-MAML(w/o down-stream) | 63.1+0.1 60.8+0.1
Supervised Setting
Method/Models | ucC2 xUNITER
XVL-MAML(w/o contrastive) 63.8+0.1 61.6+0.1
XVL-MAML 64.4+0.1 62.9+0.1

Table 3: Ablation study in the unsupervised setting and
supervised setting. The labels of the down-stream task
data in the auxiliary language are not given in unsuper-
vised setting and provided in supervised setting.

both xXUNITER and UC2 on XVNLI and MaRVL.
The results are shown in Figure 2, where the hor-
izontal axis represents the number of shots, and
the vertical axis represents the accuracy score. The
leftmost point of the horizontal axis is zero, which
represents the performance in the zero-shot setup.
The blue points and lines show the performance
of our method. The yellow points and lines rep-
resent the performance of the baseline. We have
performed five runs and the interval represents the
standard error. It is clear that in all four figures,
our method achieves better performance across all
shots. And it is worth noting that although there is
a slight increase from the performance of zero-shot
to one-shot, our proposed method, without seeing
any data in the target languages, outperforms the
baselines in the few-shot setting, except for UC2
on MaRVL. In other words, only a few instances
of training data in target languages are not enough
to eliminate the advantage of our method. This
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Figure 3: Performance in each target languages averaged across auxiliary languages on the MaRVL dataset.

demonstrates that while our method requires train-
ing data in one auxiliary language, there is no need
for few-shot data in the target languages.

5.3 Ablation Study and Further Analysis

In this section, we conduct a series of ablation stud-
ies which investigate the effect of each part of our
proposed meta-learning framework. We have per-
formed five runs for each setting and reported the
average and standard error to estimate significant
differences.

The Effect of Contrastive Learning We investi-
gate the effect of contrastive learning in our meta-
learning fine-tuning framework. Specifically, we
fine-tune the model only using a contrastive learn-
ing loss in the MAML algorithm (called as "XVL-
MAML (w/o down-stream)" in Table 3), where the
labels of down-stream task data are not given. We
evaluate the performance of UC2 and xXUNITER on
the XVNLI dataset in this setting and reported them
in unsupervised setting part of Table 3. The results
indicate that using contrastive learning solely in the
MAML algorithm can improve performance. It pro-
vides evidence for the hypothesis that contrastive
learning can enable models to learn alignments
of modalities in cross-lingual transfer, resulting in
better representations.

We also compare the performance of the model
in the supervised setting where labels of data in
auxiliary language are available; hence in the XVL-
MAML algorithm, both contrastive loss and down-
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stream task loss are used. Then we remove the con-
trastive learning loss in XVL-MAML, only keep-
ing the down-stream task loss. We compare the
performance of these two settings in Table 3 to
show the effectiveness of the contrastive learning
loss in XVL-MAML in the supervised setting. In
the "Supervised Setting" part of Table 3, the first
row is XVL-MAML without contrastive learning
loss, which means only using down-stream task
loss when fine-tuning, and the second row is nor-
mal XVL-MAML using both contrastive loss and
down-stream task loss.

Moreover, we show the difference in perfor-
mance in each target language separately in Fig-
ure 3. Contrastive learning can bring improvements
for most of the target languages, especially those
whose performance is relatively low when not us-
ing contrastive learning. For example, in the left-
most plot, performance in zh, fa, and sw is relatively
lower than ¢r in the baseline, but gains significant
improvements when using our method. The similar
effect can be seen in other three plots and Table 2.

Diverse down-stream tasks We report the re-
sults of experiments using four diverse multilin-
gual vision-and-language understanding tasks in
Table 1. Our method can bring clear improvements
across all tasks for both UC2 and xXUNITER, indi-
cating that the approach generalises across tasks.
Furthermore, these four IGLUE tasks also differ in
the distribution of language families and domains,
which indicates our method can be useful across



Input (Image):

Input (Image):

‘There is exactly one panda in both pictures, and neither of them 1y,
is moving

Output (Baseline): False Output (Ours):False

v v v v

eline): False Output (Ours):False Output (Baseline): False Output (Ours):True

Input (Image):

Input (Image):

Input (Text):
FIRE AR KL NI
(English Translation):

Input (Text):
EETUENE/N\ERU LS, AEPORENRSERMEE.
(English Translation):

Both pictures are photos of the interior of the church, ~ On the left, you can see a drum with eight sides or more, and the drum
B on the right pict ol

gold or brown

Output (Baseline): True  Output (Ours):False

X v X v

Figure 4: Examples from the Chinese part of the MaRVL dataset and predictions of the baseline and ours method.

zh
)

ta

Aucxiliary Languages
tr sw

zh

Target Languages

o

Auxiliary Languages

Target Languages

Figure 5: Improvements of zero-shot performance by fine-tuning XUNITER on different auxiliary languages then
evaluating on different target languages using our proposed framework compared with baseline. The left heatmap is
for MaRVL, and the right is for XVNLI. Rows correspond to auxiliary and columns correspond to target languages.

language families and domains. Moreover, our
method can significantly boost the performance of
xUNITER even in the challenging MaRVL dataset
which encompasses five diverse language families
and cultures, improving accuracy by 4.4 points.

Diverse languages We also investigate the differ-
ence of performance between languages. Specifi-
cally, we take the MaRVL dataset as an example
and report results in Table 2, which lists the per-
formance when using Chinese (zh) as the auxil-
iary language for meta-learning, and the average
and maximum performance across all auxiliary lan-
guages for each target language respectively. In
most situations, our method results in clear im-
provements. We then visualize the improvements
of XUNITER when using different auxiliary lan-
guages for different target languages on MaRVL
and XVNLI in Figure 5. The improvements we
see for MaRVL (which range from 0.44 to 5.4) are
smaller than for XVNLI (which range from 2.8 to
6.4), and one possible reason is that the language
families of MaRVL are more diverse than those
of XVNLI. But in general, our method improves
performance for all combinations of auxiliary and
target languages, even when they come from differ-
ent language families. This further indicates that
our method is language-agnostic.
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5.4 Example Predictions

We show some examples of inputs and predic-
tions for baseline and our method in Figure 4. We
use XUNITER to predict the Chinese part of the
MaRVL dataset. We have selected two examples
where the baseline prediction is incorrect, but our
method predicts correctly (the rightmost two exam-
ples), and two examples where both our method
and baseline method predict correctly (the leftmost
two examples). In the two rightmost examples, the
label is "True", but the baseline predicts "False".
We find that in these two examples, the same con-
cepts ("church" and "drum") described in related
texts have different visual features, which makes it
more difficult for models to identify them. In the
left two examples, however, the concepts (panda
and roses) described in the text do not have diverse
or obscure visual features when they appear in the
images. Therefore, based on these cases, we can
surmise that the meta-learning framework makes
the model more adaptive to diverse information and
resulting in better generalization capabilities when
mapping between texts and images.

6 Conclusions

In this paper, we focused on mitigating the problem
of poor performance of current PVLMs in vision-
language cross-lingual transfer. We proposed a
novel MAML framework to adapt pre-trained mod-



els for new languages in vision-and-language tasks.
Our framework combines contrastive learning and
downstream task supervised learning. We verify
the effectiveness of our approach in both super-
vised and unsupervised settings. The key strength
of our method is that we leverage contrastive learn-
ing in the MAML procedure so that models can
quickly learn to align representations from differ-
ent modalities and adapt them to unseen languages.

Experimental results demonstrate that our pro-
posed meta-learning framework significantly im-
proves the performance of models in vision-and-
language cross-lingual transfer both in zero-shot
and few-shot setups. We applied our method to
two representative PVLMs, UC2 and xUNITER,
and verified its effectiveness on four datasets in
the IGLUE benchmark in 14 languages. We also
conducted an ablation study to explore the effect
of contrastive learning, and analysed the effect of
different languages and tasks.

Limitations

Our proposed method applies contrastive learning
to samples of image-text pairs. The alignments in-
duced in this fashion work best if there is a concept
or an object that is both depicted in the image and
referred to in the sentence. If this is not the case,
then the method may end up learning incorrect
alignments; this includes cases where the image
or the sentence contain multiple objects or con-
cepts, not all of which can be aligned. To address
this limitation, future work should explore how to
construct better positive and negative samples and
how to enable learning at a more fine-grained level.
Besides, current famous PVLMs are encoder-only
models, which is different with recent decoder-only
LLMs, so meta-learning methods for multi-modal
multilingual LLMs is worth to explore as a future
work.

Ethics Statement

The use of the IGLUE benchmark in our paper is
consistent with its intended use. We have checked
the datasets for offensive content by sampling and
visualizing examples. There are 14 languages in
the datasets we use, we list them in Table 4. More
detailed information about the IGLUE dataset can
be found in (Bugliarello et al., 2022).
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Ar Bn De Es 1d Fr Ja Ko Pt Ru Sw Ta Tr Zh
MaRVL
xUNITER (Baseline) - - - - 56.44 - - - - - 56.41 5540 57.53 54.34
UC2 (Baseline) - - - - 56.56 - - - - - 51.81 60.06 55.76 57.81
XxUNITER (Ours) - - - - 60.35 - - - - - 59.59 58.49 60.06 59.75
UC2 (Ours) - - - - 56.74 - - - - - 54.60 58.94 58.13 59.59
XVNLI
xUNITER (Baseline) | 53.52 - - 60.05 - 61.60 - - - 61.25 - - - -
UC2 (Baseline) 58.36 - - 63.86 - 65.01 - - - 64.72 - - - -
XxUNITER (Ours) 56.70 - - 60.91 - 68.64 - - - 63.91 - - - -
UC2 (Ours) 59.94 - - 62.97 - 69.41 - - - 65,18 - - - -
xGQA
xUNITER (Baseline) - 11.41 33.21 - 32.38 - - 13.28 20.51 17.84 - - - 17.20
UC2 (Baseline) - 19.49 33.52 - 29.83 - - 23.29 31.23 32.61 - - - 33.25
xUNITER (Ours) - 1246 34.10 - 33.63 - - 15.05 22.71 20.27 - - - 19.27
UC2 (Ours) - 19.63 34.50 - 29.58 - - 2493 3247 33.24 - - - 35.00
Xflickr&Co (IR)
xUNITER (Baseline) - - 1470 16.40 15.15 - 9.55 - - 14.75 - - 8.85 17.20
UC2 (Baseline) - - 28.10 14.65 13.55 - 23.70 - - 18.20 - - 8.15  31.70
XxUNITER (Ours) - - 16.20 18.85 18.50 - 12.10 - - 17.75 - - 11.10 19.40
UC2 (Ours) - - 29.35 16.90 14.25 - 25.15 - - 20.50 - - 10.50 32.10
Xflickr&Co (TR)
xUNITER (Baseline) - - 142 1545 1395 - 8.30 - - 13.15 - - 7.75 14.4
UC2 (Baseline) - - 23.55 11.90 10.35 - 22.75 - - 17.50 - - 6.15 26.85
XxUNITER (Ours) - - 1550 16.15 16.70 - 9.90 - - 15.70 - - 9.50 15.75
UC2 (Ours) - - 2530 13.95 1245 - 23.50 - - 19.80 - - 8.30 27.45

Table 4: Accuracy scores for each target language individually averaged over auxiliary languages.

23



Counterfactually Probing Language Identity in Multilingual Models

Anirudh Srinivasan¢*

Venkata S Govindarajan
¢Department of Computer Science

V% Kyle Mahowald”

“Department of Linguistics

The University of Texas at Austin
{anirudhs, venkatasg,kyle}@utexas.edu

Abstract

Techniques in causal analysis of language mod-
els illuminate how linguistic information is or-
ganized in LLMs. We use one such technique,
AlterRep, a method of counterfactual probing,
to explore the internal structure of multilingual
models (mBERT and XLM-R). We train a lin-
ear classifier on a binary language identity task,
to classify tokens between Language X and
Language Y. Applying a counterfactual prob-
ing procedure, we use the classifier weights
to project the embeddings into the null space
and push the resulting embeddings either in
the direction of Language X or Language Y.
Then we evaluate on a masked language mod-
eling task. We find that, given a template in
Language X, pushing towards Language Y sys-
tematically increases the probability of Lan-
guage Y words, above and beyond a third-party
control language. But it does not specifically
push the model towards translation-equivalent
words in Language Y. Pushing towards Lan-
guage X (the same direction as the template)
has a minimal effect, but somewhat degrades
these models. Overall, we take these results as
further evidence of the rich structure of massive
multilingual language models, which include
both a language-specific and language-general
component. And we show that counterfactual
probing can be fruitfully applied to multilingual
models.

1 Introduction

Large pretrained multilingual transformer models
succeed at a variety of multilingual and monolin-
gual tasks and can be used in transfer learning
paradigms, where a model is trained to do a task
in one language and then transferred to another
language (Lauscher et al., 2020; Conneau et al.,
2020b; Wu and Dredze, 2019, 2020; Pires et al.,
2019; Vuli¢ et al., 2020; Rust et al., 2021). These
abilities have spurred a spate of papers probing

“These authors contributed equally to this work.
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Yo hablo Espafiol. The dog chased cats.

1l i

I ate a [MASK]

E AlterRep E

I ate a [MASK]

(1) Lang id classifier
trained on English vs.
Spanish

(2) AlterRep applied to
a masked token from
English sentence, to
push it towards
Spanish.

Control
(Hindi
random)

(8) Compare log prob
of control to target/
random answers from
English, Spanish.

English
Target

English
Random

Spanish
Target

Spanish
Random

cherry book cereza lapiz L

Figure 1: We train a classifier on the language ID task,
and then apply AlterRep to the embeddings and examine
the change in probabilities. Above, an English template
sentence is pushed towards Spanish. We compare the
probabilities of the target English answer to its Spanish
translation-equivalent, random English and Spanish an-
swers, and a random third-language control.

the internal workings and capabilities of multilin-
gual models, suggesting that such models may con-
tain language-independent, along with langauge-
specific knowledge of interesting linguistic struc-
ture (e.g., Chi et al., 2020; Papadimitriou et al.,
2021; Ravishankar et al., 2021; Blevins et al., 2022;
Gonen et al., 2020).

While the results of this literature are suggestive,
probing methods are susceptible to memorizing the
original input and may not reflect what information
models actually use downstream (Hewitt and Liang,
2019; Elazar et al., 2021; Pimentel et al., 2020;
Voita et al., 2021). It is thus desirable to test not
only what information can be extracted but what
information is actually used (Geiger et al., 2021;
Finlayson et al., 2021; Lasri et al., 2022).

To do that we apply AlterRep (Ravfogel et al.,
2021), an offshoot of Iterative Nullspace Projection
(INLP; Ravfogel et al., 2020; Elazar et al., 2021),
in a multilingual setting.! The AlterRep method
is to train a classifier on the model representations

'Since running these experiments, there is now work show-
ing that linearly removing information as in INLP is sub-
optimal (Ravfogel et al., 2022). A natural extension would be
to explore our paradigm using these newer techniques.

Proceedings of the The 3rd Workshop on Multi-lingual Representation Learning (MRL), pages 24-36
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to pick out a particular feature and then use the
parameters learned by the classifier to intervene on
the embeddings, pushing them in a particular direc-
tion. Ravfogel et al. (2021) use it to intervene on
whether a noun phrase is in a relative clause (e.g.,
training a classifier on whether the noun phrase is
in a relative clause and then using projections from
the classifier to push the embeddings towards or
away from the relative clause direction). Crucially,
they then measure how this manipulation affects
downstream subject-verb number agreement.

Whereas Ravfogel et al. (2021) use AlterRep to
explore syntactic representations in models, our
hypothesis is that the same kind of causal manipu-
lation could be informative as to how multilingual
models process multilingual text. Doing so neces-
sarily involves separating multilingual embedding
space into language-neutral and language-specific
components. Libovicky et al. (2020) explore the
idea of obtaining a language-neutral representa-
tion from a multilingual model by computing an
“average” representation for each language and sub-
tracting it from the token embedding.

There is some precedent for using INLP to gener-
ate language-specific and language-neutral compo-
nents. Gonen et al. (2020) showed that multilingual
models like mBERT have both a language-specific
and language-general component and that, by sepa-
rating them using INLP on a language identification
task, one can obtain language-agnostic represen-
tations (and, inversely, highly language-specific
representations). They show that, by training on an
English vs. non-English task and then projecting
onto the nullspace using INLP, the generated text
on a masked language modeling task (in English)
is less likely to be English after INLP. Gonen et al.
(2020) also show that, by subtracting an “average”
representation of language X from a particular to-
ken embedding and then adding the average lan-
guage Y embedding, one can obtain a translation
of the token in language Y by analogy. But they do
not specifically use INLP to do these translations
in a language-to-language way, as we do here.

Using a similar logic but the AlterRep technique
instead of the analogical method, we test whether
we can do a kind of “translation via AlterRep”,
effectively “pushing” the embeddings towards a
particular language. First, we use the original mul-
tilingual model embeddings for a particular token
h: to train a language identity classifier C' to clas-
sify the language of tokens from Languages X and
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Y. We then use INLP to null out language ID infor-
mation, creating null embeddings h}¥. We can then
generate altered embeddings h;* and b} , which go
beyond merely nulling out language ID and instead
represent embeddings that have been pushed into
the direction of Language X or Y, respectively. We
use these counterfactual embeddings to generate
predictions for masked text and compare the result
to the original embeddings.

To make this concrete, imagine training a lan-
guage identification classifier on English vs. Span-
ish, as shown in Figure 1. Whereas a multilingual
model would typically fill in the [MASK] position
in the English sentence “I ate a [MASK]” with an
English token, if we use the classifier to push the
embeddings in the direction of Spanish, then we
might expect a completion like “I ate a cereza” to
become more likely where cereza is the English
word for cherry. We would expect the probability
of the English word “cherry” to decrease.

Through this work, our hope is not only to illu-
minate the innerworkings of multilingual models,
but also to validate and explore the use of counter-
factual probing in a novel domain.

To spoil the result: we show that language iden-
tity is encoded in contextual token embeddings
and, crucially, that this information is used by mul-
tilingual models in masked language modeling. In
effect, pushing embeddings in the direction of a
particular language (and away from another) sys-
tematically increases probabilities of words in the
PUSHEDTO language and decreases the probabil-
ities in the PUSHEDAWAY language, while leav-
ing words from other languages unchanged. By
comparing the changes in probabilities of target
words in the PUSHEDTO language (i.e., translation
equivalents of the original correct word) to random
words in that language, we see that our alterations
seem to push the model towards the prior of the
intended language, without specifically boosting
the semantic equivalent.?

2 Methods

We run two experiments, with slightly different pro-
cedures. In Experiment 1, we train a token-level
language ID classifier on a corpus of monolingual
sentences from 2 languages, without mixing the
languages within-sentence. In Experiment 2, we
create artificial code-mixed text (mixing within sen-
tences) and use this for training the classifier. In

2We make our code available online here.
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both experiments, we evaluate two representative
massive multilingual transformer models, Multi-
lingual BERT (mBERT; Devlin et al., 2019) and
XLM-RoBERTa Base (XLM-R; Conneau et al.,
2020a), and we focus on the last layer for interven-
tion. We describe each step in more detail below.

Models Multilingual BERT (Devlin et al., 2019)
and XLM-Roberta Base (Conneau et al., 2020a)
span 104 and 100 languages respectively. Both are
transformer encoders that have a hidden dimension
size of 768.

Classifier For each iteration of INLP, a linear
classifier is learned on the representations produced
by the encoder to predict language ID (L vs Lo)
for each token in the input. We use SVMs as our lin-
ear classifiers (as in Ravfogel et al., 2021). While
training the classifier, 15% of the tokens are ran-
domly masked. This is done to be more represen-
tative of the final evaluation setting where masked
inputs are used. The classifier is trained on bal-
anced samples.

INLP and AlterRep INLP is a technique for
removing information from embeddings. Specifi-
cally, INLP uses the weights learned by each clas-
sifier to project the embedding h; onto the inter-
section of nullspaces of the classifiers hJ" (this
contains no information for doing the classifica-
tion). The component orthogonal to this A, con-
tains all of the information for doing classifica-
tion. In practice, not all information is removed
by the first projection onto the nullspace, so the
process is repeated iteratively. The second clas-
sifier is learned on top of the embeddings whose
information has been nulled out based on the first
classifier’s weights, and so on. This is repeated m
times, yielding m classifiers.

AlterRep (Ravfogel et al., 2021) considers both
the nullspace component and the orthogonal com-
ponent to generate a new embedding h; that has
been modified to lie on a particular side of the
classifier. Suppose that for weight w; learned by
classifier i, hy"" is the orthogonal component. The
counterfactual vector hj is created as follows:

hy=h +ad Sxh" (1)

S is 1 when the given classifier’s prediction
wiT hy > 0 (predicts L) and -1 when wiT h; <0
(predicts Lo).
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The parameter « controls the direction and mag-
nitude of the alteration. When @ = 0, it’s equiva-
lent to amnesic probing. While training classifiers
for INLP, « is always set to 0. « is non zero when
we’re evaluating on MLM in the subsequent sec-
tions. When o > 0, the representations will be
pushed to the L; side of the classifier, irrespec-
tive of where they were originally. When a < 0,
the representations will be pushed to the Lo side
of the classifier, irrespective of where they were
originally.

Choosing the number of INLP iterations De-
termining the number of iterations to run INLP
for is tricky as there is tension between removing
information and destroying the language model
(Elazar et al., 2021). We sought to find a number of
iterations that would (a) significantly degrade per-
formance on the language identification task (thus
proving removal of language ID information) but
(b) not torpedo the performance of the model on
the MLM task.

One option for choosing the number of itera-
tions to run INLP is to run it until the classifier
performance is at chance on the target task. We
found that, if we do this for XLM-R (and to a lesser
extent for mBERT), a large number of iterations
is required (around 32). This large number of it-
erations effectively destroys the language model,
causing the most likely completions to be jibberish
(with a MLM-100 accuracy close to zero).

So, instead, we choose to optimize for remov-
ing as much information as possible while still
maintaining acceptable (>90%) MLM-100 accu-
racy. Figure 2 shows the number of iterations plot-
ted against both the MLM-100 measure and against
the language ID accuracy. For Experiment 1, we
chose 4 iterations for XLM-R and mBERT. For
Experiment 2, we run for more iterations (16 for
both models) since the code-mixed data is less sus-
ceptible to model degradation.

Note that this means that, for our post-INLP
models, there is still some language identity infor-
mation remaining and so these embeddings should
not be treated as entirely free of language identity
information. But the number of iterations was still
sufficiently high to allow us to meaningfully push
towards or away from the original language.

Running the INLP classifier for the same num-
ber of iterations more catastrophically affects the
overall MLM performance for XLM-R than it does
mBERT. We leave it to future work to ascertain
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Figure 2: MLM-100 accuracies after intervention, and language ID classifier accuracy plotted over number of INLP
iterations for m-BERT and XLM-R. Results are shown with INLP trained on non-code mixed data on the left, and
code-mixed data on the right. All MLM results are accuracies averaged over all languages and language pairs

why XLM-R might have its MLM performance
more closely tied to language identity information
than mBERT.

2.1 Experiment 1: Non-Code-Mixed
Sentences

Languages We pair English with each of Korean,
Hindi, Spanish, and Finnish, giving us 4 pairwise
comparisons. These languages were chosen to form
pairs with the same script/family (English-Spanish),
same script but different family (English-Finnish)
and different script/family (English with Hindi and
Korean). We always use English as one of the
pairs, which ensures adequate translations using
the MUSE dictionaries. But see Experiment 2 for
results between non-English pairs.

Table 1 shows the sources and statistics for the
data used to train these classifiers. The monolin-
gual sentences for English and Hindi are taken from
their corresponding parts of an English-Hindi par-
allel corpus (Kunchukuttan et al., 2018). The data
for Korean is taken from ParaCrawl (Espla et al.,
2019), Spanish and Finnish from EuroParl (Koehn,
2005).

Training/Testing methodology The Language
ID classifiers are trained using 1500 sentences from
each language. We alternately embed sentences
from English and sentences from the other lan-
guage and then extract the token embeddings. The
classifier learns to predict whether a given token
is extracted from the English or non-English lan-

guage.
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Lang Source Train Val Test

g, En UTBEn-Hi 1500 250 250
MBS B EuroParl 1500 250 250
g En UTBEn-Hi 1500 250 250
B EBuroParl 1500 250 250

g En ITBEnHi 1500 250 250
" Hi 0 OTBEn-Hi 1500 250 250
Enke En UTBEnHi 1500 250 250
RO Ko ParaCrawl 1500 250 250

Table 1: Monolingual Data Sources/Sizes

Evaluation of AlterRep is done on a target of 250
sentences from each language, from the test sets
of the same corpora used for training the language
ID classifiers. But, because we cannot always find
a dictionary match for each target word, the num-
ber of test sentences ranges in practice from 205
to 243. We take sentences from the language ID
classifier test sets and randomly pick a word to
mask in each sentence. We treat that word as the
target word in the original language, and we use
MUSE dictionaries (Lample et al., 2018) to find the
equivalent of that word in the alternate language.
Then, we compare the probability of (a) the target
word in the original language, (b) the target word
in the other language, (c) a random word in the
original language, (d) a random word in the other
language, and (e) a random word form a third lan-
guage (which serves as a control). For instance,
Figure 1 shows an English sentence “I ate a cherry.”



Original sentence I ate a cherry

Masked input to model I ate a [MASK]

Mask replaced with target 1 ate a cereza

language (es) word

Mask replaced with random
target language (es) word

I ate a lapiz

Maks replaced with third lan- I ate a kirsikka

guage (fi) word

Table 2: Example of how we replace a masked word
with different words from the target language/third lan-
guage dictionary

where we mask the token “cherry.”. Table 2 shows
an example of how we modify the masked word in
the sentence in different manners.

When we push that masked token in the direction
of Spanish using AlterRep, we then compare the
log probability (before and after the intervention)
of: the target English word (“cherry’), the Span-
ish translation-equivalent (“‘cereza”), a randomly
chosen English word, a randomly chosen Spanish
word, and a randomly chosen control word from a
third language. The random words are all chosen to
have the same number of tokens as the target word
in that language. As is standard, we obtain log
probabilities for multi-token words by averaging
(Kassner et al., 2021; Dou and Neubig, 2021).

If the AlterRep procedure works, then if we start
with an English template and push the masked to-
ken towards Spanish, the probability of Spanish
words will rise and the probability of English words
will decrease, while the probability of Hindi words
will be unaffected. When we start with English
and push towards English, we expect little change.
If there are shared semantic representations across
languages, then we might expect to see the tar-
get words in the pushed-towards language (e.g.,
“cereza”, Spanish “cherry”) increase more than ran-
dom ones (e.g., “lapiz”, Spanish for “pencil”).

2.2 Experiment 2: Mixed-Language Sentences

Languages To assess the robustness of our re-
sults, we focus on a scenario where the model is ex-
posed to mixed-language text, as opposed to mono-
lingual text. Existing work (Santy et al., 2021) has
probed the abilities of multilingual transformer en-
coders on code-mixed text and has shown that these
models are able to learn language ID in code-mixed
scenarios and this experiment serves as a further
probe into the cross-lingual abilities of these mod-
els. We consider 3 languages: English, Hindi and

Lang Source Train Val Test

Engi 00 HTEn-HL o000 500 500
Hi Word Subn
w/ MUSE

EnKo [0 HTEn-HL 000 500 500
Ko Word Subn
w/ MUSE

Hiko T HTEn-HL o000 500 500
Ko Word Subn
w/ MUSE

Table 3: Code Mixed Data Sources/Sizes. To generate
code-mixed data, text from the first language is taken
and words from the second language using the MUSE
dictionary

Korean and consider all 3 pairs using these lan-
guages (En-Hi, En-Ko and Hi-Ko).

Training/Testing methodology The language ID
classifiers are trained using synthetic code-mixed
text generated for these 3 language pairs. Generat-
ing training data this way gives us the flexibility in
evaluating on any language pair that we want (un-
like using real code-mixed which would limit the
language pairs we could choose). We created the
synthetic code-mixed data by lexical substitution
of words in a monolingual sentence using MUSE
dictionaries (Lample et al., 2018), substituting so
that 30% of the words are in the second language.
Table 3 shows the sources and the statistics for the
data used to train this.

Evaluation is done using the multilingual
mLAMA dataset (Kassner et al., 2021). Based
on Wikipedia entity relations, it consists of tem-
plates, translated across languages, with slots in
which masked language modeling has to be used to
fill in the correct mLAMA answer. Thus, in this ex-
periment, the masked token is always the mLAMA
answer in a particular language instead of a ran-
dom word. We thus have the same template in
both languages, along with correct answers in both
languages that we can use to evaluate AlterRep
on. The number of templates used for evaluation
are n=7,256 for English-Hindi, 14,204 for English-
Korean, 6,496 for Hindi-Korean. Because we are
not limited to pairs involving English in this ex-
periment, we focus on all pairwise comparisons
between Hindi, English, and Korean for this study



3 Results

Pushin Answer Third Target Random
dir. of pushed Lang Word Word
temp. to-
wards

mBERT
Opposite Opposite 0.66 0.98 0.93
Opposite Same - 0.98 0.98
Same Opposite  0.10 1.00 0.99
Same Same - 0.54 0.77

XLMR

Opposite  Opposite  0.37 0.99 0.96
Opposite Same - 0.92 0.92
Same Opposite  0.25 1.00 0.98
Same Same - 0.36 0.62

Table 4: Exp 1. Proportion of data points that move in
the expected direction, as a function of template match-
ing push direction and answer matching push direction.
When “push in dir. of temp” says “opposite”, that means
we are pushing away from the direction of the template
(e.g., pushing an English sentence to Hindi). When
“push in dir. of temp says “same”, that means we are
pushing in the same direction of the template (e.g., push-
ing an English sentence even further toward English).
We break down how often an answer word moves in
the expected direction when that answer word is being
pushed towards (e.g., an English word in a template that
is being pushed towards English) or when that answer
word is being pushed away from (e.g., an English word
in a template that is being pushed toward Hindi). The
Target word is the actual template word or its translation-
equivalent. The random word is a random word in the
same language. The third-party word is a random word
in a third-party language.

Overall, across both Experiments, we find that
the AlterRep operation works as expected in the
majority of cases. Figure 3 shows data for our
Experiment 1, on mBERT and XLLM- R. In each
subfigure, the top row indicates the language of
the template, the 2nd row indicates the direction in
which the token embedding is pushed. The plot has
dark arrows indicating the change in probability
distributions of tokens from the 2 languages (as
indicated), with shaded arrows indicating changes
for random tokens in those languages. Blue ar-
rows indicate change in probability distributions
for random tokens.

We consider separately the case where we push
in the opposite direction as the template (e.g., push-
ing a Korean template in the English direction) (the
left 2 subfigures indicate this) vs. the case where
we push in the same direction (the right 2 subfig-
ures indicate this). In the analysis below, we focus
on the proportion of time that the probabilities shift
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friend, house, dream, novel,
room, bed, book

Most likely tokens pre-
intervention

Most likely tokens after
pushing to Spanish

coma, car, man, la, son, del,
mas

Most likely tokens after
pushing to English

house, dream, room, friend,
book, tree, memory

Table 5: Example of the most likely tokens predicted
for the masked token pre and post-intervention for the
English language text “One day while Cat was wander-
ing about, he came to a [MASK].”

in the expected direction after the intervention. The
mean change in log probability, before and after
intervention, tells a similar story and is shown in
Figure 3.

From hereon, we focus on o« = 3, but see Ap-
pendix B for results on sensitivity to this parameter.

3.1 Experiment 1

When we push in the opposite direction of the
template (e.g., push an English template towards
Spanish), the template language probabilities
plummet, both for the target (99% of the time,
across pairs) and random words (93% of the time,
across pairs). The fact that the target word de-
creases more than the random one may not be
very meaningful: the target word starts out with
very high probability and so it has farther to drop.
Crucially, the PUSHEDTO language probabili-
ties all increase significantly (98% of the time
for target answers, 98% of the time for random
answers). The THIRDLANG control words show
little change, as predicted (decreasing 66% of the
time). Thus, this manipulation works as expected:
taking a mask from an English language template
and pushing it towards Spanish causes the prob-
ability of all Spanish words to increase while de-
creasing the probability of English-language words
and leaving other language words (e.g., Korean or
Hindi) largely untouched.

When we push in the same direction as the
template (e.g., we push an English template even
further in the English direction), we find that the
ORIGINALLANGUAGE is largely unchanged (in-
creasing in 54% of pairs for target words and 77%
of the time for random words). Here the difference
between random and target is likely because the
target word is already at ceiling. The PUSHED-
AWAY language drops significantly for both tar-
get and random words (decreases for 100% and
99% of pairs, for both random and target words).
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Figure 3: Change in language-specific probability distributions for Exp. 1. When we push the token in the opposite
language of the template (left two figures), we can see significant changes in the probability distributions for the
target (dark arrows) and random words (shaded arrows) from that language, with some cases showing such a large
change that tokens from the new language have more probability and will be sampled. Third language controls
(blue arrows) and pushing tokens in the same language as the template (right 2 figures) don’t show much change.

The THIRDLANG control decreases 90% of the
time, suggesting that the probability of a third party
language becomes even less likely when we push
in the same direction as the template. Taken to-
gether, these results suggest that pushing in the
same direction as the template does not make the
language model better (the target word does not
increase substantially), but it does make it more
likely to generate words from that language. That
is, if we push towards English and the target an-
swer is “dog”, pushing towards English will not
make “dog” more likely but it will increase the
overall Englishness in the model, essentially push-
ing it towards the English prior while decreasing
the probability of generations in other languages.

Table 4 summarizes these results, showing the
fraction of templates for which the probabilities
move in the expected direction. We see movement
in the expected direction in all cases except on
words in the pushed-towards language, when we
push in the direction of the template. That is, En-
glish words don’t become even more likely when
we push towards English in an English template.
These results are consistent, regardless of whether
we have a language pair with the same script (e.g.,
English and Finnish) or pairs with different scripts
(e.g., English and Hindi). Given the large over-
lap in shared tokens between any two Latin script
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languages (and low overlap across scripts), this
consistency is notable.

3.2 Experiment 2

Experiment 2 is notable for the fact that we’re eval-
uating the model in a code-mixed setting and test-
ing the model on queries that involve real world
factual knowledge (the relations in mLAMA). Re-
sults are similar for Experiment 2 (see Figure 4),
suggesting robustness to training on code-mixed
data and on using non-English pairs. These results
are broadly similar to Experiment 1, except that, as
we see in Figure 2, the performance of the code-
mixed data decays at a very different rate for the
code-mixed data. Therefore, we used 16 iterations
for both models. Why the code-mixed data is more
robust to intervention is potentially interesting, but
exploring it is beyond the scope of this work.

Table 6 depicts the proportions of cases in which
the probabilities move in the expected direction,
and the results are similar. We see that there is not
much change when pushing in the same direction
as the template and larger changes when pushing
in the opposite direction. As with Experiment 1,
this likely represents a ceiling effect.
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Figure 4: Change in language-specific probability distributions for Exp. 2. As with Exp. 1, when we push the tokens
in the opposite direction to the template (left two plots), there are bigger changes in the probability distribution,
with the new language sometimes having higher probabilities than the original one. Pushing in the same direction as
the template (right two plots) doesn’t show any change in the ordering of the two languages.

4 Conclusions

Overall, our results show that, if we take a sentence
in Language A, embed it in a multilingual model,
and use AlterRep to systematically push a particu-
lar word in that sentence towards Language B, the
probability of words in Language B will go up. If
we push a word in Language A towards Language
A, there is little change except that, as shown in
Table 5, highly probable words increase in proba-
bility overall. Importantly, the probability of words
in random control languages do not increase under
either intervention.

What can we conclude from this? First, since
learning a language ID classifier can be used to
causally affect the language of probable masked to-
kens, we take it as additional evidence (Libovicky
et al., 2020; Gonen et al., 2020) that mBERT and
XLM-R (and likely other models of similar struc-
ture) have both a language-specific and language-
general component. Second, this language-specific
component is linearly extractable and can be used
causally to affect the language generated. That said,
we did not find evidence that it can be used for
translation specifically since translation-equivalent
words do not show a boost relative to controls.

In addition to shedding light on multilingual
models, we think the method here shows that the
AlterRep method (Ravfogel et al., 2021) can be
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fruitfully applied in settings beyond the syntactic
application for which it was originally used. In
future work, we could use this method to explore
linguistic typology in multilingual model space.

Limitations

Techniques like INLP extract information that is
linearly extractable. While we’ve shown that it is
possible to extract and manipulate language infor-
mation using such simple linear techniques, more
complex methods like those proposed by Ravfo-
gel et al. (2022) might be able to manipulate more
non-linearly encoded properties.

We have shown that language ID information is
extractable and can be used to manipulate embed-
dings, but we urge caution in concluding that this
means it could be used to practical effect (e.g., in
machine translation). We leave the translation of
these results into practical applications for future
work.

The AlterRep procedure, as can be seen in our
results and in Ravfogel et al. (2021), is sensitive
to parameters like a and the number of INLP iter-
ations. Picking these parameters is tricky and we
have done it in a manner that preserves information
in the language model. It is possible that a differ-
ent set of settings not explored here could lead to
different results.

The risks associated with this work are the risks



Push in dir. Answer Target  Random
of temp. pushed Word Word
towards
mBERT
Opposite Opposite .90 .87
Opposite Same 0.98 0.98
Same Opposite 1.00 1.00
Same Same 0.46 0.64
XLMR
Opposite Opposite .99 .96
Opposite Same 0.95 0.86
Same Opposite 1.00 1.00
Same Same 0.41 0.37

Table 6: Proportion of data points that move in the
expected direction, as a function of the template match-
ing push direction and answer matching push direc-
tion. When “push in dir. of temp” says “opposite”, that
means we are pushing away from the direction of the
template (e.g., pushing an English sentence to Hindi).
When “push in dir. of temp says “same”, that means
we are pushing in the same direction of the template
(e.g., pushing an English sentence towards English). We
break down how often an answer word moves in the ex-
pected direction when that answer word is being pushed
towards (e.g., an English word in a template pushed
towards English) or when that answer word is being
pushed away from (e.g., an English word in a template
that is being pushed toward Hindi). The Target word
is the actual template word or its translation-equivalent.
The random word is a random word in the same lan-
guage.

associated with any work dealing with large lan-
guage models, including potential environmental
impacts.
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A Implementation

We use bert-base-multilingual-cased and
x1m-roberta-base models from the Huggingface
models repository, and the transformers pack-
age for all of our probing experiments. Language
ID classifiers were trained using LinearSVC clas-
sifier from sklearn. For training these classifiers,
equal number of tokens from both labels were sam-
pled. We used a batch size of 32, and a maximum
sequence length of 256 when performing the inter-
vention experiments.

B Effect of o

For our Experiment 1 results, we plot key measures
in Figure 5 as a function of «. Specifically, we
plot the proportion of the time we see movement
in the expected direction and the mean change in
log probability.

When « gets large, the words that we are pushing
away from continue to move in the expected direc-
tion. This is likely because the increased shift can
decrease the probability of those words arbitrarily,
even while affecting the language model.

For words from the language that we are pushing
towards, there are diminishing returns to increas-
ing o and in some cases we see decreases (as with
the XLM-R purple line, which shows the proba-
bility of the target answer when we push towards
its language). This is likely because the target an-
swer starts off with high probability, and larger o
increasingly degrades the language model, causing
the true answer to decrease in probability.
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Figure 5: Left: Mean difference in log probability, across languages, in the expected direction (positive if pushed
to, negative if pushed away from) between before-intervention and after-intervention probabilities of either the
pushed-to language or the pushed-away-from language, as a function of a.. Right: Proportion of the time, across
languages, the intervention causes the probabilities to move in the expected direction (positive if pushed fo, negative
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Abstract

Massively multilingual pretrained transformers
(MMTs) have tremendously pushed the state of
the art on multilingual NLP and cross-lingual
transfer of NLP models in particular. While a
large body of work leveraged MMTSs to mine
parallel data and induce bilingual document
embeddings, much less effort has been devoted
to training general-purpose (massively) multi-
lingual document encoder that can be used for
both supervised and unsupervised document-
level tasks. In this work, we pretrain a mas-
sively multilingual document encoder as a hier-
archical transformer model (HMDE) in which
a shallow document transformer contextualizes
sentence representations produced by a state-
of-the-art pretrained multilingual sentence en-
coder. We leverage Wikipedia as a readily
available source of comparable documents for
creating training data, and train HMDE by
means of a cross-lingual contrastive objective,
further exploiting the category hierarchy of
Wikipedia for creation of difficult negatives.
We evaluate the effectiveness of HMDE in two
arguably most common and prominent cross-
lingual document-level tasks: (1) cross-lingual
transfer for topical document classification and
(2) cross-lingual document retrieval. HMDE
is significantly more effective than (i) aggre-
gations of segment-based representations and
(i1) multilingual Longformer. Crucially, owing
to its massively multilingual lower transformer,
HMDE successfully generalizes to languages
unseen in document-level pretraining. We pub-
licly release our code and models.'.

1 Introduction

Massively multilingual Transformers (MMTs) such

as XLM-R (Conneau et al., 2020), and mT5 (Xue

et al., 2021) have drastically pushed the state-of-

the-art in multilingual NLP, especially for medium-

resourced languages included in their pretraining,
* Work done while at University of Mannheim

"https://github.com/ogaloglu/
pre-training-multilingual-document-encoders
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enabling effective cross-lingual transfer of task-
specific NLP models from languages with plenty
of training data to languages with little or no an-
notated task data. Being standard transformer-
based language models, MMTs process text lin-
early — as a flat sequence of tokens, which has —
in monolingual contexts — been shown suboptimal
for document-level tasks (e.g., document classifi-
cation or retrieval) for two main reasons: (1) it
does not correspond to the hierarchical nature of
document organization — documents are sequences
of (presumably meaningfully ordered) paragraphs,
which are in turn sequences of sentences (Zhang
et al., 2019; Glavas and Somasundaran, 2020), and
(2) representing documents longer than the MMTs
maximal input length requires either document
trimming, which leads to loss of potentially task-
relevant information, or segmentation, which lead-
ing to context fragmentation (Ding et al., 2021).

A number of models that produce document-
level representations have been proposed, albeit
predominantly in the monolingual (English) realm,
with two prominent lines of work. (1) Hierarchical
encoders (Pappas and Popescu-Belis, 2017; Pap-
pagari et al., 2019; Zhang et al., 2019; Yang et al.,
2020; Glavas and Somasundaran, 2020; Chalkidis
et al., 2022) typically contextualize sentence-level
representations with additional document-level pa-
rameters (e.g., an additional, document-level trans-
former). These document-level parameters of the
encoder, added on top of a pretrained language
model like BERT (Devlin et al., 2019), are typi-
cally trained on large task-specific datasets, rang-
ing from document classification (Pappagari et al.,
2019) to summarization (Zhang et al., 2019) and
segmentation (Glavas and Somasundaran, 2020).
Task-specific training of document-level parame-
ters impedes the transfer of such encoders to other
tasks. (2) Sparse attention models (Child et al.,
2019; Zaheer et al., 2020; Beltagy et al., 2020; Tay
et al., 2020) modify the attention mechanism in
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order to reduce its computational complexity and
consequently be able to encode longer texts. Al-
though flat long-text encoders do not model the
hierarchical nature of documents, they allow for
flat encoding of substantially longer documents.

In this work, we demonstrate the benefits of hier-
archical document representations in multilingual
context. We propose to train a hierarchical trans-
former model (HMDE), coupling (i) a pretrained
multilingual sentence encoder as a lower encoder
with (ii) an upper transformer that contextualizes
sentence representations against each other and
from which we derive document representations.
Unlike in monolingual setup, where task-specific
data is commonly used to train the parameters of
the upper transformer (Zhang et al., 2019; Glavas
and Somasundaran, 2020), we exploit the fact that
in the multilingual context one can leverage cross-
lingual document alignments to guide the pretrain-
ing of the document encoder, i.e., its upper trans-
former. To this end, we leverage Wikipedia as
a readily available source of quasi-parallel doc-
uments, and additionally exploit its hierarchy of
categories to create hard negative examples for our
contrastive pretraining objective.

We evaluate HMDE in two arguably most promi-
nent (cross-lingual) document-level tasks: (1)
cross-lingual transfer for document classification
(XLDC) and (2) cross-lingual document retrieval
(CLIR). For XLDC, as a supervised task, we fine-
tune HMDE on English task-specific data; in CLIR,
in contrast, we leverage HDME in an unsupervised
fashion, using it to produce static document embed-
dings (and its lower transformer to produce query
embeddings). HDME exhibits performance supe-
rior to that of competitive models — MMTs with
sliding window and multilingual Longformer (Yu
et al., 2021; Sagen, 2021). Crucially, HMDE gen-
eralizes well to languages unseen in its document-
level pretraining. Our further analyses offer ad-
ditional insights: (i) that it is important to allow
updates from document-level training to propagate
to the sentence-level encoder (i.e., not to freeze the
parameters of the pretrained sentence encoder) and
(ii) that the size of the document-level pretraining
corpora matters more than its linguistic diversity
(i.e., number of languages it encompasses).

2 Hierarchical Multilingual Encoder

The HMDE architecture, illustrated in Figure 1, is
similar to that of hierarchical document encoders
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Figure 1: Illustration of HDME: hierarchical trans-
former architecture coupled with a cross-lingual con-
trastive objective. =~ Document colors indicate the
Wikipedia concepts: d; and ds are the pages of the same
concept (e.g., New York) in two different languages, L
and Ls; documents d3 and d4 are pages of other con-
cepts in Ly. The pair (dy, ds) is a positive pair (i.e.,
same concept) for the contrastive training objective and
pairs (dy, d3) and (d1, dy4) are corresponding negative
pairs (i.e., different concepts).

trained monolingually in task-specific training (e.g.,
(Glavas and Somasundaran, 2020)): a sentence-
level (lower) encoder produces sentence embed-
dings from tokens, whereas the document-level
(upper) transformer yields document representa-
tion from a sequence of sentence embeddings. We
initialize the lower transformer with the pretrained
weights of a multilingual sentence encoder (Feng
et al., 2022), and train the whole model via a bi-
encoder configuration (also known as Siamese ar-
chitecture) — where we compute a similarity score
between representations of two documents pro-
duced independently with HDME — using a cross-
lingual contrastive objective with both in-batch and
hard negatives (Oord et al., 2018).



2.1 Hierarchical Encoding

The role of the sentence-level (lower) transformer
is to produce sentence representations from se-
quences of tokens. Because of this, we initial-
ize it with the pretrained weights (including sub-
word embeddings) of LaBSE (Feng et al., 2022),
a state-of-the-art multilingual sentence encoder.”
The sentence embedding is the transformed rep-
resentation of the special beginning-of-sequence
(BOS) token. The sequence of sentence em-
beddings obtained with the sentence-level trans-
former is then forwarded to the document-level
(upper) transformer, which mutually contextual-
izes them, prepended with a special document-level
beginning-of-sequence token (DBOS, with a ran-
domly initialized embedding). We derive the docu-
ment representation by average-pooling contextu-
alized sentence embeddings (i.e., output of the last
layer of the document-level transformer).’

2.2 Multi- and Cross-Lingual Objective

Our training dataset consists of Wikipedia pages
written in one of n languages (see §3.1 for
details on the creation of different training
datasets): let L = Lq,Lo,...,L, denote our
set of training languages. In each training
step, we select a batch of N documents pairs,
{(dgl),dgl)),...,(dgN),dgN))}, where dgi) and
dg) are Wikipedia pages of the same concept but

in two different languages Ly and L, € L. Each

(1)

of the documents d (i.e., first document of each

pair) is additionally paired with a document dﬁgg

— a document in the same language L, as d(i) and
from the same Wlklpedla category — representing
a hard negative for d1 (see §3.1 for details). We
then compute and minimize a variant of the popular
InfoNCE loss (Oord et al., 2018) that incorporates
hard negatives, treating all other batch documents

dgj ) as in-batch (easy) negatives for dgi):

_ 1 6 60y
> [Ts(dl ,dy’)

=1
N . (V
10g< S(d() dﬁw)g )/ T +Zes(d(ll)7d2]))/7_>:| (1)
j=1

*We load LaBSE weights from HuggingFace: https://
huggingface.co/sentence-transformers/LaBSE

3We preliminarily also experimented with the contextual-
ized vector of the DBOS token as the document representation,
but that consistently led to lower performance.

with d € R" as the embedding of d, i.e., the output
of the document-level transformer (and h as the
hidden size of upper transformer), s(d;, d;) as the
scoring function capturing similarity between the
two document embeddings, and 7T as the hyperpa-
rameter (the so-called temperature) of the InfoNCE
loss. Following common practice, we use cosine
similarity as the scoring function s.

Note that the loss we compute is both multi-
lingual and cross-lingual: documents dgz) come
from any of the |L| languages, and positive pairs
(dgi) , dg)) are cross-lingual. Among the in-batch
negatives, there will be cross-lingual as well as
monolingual pairs (when dgi) and dgj ) happen to
be documents written in the same language). Our
hard negatives are, by design, always monolingual
pairs. While one could create cross-lingual hard
negatives in the same manner (e.g., by pairing the
English article “France” with an Italian article
“Svizzera” (Switzerland) that covers another concept
from the same category “Country”), monolingual
hard negatives should be harder because the two
document representations will originate from the
same language-specific subspace of the embedding
space of the lower (multilingual) transformer (Cao
et al., 2020; Wu and Dredze, 2020).

3 Experimental Setup

We first describe how we created the multilin-
gual dataset for HMDE pretraining from Wikipedia
(§3.1). We then briefly describe the two evaluation
tasks — cross-lingual transfer for document clas-
sification and cross-lingual information retrieval —
and their respective datasets (§3.2), following with
the description of the baselines — a multilingual
sentence encoder with a sliding window and a mul-
tilingual Longformer (Yu et al., 2021; Sagen, 2021)
(§3.3). We provide training and optimization de-
tails for all models in the Appendix A.1.

3.1 Data Creation

Wikipedia has been leveraged as a suitable source
for mining comparable and parallel corpora for
decades (Ni et al., 2009; Plamada and Volk, 2013;
Schwenk et al., 2021, inter alia). We add to the
body of work that exploits Wikipedia as a massively
multilingual text resource by using it to build pre-
training data for HMDE. Concretely, for a set of
languages L = {Li, Lo, ..., Ly}, we first fetch
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monolingual portions from the Wiki-40B corpus.*
We then identify articles in different languages that
are about the same concept (via the wikidata_id
field) and keep only those concepts for which pages
are found in at least two languages from L. For
each such concept with pages p1,p2, ..., pm inM
different languages, we create all possible cross-
lingual pairs of articles (p;, p;) covering the same
concept. For each pair (p;, p;), we then lever-
age Wikipedia metadata — namely mapping of
Wikipedia pages into its hierarchy of categories
— to select an article n; from the same monolingual
Wikipedia as p; (i.e., written in the same language
as p;) that belongs to (at least one) same Wikipedia
category as p;. This yields triples (p;, p;, n;) from
which we create cross-lingual positives (p;, p;) and
their corresponding monolingual hard negatives (p;,
n;) for our contrastive objective (see §2.2).

On the one hand, the quality of MMTs’ repre-
sentations of a particular language depends on the
size of the pretraining corpora of that language (Hu
et al., 2020; Lauscher et al., 2020). On the other
hand, multilingual model training with instances
from linguistically diverse languages may general-
ize better to unseen languages (Chen et al., 2019;
Ansell et al., 2021). Most resourced languages,
however, tend to be Indo-European (Joshi et al.,
2020), putting corpus size and linguistic diversity
at odds. We thus create two different datasets,
each emphasis one of these two aspects: (1) XLW-
4L is built starting from four high-resource Indo-
European languages: English, German, French,
and Italian; (12) XLW-12L is built starting from
a set of 12 linguistically diverse languages: En-
glish, French, Russian, Japanese, Chinese, Hun-
garian, Finnish, Arabic, Persian, Turkish, Greek,
and Malay. With 1.1M triples (p;, p;, n;), XLW-
4L is almost twice as large as XLW-12L (which
encompasses 592K triples), despite encompassing
three times fewer languages: this is primarily be-
cause there are many more shared concepts be-
tween large Wikipedias of XLW-4L (e.g., German
and Italian) than between smaller Wikipedias of
XLW-12L (e.g., Turkish and Malay).’

3.2 Evaluation Tasks and Datasets

HMDE is meant to be a general-purpose multi-
lingual document encoder. It thus needs to be
useful both (1) when fine-tuned for a supervised

“Available in Tensorflow datasets:  https://www.
tensorflow.org/datasets/catalog/wikipedia
SPer-language statistics of the datasets are in the Appendix.
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document-level task, and (2) as a standalone doc-
ument encoder. We thus evaluate HMDE in (1)
zero-shot cross-lingual transfer for supervised doc-
ument classification (XLDC) and (2) unsupervised
cross-lingual document retrieval (CLIR).

XLDOC. Regular MMTs (e.g., mBERT or XLM-
R) are primarily used in zero-shot cross-lingual
transfer for supervised NLP tasks: an MMT fine-
tuned on task-specific training data in a resource-
rich language is used to make predictions for lan-
guage(s) without task data. We evaluate HMDE in
exactly the same zero-shot cross-lingual transfer
setup, only for a document-level task — topical doc-
ument classification. We fine-tune HMDE in the
standard manner, by stacking a softmax classifier
on top the output of the document-level encoder.
With d as HDME’s encoding of the input document
d, classifier’s prediction is computed as:

y = softmax (W -d + b) )

with W € RE*" and b € R as classifier’s train-
able parameters (and C' as the number of classes).
We fine-tune HMDE on the English training por-
tion of the MLDOC dataset (Schwenk and Li, 2018)
and evaluate its performance on the test portions of
all other (target) languages. MLDOC is a subset of
the Reuters Corpus Volume 2 (RCV2), with train-
ing, development, and test portions in 8 languages
(English, Spanish, German, French, Italian, Rus-
sian, Japanese and Chinese), consisting of 1000,
1000, and 4000 documents, respectively. News
stories are categorized into C' = 4 semantically
closely related classes (Corporate/Industrial, Eco-
nomics, Government/Social, and Markets).

CLIR. We evaluate the effectiveness of HMDE
as a standalone document encoder in an unsuper-
vised cross-lingual document retrieval task: queries
(short text) in one language are fired against a col-
lection of documents written in another language.
We adopt a simple retrieval model: we rank docu-
ments in decreasing order of cosine similarity of
their embeddings d, produced by the HMDE, with
the embedding q of the query, cos(d, q). We ob-
tain the query embedding q by encoding the query
only with HMDE’s lower (sentence-level) trans-
former: q is the transformed representation of the
beginning-of-sequence ([BOS]) token.

We carry out the evaluation on CLEF-2003.° a
popular CLIR benchmark, including the following

http://catalog.elra.info/en-us/repository/
browse/ELRA-EQ008/


https://www.tensorflow.org/datasets/catalog/wikipedia
https://www.tensorflow.org/datasets/catalog/wikipedia
http://catalog.elra.info/en-us/repository/browse/ELRA-E0008/
http://catalog.elra.info/en-us/repository/browse/ELRA-E0008/

languages: English (EN), German (DE), Italian
(IT), Finnish (FI) and Russian (RU). Following
prior work (Glavas et al., 2019; Litschko et al.,
2022), we evaluate HMDE on 9 language pairs
(with first language being the query language): EN-
FI, DE, IT, RU, DE-FI, IT, RU, FI-IT, RU. For
each language pair we work with 60 queries and
document collections of following sizes: RU — 17K,
FI - 55K, IT — 158K, and DE - 295K.

3.3 Baseline Models

There are two main alternatives to hierarhical (long)
document encoding. The first is to (i) fragment
the document into smaller segments, (ii) encode
each segment with a regular pretrained MMT (e.g.,
vanilla MMT like XLLM-R or a multilingual sen-
tence encoder like LaBSE), and (iii) aggregate the
document representation from the embeddings of
segments. The second is to train a multilingual
sparse-attention encoder, akin to (Sagen, 2021).

MMT with a Sliding Window (LaBSE-Seg).
For fair comparison, we use LaBSE (Feng et al.,
2022) — the same pretrained MMT that we use
for the initialization of the lower transformer in
HMDE - to independently encode overlapping seg-
ments of the input document. We break down the
document into segments of length Ng tokens. Fol-
lowing Dai et al. (2022), who find that overlapping
segments alleviate the context fragmentation prob-
lem, we make adjacent segments overlap in Ng/3
tokens. After encoding each segment with LaBSE,
we average-pool the document representation d
from the set of segment embeddings. In XLDX
(topical document classification) this average of
segment embeddings is fed into the classification
head. In CLIR, it is compared with the LaBSE
encoding of the query.

Multilingual Longformer (mLongformer).
Longformer architecture (Beltagy et al., 2020)
combines local-window attention with global atten-
tion, resulting in a hybrid attention mechanism, the
memory requirements of which scale linearly with
the input length. Beltagy et al. (2020) additionally
propose multi-step procedure for initializing
Longformer’s parameters based on the parameters
of a pretrained regular transformer (e.g., in the
case of monolingual English Longformer from
RoBERTa (Liu et al., 2019)) and then further train
the Longformer via masked language modeling
(MLM). We train the multilingual Longformer
following the same procedure: for fair comparison
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with HMDE, we initialize its parameters from the
parameters of LaBSE and carry out the additional
MLM training on XLW-4L, the same corpus on
which we train HMDE.

4 Results and Discussion

We first report and discuss the main results we
obtain with HMDE on XLDC and CLIR (in §4.1).
In a series of follow-up experiments, we further
analyze key design choices for HMDE (§4.2).

4.1 Main Results

Cross-lingual Document Classification. Table 1
compares HMDE trained on XLW-4L against sev-
eral standard and long document multilingual en-
coders: besides the baselines introduced in §3.3, for
completeness we add the results for vanilla LaBSE
(i.e., without sliding over the long document) and
models based on XLM-R and mBERT reported by
Dong et al. (2020) and Zhao et al. (2021), respec-
tively. Expectedly, all long-document encoders out-
perform all of the standard MMTs. mLongformer
and HMDE generally exhibit similar performance,
surpassing the performance of segmentation-based
LaBSE-Seg for virtually all languages. Compa-
rable performance of mLongformer and HMDE
suggests that in the presence of task-specific fine-
tuning data it does not really matter whether we
aggregate document representations in a flat or hi-
eratrchical fashion. What is particularly encourag-
ing is that both HDME and mLongformer exhibit
strong performance for languages that they did not
observe in document-level pretraining: Spanish,
Russian, Japanese, and Chinese.”-8

Cross-lingual Retrieval. The results for unsuper-
vised CLIR are shown in Table 2. Like in XLDC,
we additionally report the results for LaBSE that
encodes only the beginning of the document (with-
out sliding) as well as for mBERT, reported by
Litschko et al. (2022). CLIR, in which multilingual
transformers are used as standalone document en-
coders without any task-specific fine-tuning, tell a
very different story from supervised XLDC results.
HMDE drastically outperforms mLongformer, in-
dicating that, much like the vanilla MMTs, mLong-
former requires fine-tuning and cannot encode reli-

"LaBSE, with whose parameters both HMDE and mLon-
gofrmer were initialized before document-level pretraining,
however, was exposed to all of these languages in its own
sentence-level pretraining.

8Performance across languages not directly comparable as
MLDOC test sets are not parallel across languages.



Model En Es De Fr It Ru Ja Zh AVG
Standard Multilingual Transformers

LaBSE 955 790 896 872 768 639 808 86.1 824
XLM-R (Dong et al., 2020) 93.0 84.6 925 87.1 732 689 782 858 83.0
mBERT (Zhao et al., 2021) 969 819 88.3 83.1 741 723 746 844 820
Multilingual Long Document Encoders

LaBSE-Seg 940 829 902 899 781 719 755 884 840
mLongformer (XLW-4L) 958 870 934 919 806 717 795 885 86.1
HMDE (XLLW-4L) 954 856 912 920 785 839 763 895 868

Table 1: Performance of HDME compared against standard MMTs and baseline multilingual long-document
encoders on supervised topical document classification (MLDOC). Performance (except En) for zero-shot cross-
lingual transfer: all models are fine-tuned only on English training data. Bold: best performance in each column.

Model

En-Fi En-It En—Ru En-De De-Fi De-It De-Ru Fi-It Fi-Ru AVG

Standard Multilingual Transformers

LaBSE 247 224 131 138 247 214 135 211 125 .186
mBERT (Litschko et al., 2022) .145 .146 .167 .107 .151 .116 .149 .117 .128 .136
Multilingual Long Document Encoders

LaBSE-Seg 243 169 107 .194 268 178 .104 .153 .014 .159
mLongformer (XLW-4L) 150 088 .094 .082 .190 .072 .120 .097 .091 .109
HMDE (XLW-4L) 380 .282 .141  .326 .352 .259 130 .238 .129 .249

Table 2: Performance of HDME compared against standard MMTs and baseline multilingual long-document
encoders on unsupervised cross-lingual document retrieval (CLEF-2003). Bold: best performance in each column.

ably encode documents “out of the box”. HMDE
also substantially outperforms LaBSE-Seg, the
long-document encoder based on sliding LaBSE
over the document. Interestingly, vanilla LaBSE,
which encodes only the beginning of the document,
also outperforms its sliding counterpart LaBSE-
Seg, which is exposed to the entire document. We
believe that this is because (1) in CLEF, retrieval-
relevant information often occurs at the beginnings
of documents and in such cases (2) LaBSE-Seg’s
average-pooling over all document segments then
dilutes the encoding of query-relevant content. Im-
portantly, HMDE in CLIR also seems to generalize
very well to languages unseen in its document-level
pretraining (in particular for Finnish documents).

4.2 Further Analysis

We next empirically examine how different choices
in HDME’s design and pretraining affect its perfor-
mance, focusing on: (i) linguistic diversity and size
of the pretraining corpus (XLW-4L vs. XLW-12L),
(ii) freezing of the lower transformer (i.e., LaBSE
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weights) after initialization, and (iii) initializing it
with the weights of XLLM-R as the standard MMT
(vs. initialization with LaBSE as the sentence en-
coder). We provide a further ablations on document
segmentation (sentences vs. token sequences igno-
rant of sentence boundaries) in the Appendix A.2.

Pretraining Data: Linguistic Diversity vs. Size.
As discussed in §3.1, we prepare two different cor-
pora for HMDE pretraining: XLW-4L, which is
larger (1.1M instances) but encompasses only four
major Indo-European languages and XLW-12L,
which is smaller (590K instances) but has docu-
ments from a set of 12 linguistically diverse lan-
guages. To control for the size, and assess the effect
of linguistic diversity alone, we randomly down-
sample XLW-4L, creating a 4-language dataset
XLW-4L-S that matches in size XLW-12L. Figure
2 shows the downstream performance of HMDE
when pretrained on each of these three datasets.

Comparison between XLW-4L and XLW-4L-S
(same languages, different dataset size) shows that



e XLW-4L e XLW-4L-S  mmm XLW-12L

249

XLDC

CLIR

Figure 2: Performance of HMDE when pretrained on
different datasets. Results are averages across all test
languages (XLDC) and language pairs (CLIR).

our flavor of cross-lingual contrastive pretraining
(§2.2) leads to a fairly sample-efficient pre-training:
cutting the training data almost in half leads to
small performance drops (mere 0.3 accuracy points
in XLDC; 1.3 MAP points in CLIR). Comparison
between XLW-4L-S and XLW-12L (same size, dif-
ferent language sets) quantifies the role of linguis-
tic diversity in pretraining. Somewhat surprisingly,
the more linguistically diverse pretraining on XLW-
12L does not bring better performance compared to
“Indo-European-only” pretraining on XLW-4L-S:
while they perform comparably on XLDC, more di-
verse pretraining (XLW-12L) leads to worse CLIR
performance (-1.3 MAP points on average). We
hypothesize that this is due to higher-quality of rep-
resentation of the four Indo-European languages
(EN, DE, FR, IT) in LaBSE (owing to their over-
representation in LaBSE’s pretraining), with which
we initialize the lower transformer of HMDE. We
find this result to be particularly encouraging, as
— together with the observation that HMDE gener-
alizes well to languages unseen in its document-
level pretraining — it suggests that document-level
pretraining itself does not necessarily need to be
massively multilingual in order to yield successful
massively multilingual document encoders.

Lower Transformer. We next investigate two
aspects of the lower-transformer: (1) with which
weights to initialize it and (2) whether it pays off
to update its parameters during the document-level
pretraining. For the former, we compare our de-
fault LaBSE-based initialization (with LaBSE as a
sentence-specialized multilingual encoder) against
the initialization with weights of XLLM-R, as the
vanilla multilingual MMT. To answer the latter,
we additionally train HMDE by freezing its lower
transformer in document-level pretraining. Table 3
summarizes the results of these ablations.
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Model Updates XLDC CLIR
HMDE-LaBSE  Updated  86.8  0.249
HMDE-LaBSE  Frozen 859  0.167
HMDE-XLM-R Updated 839  0.135

Table 3: HMDE results for different choices w.r.t. to ini-
tialization and training of the lower transformer. Train-
ing for all three variants carried out on XLW-4L. Results
are averages across all test languages (XLDC) and lan-
guage pairs (CLIR).

While freezing the lower transformer after ini-
tialization leads to much faster training, it results
in poorer document encoder, especially if used
for standalone document encoding, without task-
specific fine-tuning’ (HMDE-LaBSE Updated vs.
Frozen; 1 accuracy point drop in XLDC vs. 8§ MAP
points drop in CLIR). Initializing HDME’s lower
transformer with LaBSE weights leads to much
better downstream performance compared to ini-
tialization with XLM-R which is not specialized
for sentence-level semantics.

5 Related Work

We position our contributions w.r.t. three related
lines of work: (1) pretraining long-document en-
coders, (2) self-supervised pretraining for retrieval,
and (3) mining parallel documents.

Long-Document Encoders. Hierarchical
(Zhang et al., 2019; Yang et al., 2020; Glavas and
Somasundaran, 2020) and sparse-attention-based
encoders (Beltagy et al., 2020; Zaheer et al., 2020;
Tay et al., 2020) already discussed in §1 account
for the vast majority of long-document encoding
approaches. Dai et al. (2022) extensively compare
Longformer (Beltagy et al., 2020) against hier-
archical transformers on various long-document
classification tasks, showing that the latter exhibit
slightly better performance, especially if the lower
encoder encodes overlapping segments. Ding et al.
(2021) propose a different, segmentation-based
model based on recurrence transformers (Dai et al.,
2019), designed to remedy for context fragmen-
tation with a retrospective feed mechanism: each
segment is encoded twice — after initial left-to-right
segment with a recurrent transformer, segment
representations are further mutually contextualized

The parameters of the lower-transformer are always up-
dated in XLDC fine-tuning, even if we froze them in document-
level pretraining.



bidirectionally. Their training couples MLM-ing
with a segment reordering objective.

The vast majority of work on pretraining en-
coders for long documents focuses on monolingual
(mainly English) models. The few multilingual
exceptions (Yu et al., 2021; Sagen, 2021) derive
a multilingual Longformer from standard MMTs
(XLM-R and mBERT) in exactly the same fashion
in which the original work (Beltagy et al., 2020)
pretrains English Longformer after initialization
from RoBERTa weights. In this work, we repli-
cated this effort, evaluating mLongformer as the
main baseline for HMDE.

Pretraining for Retrieval. Self-supervised and
distantly-supervised approaches have recently been
proposed for pretraining documents encoders
specifically for the task of document retrieval (Izac-
ard et al., 2022; Yu et al., 2021; Gao et al., 2022).
Izacard et al. (2022) pretrain Contriever — a BERT-
based document encoder with an objective based
on the inverse cloze task (Lee et al., 2019): a posi-
tive query-document pair is created by extracting
a span of text from the document and using it as
a “query”’; they train with a contrastive objective
that scores the document from which the query was
extracted higher than other documents. Gao et al.
(2022) feed queries as prompts to a generative lan-
guage model, which then generates document; they
then use Contriever to embed this synthetic docu-
ment and find most similar real documents in the
collection, finally fine-tuning Contriever on query-
document pairs obtained this way. In a manner
similar to ours, Yu et al. (2021) leverage Wikipedia
as a source of quasi-parallel data: while we exploit
document-level alignments, they leverage section-
level aligments to create positive cross-lingual train-
ing instances for paragraph retrieval: a section title
(““query”) in one language is coupled with the sec-
tion body (“document”) in another language; they
then train a multilingual Longformer initialized
from mBERT with a combination of query MLM-
ing and contrastive relevance ranking. In contrast
to these efforts, we create a general-purpose (i.e.,
task-agnostic) multilingual document encoder that
can both be fine-tuned for supervised tasks and
used as a standalone document embedder.

Mining Parallel Documents. Mining parallel
documents — a task which aims to identify mu-
tual translations in a large document collection
and is often used as a first step in extracting paral-
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lel sentences (Resnik and Smith, 2003; Uszkoreit
et al., 2010; Schwenk, 2018, inter alia) — is the
task that bears most resemblance to our pretraining.
Transformer-based approaches to the task (Guo
et al., 2019; El-Kishky and Guzmén, 2020; Gong
et al., 2021) typically aggregate document-level
representations from multilingual sentence embed-
dings. The work of Guo et al. (2019) is arguably
most related to ours: they train a hierarchical en-
coder with a simple feed-forward net as the up-
per encoder that independently transforms precom-
puted sentence embeddings: document embedding
is then the average of feed-forward-transformed
sentence embeddings. The model is trained bilin-
gually (English-Spanish and English-French) with
a contrastive objective on a huge silver-standard
corpus of parallel documents (13M and 6M doc-
ument pairs, respectively) and evaluated on the
very same task of parallel document mining. Our
work differs in two crucial aspects: (1) while (Guo
et al., 2019) train bilingual models for recogniz-
ing parallel documents, we train a single general-
purpose massively multilingual document encoder;
(2) we train on a much smaller corpus of compa-
rable (not parallel) documents, readily available
from Wikipedia. Both aspects make HMDE much
more widely applicable, for both supervised and
unsupervised document-level tasks and any of the
languages from LaBSE’s pretraining (as HMDE’s
lower encoder is initialized with LaBSE’s weights).

6 Conclusion

In this work, we pretrain a multilingual document
encoder based on a hierarchical transformer archi-
tecture (HMDE), and initialize its lower-level en-
coder with the weights of a state-of-the-art multi-
lingual sentence encoder. We leverage Wikipedia
as a rich source of quasi-parallel long documents
and train HDME with a contrastive cross-lingual
document matching objective. We show that the
obtained model is a general-purpose multilingual
document encoder that can successfully be both (1)
fine-tuned for document-level cross-lingual transfer
and (2) used as a document embedding model out
of the box. Our results render HMDE substantially
more effective than both multilingual Longformer
and segmentation-based document encoding. Cru-
cially, HMDE generalizes well to languages unseen
in its document-level pretraining. Our follow-up
experiments reveal that the size of the pretraining
corpus affects the performance more than the num-



ber and diversity of languages involved, suggesting
that reliable massively multilingual document en-
coders do not necessarily require equally massively
multilingual pretraining.

Limitations

Because we initialize the lower transformer of
HMDE with LaBSE (Feng et al., 2022), the set
of languages that HMDE “supports” out of the box
is bound to the set of 109 languages included in
LaBSE’s pretraining.'® This means that HMDE
will, in principle, be less effective as a document
encoder for other languages.'! HDME, like LaBSE,
should in principle be useless for languages writ-
ten in a script that LaBSE (or in fact, mBERT,
from which LaBSE borrows the vocabulary and
pretrained subword embeddings) has not seen in its
pretraining, as the corresponding tokenizer will pro-
duce a sequence of unknown tokens ([UNK]). This
means that HMDE, much like the rest of existing
multilingual encoders, supports only a small frac-
tion of world’s 7000+ languages (Joshi et al., 2020).
Moreover, all languages included in our evaluation
datasets — MLDOC and CLEF - are covered by this
set of 109 languages, which means that the average
performance we report is likely a gross overesti-
mate for languages unseen in LaBSE’s pretraining.
Further, HMDE leverages Wikipedia for training
(with sets of either 4 or 12 languages, see 3.1) — the
number of Wikipedia pages (and more generally,
digital footprint of a language on the web) varies
tremendously across languages, effectively limiting
the selection of languages for HMDE’s document-
level pretraining. Our results (see 4.1), however,
show that HMDE generalizes well to languages not
seen in its document-level pretraining.

Further, HMDE is implemented as a Bi-Encoder
(aka Siamese network), which means that for a
given pair of documents in a training example (pos-
itive or negative pair), it separately encodes each
of the documents. Cross-Encoder architecture, in
which the documents would be concatenated before
encoding, would have the advantage of allowing the
encoder to contextualize the token/sentence repre-
sentations of one document with those of the other
before the computation of their similarity score.
Cross-encoding architectures have been shown ef-

19The full list is provided in Table 10 of the Appendix in
(Feng et al., 2022).

"Not necessarily the case only for unseen that are close rel-
atives to some of the high-resource languages seen in LaBSE’s
pretraining.
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fective, albeit not efficient (i.e., slow) in training
for document retrieval, in which the (short) query
is concatenated with the (long) document (MacA-
vaney et al., 2020; Shi et al., 2020; Rosa et al.,
2022). We do not explore cross-encoding in our
work; in our case, it implies joint encoding of the
concatenation of two long documents (in different
languages), arguably exploding in GPU memory
occupancy and possibly preventing us from fitting
even single-instance batches on our GPU cards.

Ethical Considerations

We do not test HMDE explicitly to check whether
the representations it produces reflect negative soci-
etal biases and stereotypes (e.g., sexism or racism),
but given that its lower encoder is initialized from
LaBSE’s weights, it would not be surprising if this
was the case. If so, many of the existing techniques
from the literature designed to debias pretrained
language models (Qian et al., 2019; Barikeri et al.,
2021; Guo et al., 2022) could be applied to HMDE
too, and in principle “as-is” (i.e., without special
modifications).
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A Appendix

A.1 Training and Optimization Details

In all training procedures, we use AdamW
(Loshchilov and Hutter, 2019) as the optimization
algorithm.

HMDE Pretraining. We set the maximal sen-
tence length for HMDE, input to its lower-level
transformer (initialized with LaBSE weights) to
128 tokens. For fair comparison, we set the seg-
ment size of the LasBSE-Seg baseline also to
Ng = 128 tokens. For fair comparison against
mLongformer, we limit the maximal document
length for HMDE to 32 sentences, not to exceed the
mLongformer’s maximal input length of 4, 096 to-
kens. In our main set of experiments, the document-
level (upper) transformer consists of 2 transformer
layers, with GELU activation (Hendrycks and Gim-
pel, 2016), layer normalization (e = le~!2), and
feed-forward sublayer with hidden size of 2048.
The dropout rate for the upper transformer is set
to 0.1. We train in batches of size N = 2 with
the gradient accumulation over 64 batches for 1
full epoch,!? with the initial learning rate of 1e >,
linear scheduling and 1000 warm-up steps.

mLongformer Pretraining. We train the mLong-
former model (also initialized from LaBSE), also
for 1 full epoch via MLM-ing, masking out 15%
of tokens. We train with the initial learning rate of
le~> with weight decay of 0.01 and 500 warm-up
steps. We train in batches of size 2, accumulating
gradients over 32 batches.

XLDC Fine-Tuning. We fine-tune both HMDE
and mLongformer for topical document classifi-
cation with the learning rate of 2e° and without
weight decay (with a 200 warm-up steps). We train
in batches of size 4 for 50 epochs, accumulating
gradients over 8 batches. Model selection was car-
ried out based on the performance on the English
validation portion of the MLDOC dataset, with
early stopping if validation loss did not improve
over 7 epochs.

A.2 Additional Ablation

We additionally test our design decision to segment
the document into sentences, and encode sentences
with the lower-level transformer (the weights of

2Note that batch size N = 2 in our contrastive objective
(see §2.2) implies only one in-batch negative pair (besides the
hard negative) for each positive pair.
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Model Segmentation XLDC CLIR
HMDE-LaBSE Sentence 86.8 0.249
HMDE-LaBSE Chunk 854 0.224

Table 4: HMDE results for different choices w.r.t. to
document segmentation. Training for both variants car-
ried out on XLW-4L. Results are averages across all test
languages (XLDC) and language pairs (CLIR).

which are initialized from LaBSE). To this end, we
compare our default strategy of segmenting input
documents into sentences against a less-informed
segmentation into consecutive chunks of 128 to-
kens. Table 4 shows the results of this comparison.
Unsurprisingly — given that the lower encoder is
initialized with the weights of a pretrained sentence
encoder — sentence-based segmentation is more ef-
fective, although chunking does not trail by much.
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Abstract

The brittleness of finetuned language model
performance on out-of-distribution (OOD) test
samples in unseen domains has been well-
studied for English, yet is unexplored for multi-
lingual models. Therefore, we study generaliza-
tion to OOD test data specifically in zero-shot
cross-lingual transfer settings, analyzing perfor-
mance impacts of both language and domain
shifts between train and test data. We further
assess the effectiveness of counterfactually aug-
mented data (CAD) in improving OOD gen-
eralization for the cross-lingual setting, since
CAD has been shown to benefit in a monolin-
gual English setting. Finally, we propose two
new approaches for OOD generalization that
avoid the costly annotation process associated
with CAD, by exploiting the power of recent
large language models (LLMs). We experiment
with 3 multilingual models, LaBSE, mBERT,
and XLM-R trained on English IMDb movie
reviews, and evaluate on OOD test sets in 13
languages: Amazon product reviews, Tweets,
and Restaurant reviews. Results echo the OOD
performance decline observed in the monolin-
gual English setting. Further, (i) counterfactu-
als from the original high-resource language
do improve OOD generalization in the low-re-
source language, and (ii) our newly proposed
cost-effective approaches reach similar or up to
to +3.1% better accuracy than CAD for Ama-
zon and Restaurant reviews.

1 Introduction

To solve Natural Language Processing (NLP) tasks
in low-resource languages, using multilingual mod-
els is a much adopted strategy (Devlin et al., 2019;
Artetxe and Schwenk, 2019; Conneau and Lample,
2019; Feng et al., 2022). A particularly popular
paradigm is zero-shot cross-lingual transfer (Ruder
etal., 2019; Artetxe et al., 2020b; Hu et al., 2020;
Lauscher et al., 2020): pre-trained multilingual
models are finetuned on downstream tasks with
training data solely from a high-resource language

Zero-shot Translate-Train Translate-Test

Original Train ﬂ E ﬂ
only Test El
CAD/ Train ﬂ
CORE st ]

Domain Train
transfer
(ours) Test

Summari- Train
zation
(ours)  Test

7 summary

("] original document (8 automatic translation

“® counterfactual & human annotator training data for classifier

<™ domain-translated @ large language model input for classifier

Fig. 1: Zero-shot cross-lingual transfer setup. Mul-
tiple transfer strategies, including our newly proposed
summarization and domain transfer methods for boost-
ing OOD generalization.

(e.g., English). The resulting finetuned model can
then be applied on a low-resource language sam-
ples, i.e., without requiring costly training data in
the low-resource language.

In such zero-shot cross-lingual transfer, linguis-
tic discrepancy between training and test languages
causes a challenge: typically, performance is sub-
par compared to monolingual models.! Several
works have looked into narrowing the performance
gap stemming from such language-based distri-
bution shift (Liu et al., 2021; Yu and Joty, 2021;
Zheng et al., 2021; Artetxe et al., 2023).

Yet, besides the language-based shift, in real-
world settings there may also be a domain-shift
between training and test samples, i.e., test sam-
ples may comprise out-of-distribution (OOD) data
(Quifionero-Candela et al., 2008). For example, a
sentiment classifier to predict positive/negative ap-
preciation by a consumer may be trained on movie
reviews but applied on product reviews or tweets,
where underlying sentiment features are assumed
to be invariant (Arora et al., 2021).

' Admittedly, such monolingual models do need low-
resource training data.
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In a monolingual (English) setting, several stud-
ies unsurprisingly found a performance degradation
when evaluating on OOD test data rather than on in-
distribution (ID) data (Kaushik et al., 2019, 2020;
Gardner et al., 2020; Katakkar et al., 2022). One
of the underlying causes for that performance drop
was found to be the classifier’s reliance on spurious
features, i.e., patterns that from a human perspec-
tive should not be indicative for the classifier’s label
(Poliak et al., 2018; Gururangan et al., 2018; Mc-
Coy et al., 2019; Wang and Culotta, 2020; Joshi
et al., 2022): e.g., Wang and Culotta (2020) found
the occurrence of “Spielberg” to be important for a
positive sentiment classification.

A strategy that has been shown to improve OOD
generalization in the monolingual English setting is
the use of counterfactually augmented data (CAD),
where annotators minimally revise training data to
flip their labels (Kaushik et al., 2019). Yet, con-
structing such annotations is costly: Kaushik et al.
(2019) report 5 min/sample.

In this paper, we present an exploratory study of
OOD generalization specifically in a cross-lingual
context, since we found this not to be covered in
related work (§2). Specifically, we (i) identify the
impact of OOD data on zero-shot cross-lingual
transfer performance, aiming to disentangle perfor-
mance drops stemming from language vs. domain
shifts between training and test data, and (ii) pro-
pose and analyze two new data augmentation strate-
gies to improve OOD generalization that avoid the
costly annotations associated with using counter-
factuals. For both, we present an empirical study
(§3) within the domain of binary sentiment anal-
ysis. We consider English IMDb reviews (Maas
et al., 2011) as in-distribution training data, with
out-of-distribution test data spanning 13 languages
across the Amazon (Keung et al., 2020), Tweets
(Barbieri et al., 2022), and Restaurants (Pontiki
et al., 2016) datasets. We further experiment with
pre-trained multilingual models mBERT (Devlin
etal., 2019), XLLM-R (Conneau and Lample, 2019),
and LaBSE (Feng et al., 2022).

For (i), we answer a first research question,
(RQ1) How well do zero-shot cross-lingual meth-
ods trained with English sentiment data generalize
to out-of-distribution samples in non-English lan-
guages? To this end, we finetune the multilingual
models on the English IMDb sentiment data, and
evaluate their performance on OOD test samples in
non-English languages.
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For (ii), we answer (RQ2) How can zero-shot
cross-lingual transfer methods better generalize
to out-of-distribution samples, including for non-
English languages? We will consider a CAD base-
line as proposed by Kaushik et al. (2019), where
annotators minimally revise training data to flip
their labels, since training on both original and
counterfactual data improves OOD generalization
to unseen domains in the monolingual English set-
ting. Specifically, we finetune the multilingual
models on both the original English and counterfac-
tually revised English IMDb reviews, and evaluate
whether the OOD generalization gains observed in
the monolingual setting translate also to OOD test
samples in non-English languages.

We then propose (§3.3) two cost-effective alter-
natives for CAD, using Large Language Models
(LLMs): (1) domain transfer, and (2) summariza-
tion, as illustrated in the 2 bottom rows of Fig. 1.
For (1), we prompt an LLM to minimally edit both
ID training and OOD test samples to map them
onto the same, hypothetical domain, e.g., books.
For (2), we prompt an LLLM to abstractly summa-
rize both ID training and OOD test data, since we
hypothesize that summaries can capture the core
essence of samples while removing non-essential,
potentially spurious, information.

Our results (§4) show that in the OOD test set-
ting for non-English languages, model performance
of zero-shot cross-lingual transfer substantially de-
clines, aligned with OOD generalization studies
in a monolingual English setting. We further find
that CAD improves OOD generalization for non-
English samples, with gains up to +14.8%, +4.7%,
and +7.9% for respectively LaBSE, mBERT, and
XLM-R. Finally, our cost-effective domain trans-
fer and summarization data augmentation methods
similarly improve OOD generalization, on par with
or even surpassing CAD for Amazon and Restau-
rants by up to +3.1% in accuracy.

2 Related Work

Zero-shot cross-lingual transfer: A large part
of multilingual NLP research focuses on improving
the transfer of multilingual models trained on high-
resource language data to low-resource languages.
This can be achieved either by (i) cross-lingual
pre-training schemes that yield stronger multilin-
gual models (Artetxe and Schwenk, 2019; Conneau
and Lample, 2019; Conneau et al., 2020; Xue et al.,
2021; Feng et al., 2022; Chi et al., 2022), or (ii) fine-



tuning strategies that facilitate better cross-lingual
transfer (Liu et al., 2021; Yu and Joty, 2021; Zheng
et al., 2021). Recently, Artetxe et al. (2023) re-
visited the translate-test and translate-train base-
lines (Shi et al., 2010; Duh et al., 2011; Artetxe
et al., 2020a), where fest samples are translated
into English prior to evaluating them, or, respec-
tively, the training samples are translated into the
test languages for fine-tuning a multilingual model.
Artetxe et al. found that using more recent ma-
chine translation systems, e.g., NLLB (Costa-jussa
et al., 2022), further boosts performance and often
surpasses strong zero-shot cross-lingual methods.
Hence, we also experiment with translate-test and
translate-train approaches.

Cross-lingual transfer under distribution shift:
The limited research on the robustness of multilin-
gual models has primarily focused on being robust
against specific types of noise, e.g., adversarial per-
turbations for Japanese Natural Language Inference
(Yanaka and Mineshima, 2021), a combination of
general and task-specific text transformations based
on manipulating synonyms, antonyms, syntax, etc.
(Wang et al., 2021), and introducing errors and
noise through Wikipedia edits (Cooper Stickland
et al., 2023). Unlike these works, we will evalu-
ate how well zero-shot cross-lingual transfer from
English to non-English test samples can generalize
in scenarios where there is a shift in domain from
train to test data: the domain-specific features of
test samples may change, whereas the semantic
sentiment features remain invariant.

Counterfactually-augmented data (CAD): For
English sentiment analysis, CAD is widely adopted
to mitigate the effect of spurious patterns. For ex-
ample, Kaushik et al. (2019, 2020) recruited Me-
chanical Turk workers to construct counterfactually
revised samples by flipping labels with minimal
editing, helping classifiers to learn real associations
between samples and labels, thereby improving
OOD generalization to unseen test domains. Build-
ing upon the success of CAD, several works have
also studied how to automatically generate counter-
factuals for English sentiment analysis (Wang and
Culotta, 2021; Yang et al., 2021; Dixit et al., 2022;
Howard et al., 2022; De Raedt et al., 2022). We
adopt this CAD idea for OOD generalization in a
zero-shot cross-lingual setting, which to the best of
our knowledge has not been studied yet.

We start by exploring whether augmenting the
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English training data with the manually constructed
counterfactuals from Kaushik et al. (2019) also
benefits OOD generalization for non-English test
samples. Additionally, we propose two new LLM-
based methods as alternatives to constructing coun-
terfactuals, aiming to specifically improve zero-
shot transfer to non-English OOD test samples. We
benchmark our new LLM-based methods against
a CAD setup following Kaushik et al. (2019), thus
assessing whether we can achieve similar OOD
performance but avoid CAD’s costly human an-
notations. We further contrast classifiers trained
on data augmented by our two new LLM-based
methods to those trained on counterfactuals gener-
ated by CORE (Dixit et al., 2022), the state-of-the-
art method in automatic counterfactual generation.
CORE first retrieves naturally occurring counter-
factual edits from an unlabeled text corpus and
then, based on these retrieved edits, instructs an
LLM (GPT-3) to counterfactually revise training
samples.

3 Experimental Setup

We describe the English ID training data and non-
English OOD test data in §3.1. Next, we outline
the pre-trained multilingual models and the transfer
strategies we experiment with in §3.2. In §3.3,
we present our LLM-based domain transfer and
summarization data augmentation methods. We
cover finetuning and evaluation in §3.4.

3.1 Datasets

In-distribution (ID) training data: We use
the subset of 1,707 English reviews selected by
Kaushik et al. (2019) from the IMDDb sentiment
dataset (Maas et al., 2011) as training data, as well
as 245 English validation samples. To better as-
sess the OOD generalization of cross-lingual trans-
fer, we also report in-distribution results of all 13
considered languages on the IMDb test set with
488 samples. However, the test set of Kaushik
et al. (2019) is English-only. Hence, we trans-
late the 488 English test samples into each of the
12 other non-English languages, using OpenAlI’s
ChatGPT-turbo (v@301) (Ouyang et al., 2022),
as it achieves translation quality that is competi-
tive to commercial machine translation tools (e.g.,
Google Translate or Microsoft Translation Suite)
(Jiao et al., 2023; Hendy et al., 2023; Peng et al.,
2023), while being more cost-effective. Since we
aim to explore the benefits of English CAD for



Original samples

IMDB If you haven’t seen this, it’s terrible. It is pure trash. I saw this about 17 years ago, and I'm still screwed up from it.
G TWEETS She just didn’t get them in areas were she needed them. Lots of voter supression going on. Hacking & tampering
AMAZON The straps are super small, for a very small wrist, and the closure is bad, easy to lose the watch.
RESTAURANTS The food is standard, but the person waiting at the door in the style of a manager is cold and unfriendly.
Domain transferred samples
IMDB If you haven’t read this book, it’s terrible. It is pure trash. I read this about 17 years ago, and I'm still screwed up from it.
<M TWEETS She just didn’t get the books in areas where she needed them. Lots of book censorship going on. Piracy & Plagiarism
i_.J AMAZON The binding of the book is super tight, suited for a compact size, and the cover is not secure, easy to lose the pages.
RESTAURANTS The books are average, but the person at the front desk in a manager-like role is distant and unapproachable.
Summarized samples
IMDB Terrible and traumatizing movie, avoid it.
TWEETS Allegations of voter suppression and tampering.
AMAZON Small straps, bad closure, easy to lose.
RESTAURANTS Standard food, unfriendly manager.

Table 1: LLM-based data-augmentation. 7op: original ID training and OOD test samples (including English
translations). Middle: mapping of the diverse domain samples onto the hypothetical books domain. Bottom:
demonstrates how summarization retains essential information while removing potentially spurious elements.

OOD generalization also to non-English test sam-
ples, we augment the respectively 1,707 and 488
original training and validation samples with their
English counterfactually revised counterparts pro-
vided by Kaushik et al. (2019). All training, vali-
dation, and test sets are equally balanced between
positive and negative samples.

Out-of-distribution (OOD) test data: Our OOD
test data comprises three non-movie domains: prod-
uct reviews, tweets and restaurant feedback. We
use the MARC dataset (Keung et al., 2020) for
Amazon product reviews in six languages: English,
German, French, Spanish, Japanese, and Chinese.
For tweets, we use the recent multilingual test sets
provided by Barbieri et al. (2022), in eight lan-
guages: English, German, French, Spanish, Arabic,
Hindi, Portuguese, and Italian. For restaurant re-
views, we use the multilingual aspect-based senti-
ment classification dataset for the 2016 SemEval
Task 5 (Pontiki et al., 2016), i.e., its restaurant do-
main data covering six languages: English, Dutch,
French, Spanish, Russian, and Turkish. Since Se-
mEval Task 5 concerns aspect-based sentiment, we
apply a rule-based mapping to cast it as a binary
classification task: included reviews are labeled ei-
ther as positive (if all aspects are positive or a mix
of neutral and positive) or negative (if all aspects
are negative or a mix of neutral and negative). We
undersample test examples from the majority senti-
ment to ensure that all test sets are balanced. Fur-
ther dataset statistics are provided in Appendix A.

3.2 Zero-shot cross-lingual transfer

Pre-trained multilingual models: We consider
the base-cased versions of two multilingual lan-
guage models pre-trained on masked language
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model (MLM) objectives: mBERT, i.e., a multi-
lingual variant of BERT (Devlin et al., 2019), and
XLM-R, a RoBERTa-based multilingual model
(Conneau and Lample, 2019). Additionally, we
use the pre-trained multilingual sentence encoder
LaBSE (Feng et al., 2022) that maps sentences to
768-dimensional single vector representations.

Transfer strategies: To transfer from the English
ID training data to non-English test samples, we
use 3 widely adopted strategies (Fig. 1, top row):

(1) zero-shot: finetunes the multilingual model on
the English ID training and validation set, followed
by directly evaluating the OOD test samples in the
non-English languages.

(2) translate-test: finetunes the multilingual model
on the English ID training and validation datasets.
However, prior to making predictions for OOD test
samples, the samples are translated into English.
(3) translate-train: first translates the English
ID training and validation datasets to the target
OOD test language. Subsequently, the multilingual
model is trained on this translated data to then make
predictions for the original, untranslated, OOD test
samples in that non-English language.

Note that in case where both translate-train and
CAD are used, the English CAD training and val-
idation data are translated to the target OOD test
language. For both translate-test and translate-
train, we use OpenAl’s ChatGPT-turbo (v@301)
(Ouyang et al., 2022) as the LLM to translate from
English to non-English languages and vice versa.
We adopt OpenAl’s default parameter values. See
Appendix A for translation prompts.



3.3 LLM-based data-augmentation

We explore whether data augmentation using an
LLM, as a cost-effective alternative to CAD, can
also boost OOD generalization. We propose two
such alternatives: (1) domain transfer, and (2) sum-
marization. Our focus is on augmenting data for
translate-test, as recent work has shown it to be
more effective than zero-shot and translate-train
(Artetxe et al., 2023). The multilingual models are
finetuned on the original English ID, as well as the
augmented ID training samples?, with predictions
made solely on augmented test samples. Table 1
provides illustrations for both strategies.

Domain transfer: We align the domains of
both the original ID training and OOD test sam-
ples translated into English to a common hypo-
thetical domain. To achieve this, we instruct
ChatGPT-turbo (v@301) (Ouyang et al., 2022)
to minimally change the samples so that they re-
late to the new hypothetical domain, for which we
experiment with the domain of books. Note that
rather than solely mapping OOD test samples to
the ID training domain of movies, we use a hypo-
thetical domain to transform both training and test
samples with an LLM to avoid introducing a new
distribution shift caused by the mismatch between
the original human-based training and the LLM-
generated test samples. See Appendix A for our
domain transfer prompt.

Summarization: For our second augmentation
strategy, we abstractly summarize both the orig-
inal English training and the translated English
OOD test samples. We hypothesize that such con-
cise summaries can retain essential information
while omitting non-essential and potentially spu-
rious features, such as, e.g., specific syntax struc-
tures and lexical choices, thereby a priori prevent-
ing classifiers from relying on such features for
prediction. Furthermore, transforming text with
language models, i.e., through summarization, may
have the added benefit of normalizing the back-
ground, non-sentiment related, features. Hence,
summarizing the data can lead to more uniform
syntax and word choice among test and training
samples, potentially further narrowing the distribu-
tion mismatch between ID training and OOD test
samples. Appendix A lists the exact prompt that we

*To ensure all strategies have the same number of training
samples, we train the original-only models (without manual

counterfactuals or LLM-augmented samples) on twice the
number (3.4k) of original IMDDb reviews (§3.4).
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supply to ChatGPT-turbo (v0301) (Ouyang et al.,
2022), using OpenAl’s default parameter values.

3.4 Finetuning and evaluation

We finetune the MLM-based models, i.e., mBERT
and XLM-R, by adding a classification head to the
[CLS]-token. We use the Hugging Face Transform-
ers library (Wolf et al., 2020) and train on a single
Tesla V100 GPU for 20 epochs, with a batch size
of 38, and a learning rate of 5e—6. To select an
optimal model, we employ early validation stop-
ping with a loss threshold of 0.01 and a patience of
10. Since we are also interested in measuring the
performance of a more compute-efficient model,
we freeze LaBSE’s parameters and train on CPU
a logistic regression model on LaBSE’s sentence
vectors through five-fold cross-validation. We use
the scikit-learn library (Pedregosa et al., 2011),
with 1bfgs (Liu and Nocedal, 1989) as the solver,
and set the maximum number of iterations to 5,000.

To assess the performance of each transfer strat-
egy, we report the mean accuracy over 5 randomly
initialized training runs, i.e., with randomly se-
lected weights and cross-validation folds for re-
spectively mBERT/XL.M-R and LaBSE.

Note that classifiers trained on CAD, as well
as on data augmented by our two strategies, use
respectively 1.7k extra manually constructed coun-
terfactuals and 1.7k extra LLM-generated samples,
in addition to the 1.7k original IMDb training sam-
ples. To ensure that the OOD generalization gains
from CAD and our two augmentation strategies
are not solely attributed to the increased number
of training samples, we randomly sample an extra
1.7k original English IMDb reviews from the IMDb
dataset of Maas et al. (2011) for the original-only
strategy (i.e., models trained without counterfac-
tuals or augmented data). As such, all considered
strategies are trained on 3.4k samples

4 Experimental Results and Discussion

4.1 Zero-shot cross-lingual out-of-distribution
generalization

We first address (RQ1), on assessing OOD gener-
alization to non-English samples. In Table 2, we
present both ID and OOD accuracies of the origi-
nal only method, which trains solely on (translated)
English IMDb movie reviews without data augmen-
tation.

We see that both for English and non-English,
all models and transfer strategies decline in perfor-



IMDB AMAZON RESTAURANTS TWEETS
Method EN NON-EN EN NON-EN EN NON-EN EN NON-EN
LaBSE

-ZSHOT  85.0 84.9 66.3 71.9 72.7 74.1 76.3 67.8
- TTRAIN  85.0 85.2 66.3 74.0 72.7 76.4 76.3 66.0
- TTEST 85.0 - 66.3 67.6 727 73.1 76.3 68.8
mBERT

-ZSHOT  89.5 80.8 79.3 722 80.2 69.6 75.9 62.8
- TTRAIN  89.5 87.5 79.3 73.5 80.2 74.5 75.9 62.9
- TTEST 89.5 - 79.3 77.8 80.2 78.9 75.9 71.1
XLM-R

-ZSHOT 924 88.4 86.3 85.0 86.0 79.2 84.3 69.2
- TTRAIN 924 90.7 86.3 86.0 86.0 83.0 84.3 72.5
- TTEST 92.4 - 86.3 85.6 86.0 81.5 84.3 71.7

Table 2: In-distribution vs. out-of-distribution test accuracies for the original only strategy trained solely on
IMDb reviews (without CAD or data augmentation). Results are presented for English (EN) and non-English (NON-
EN) test data, with the latter’s accuracies averaged across all non-English languages per test set. Detailed results
per language are provided in Appendix A. Note, for English, TTRAIN and TTEST do not involve any translation,
hence their EN scores are equivalent to ZSHOT. Further, ID scores for TTEST are omitted as these would involve
backtranslating the non-English ID samples (originally translated from English ID test data per §3.1) to English,

which would largely assess back-translation quality.

mance when evaluated on OOD rather than ID test
samples. For example, the zero-shot strategy’s drop
from English ID to English OOD (IDgy—OODgy)
ranges from 8.7%—-18.7% for LaBSE, 9.3%—-13.6%
for mBERT, and 6.1%-8.1% for XLM-R. Similarly,
for non-English (IDxon-gn—OODyon-en), the per-
formance drops for LaBSE, mBERT, and XIL.M-
R vary within the ranges of 10.8%—-17.1%, 8.6%—
18%, and 3.4%—-19.2%, respectively. These find-
ings suggest that model performance decline to
OOD test samples in non-English is substantial, as
was already known (and here confirmed again) for
English. We do not, however, see a consistently
stronger decline for non-English than for English,
as may be intuitively expected. This is discussed
in more detail in the next paragraph.

English vs. non-English OOD generalization:
We assess whether multilingual models general-
ize better to English than non-English OOD test
data. Overall, the EN versus NON-EN scores in Ta-
ble 2 reveal that the MLM-based models mBERT
and XLM-R generalize less well to non-English
compared to English OOD test samples: the ac-
curacies for non-English languages are lower in
most cases. Surprisingly, the converse holds for
LaBSE: it has consistently better non-English OOD
accuracies compared to English on Amazon and
Restaurants. Note, however, the absolute perfor-
mance of the three models: LaBSE appears to be
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the least accurate model in English in most cases.
This is consistent with the fact that its encoder re-
mains frozen during training in English, unlike the
other encoders, whereas LaBSE’s non-English per-
formance is more on par with the other models.
While our results suggest that performance decline
to OOD test samples in non-English and English
is substantial, the disparity among OOD model
performance between non-English and English de-
pends on the (i) pre-trained multilingual model or
finetuning strategy, and (ii) the type of OOD data.

Impact of the pre-trained multilingual models:
We compare the OOD generalization of LaBSE,
mBERT, and XLM-R. The results in Table 2 show
XLM-R as the top performer, consistently surpass-
ing both LaBSE and mBERT. Despite having only
768 trainable parameters (frozen encoder with train-
able logistic regression layer) against mBERT’s
110M (fully tuned), it is surprising that LaBSE
is at least on par with mBERT on non-English
OOD data, except for translate-test. This suggests
a stronger bias towards English in mBERT com-
pared to LaBSE, also evidenced by an 8.7% drop
in mBERT’s ID zero-shot performance between
English and non-English, whereas this difference
is just 0.1% for LaBSE.

Impact of the transfer strategies: We assess
the translate-train and translate-test strategies for



LaBSE mBERT XLM-R
AMAZON  RESTAURANTS  TWEETS AMAZON  RESTAURANTS  TWEETS AMAZON  RESTAURANTS  TWEETS

Method EN NON-EN EN NON-EN EN NON-EN EN NON-EN EN NON-EN EN NON-EN EN NON-EN EN NON-EN EN NON-EN
Original only
- ZSHOT 663 719 727 741 763 678 793 722 802 696 759 628 863 850 860 792 843 69.2
- TTRAIN 663 740 727 764 763 660 793 735 802 745 759 629 863 860 860 830 843 725
- TTEST 663 67.6 727 731 763 688 793 778 802 789 759 71.1 863 856 860 815 843 717
Original + CAD (Kaushik et al., 2019)
- ZSHOT 812 829 847 8.7 817 745 817 749 818 709 790 672 870 8.7 815 819 867 7159
- TTRAIN 81.2 823 847 834 817 737 817 782 818 757 790 669 87.0 864 815 846 867 713
- TTEST 81.2 824 847 89 817 762 817 812 818 812 790 750 870 868 875 871 867 79.6
Original + CORE (Dixit et al., 2022)
- ZSHOT 81.0 820 850 849 774 71.1 802 741 804 696 736 648 868 870 89.7 875 839 779
- TTEST 81.0 817 8.0 863 774 743 802 799 804 799 736 728 868 870 89.7 89.1 839 805
Original + Domain transfer (ours)

TTEST+TRAN. 81.7 819 84.1 841 723 69.6 813 803 833 810 724 697 87.1 871 872 845 727 69.7
Original + Summarization (ours)

TTEST+SUM. 86.2 84.7 91.6 888 766 740 81.1 812 873 843 743 738 878 868 928 902 830 759

Table 3: Out-of-distribution generalization with data augmentation. Original only: baseline model trained solely
on IMDb reviews, without CAD or data augmentation. + CAD: augments IMDD training samples with manually
constructed counterfactuals. + CORE: augments training samples with automatically generated counterfactuals.
+Domain transfer and +Summarization augment the training data with our newly proposed strategies. Best model

in bold with the runner-up underlined.

OOD generalization against the zero-shot approach.
The results in Table 2 reveal large OOD gener-
alization gains for non-English languages using
translate-test and mBERT, with accuracy gains be-
tween +5.6% and +9.3%. This supports our pre-
vious discussion of mBERT being more biased to-
wards English. For LaBSE, translate-train is most
effective on Amazon and Restaurants, with aver-
age accuracy boosts of +2.1% and +2.3% respec-
tively, but not for Tweets (—1.8%). For XLM-R,
Restaurants and Tweets benefit most from transla-
tion: translate-train (translate-test) surpass zero-
shot with respective gains of +3.8% (+2.3%) and
+3.3% (+2.5%). In conclusion, while translation-
based strategies can further boost the OOD general-
ization zero-shot cross-lingual transfer, the benefits
are dependent on the multilingual model and OOD
test data.

4.2 Out-of-distribution generalization with
data augmentation

To address (RQ2) on achieving better OOD gener-
alization, we first analyze the effect of augmenting
training data with the manually constructed coun-
terfactuals of Kaushik et al. (2019). These coun-
terfactuals will serve as an upper baseline against
which we will subsequently compare the perfor-
mance of models trained on (i) counterfactuals gen-
erated by the state-of-the-art in automatic counter-
factual construction, i.e., CORE (Dixit et al., 2022),
and (ii) our LLM domain transferred and summa-
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rized augmented data.

Manually constructed counterfactuals: Com-
paring the original + CAD results in Table 3 to
the corresponding original only results, reveals that
augmenting training data with CAD consistently
boosts OOD generalization, across all datasets and
both for English and non-English test samples. Ac-
curacy gains averaged over the non-English lan-
guages for OOD vary between 7%—14.8%, 1.2%—
4.7%, and 0.4%-7.9% for respectively LaBSE,
mBERT, and XLM-R. This confirms that the En-
glish OOD generalization gains of CAD based
training (Kaushik et al., 2019) translate well to
non-English OOD test data in a cross-lingual set-
ting.

Impact of LLM-based data augmentation on
cross-lingual OOD generalization: As an al-
ternative to costly manually constructed coun-
terfactuals, we investigate the viability of auto-
matic data augmentation: CORE from Dixit et al.
(2022) (replacing humans with the LLM for coun-
terfactual creation), as well as our newly pro-
posed domain transfer and summarization strate-
gies described in §3.3. First, we compare the
non-English OOD generalization of models trained
with augmented data to models trained solely on
original data. Table 3 shows clear non-English
OOD improvements for all of LaBSE, mBERT,
and XLM-R, with respective gains over original
only ranging from: (i) 3.3%—-14.1%, 0%-2.1%,



and 1.4%-8.8% for CORE, (ii) 0.8%-14.3%,
—1.4%-2.5%, and —2.0%—3% for domain transfer,
and (iii) 5.2%-17.1%, 2.7%-5.4%, and 1.3%-8.7%
for summarization. The drops —1.4% and —2.0%
for mBERT and XLLM-R on Tiveets suggest that do-
main transfer is less effective when the discrepancy
between test and training domains is excessively
large: the IMDDb training data, similar to the Ama-
zon and Restaurant domains, comprises reviews,
whereas Tiveets do not.

The bold and underlined scores in Table 3 denote
the top two results. Our summarization strategy
achieves the best non-English OOD generalization
on Amazon and Restaurants, on par with (or sur-
passing) models trained on CAD. On Tiveets, while
summarization still improves models trained solely
on the original data, training on CAD or CORE
(XLM-R) yields the best results.

These findings support the efficacy of cost-
effective data augmentation as a viable alternative
to manually constructed counterfactuals for non-
English test data. It is worth noting that our summa-
rization and domain transfer methods scale linearly,
only requiring a single transformation of training
samples for each class. However, it is doubtful
that CAD and CORE can be similarly expanded
beyond binary sentiment classification due to their
quadratic data complexity: counterfactuals have to
be constructed among every pair of classes.

Impact of LLLM-based data augmentation on
mono-lingual OOD generalization: Thus far,
our analysis has primarily focused on the gener-
alization from English ID training data to non-
English OOD test data. Here, we investigate
whether our summarization and domain transfer
strategies can also help classifiers generalize in the
well-studied monolingual setup, i.e., from English
training data to English OOD test data. In this
setup, the translate-test step is omitted: both the
English ID training reviews from IMDb and the En-
glish OOD test samples are summarized or domain
transferred, without any prior translation.
Comparing the EN scores across the different
transfer strategies in Table 3 for each of LaBSE,
mBERT, and XLM-R, reveals findings similar to
the OOD generalization to non-English languages.
(i) For Amazon and Restaurants, all data augmenta-
tion approaches deliver classifiers that better gen-
eralize OOD compared to the original only classi-
fiers trained without augmented data. Our summa-
rization strategy achieves the best overall results,
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AMAZON  RESTAURANTS TWEETS
Method EN NON-EN EN NON-EN EN NON-EN
LaBSE
zZsHOT 77.1 797 836 837 819 718
+TTEST 77.1 789 836 84.0 819 73.1
+SUM. 86.2 847 916 888 766 74.0
mBERT
ZSHOT 80.7 736 824 725 778 635
+TTEST 80.7 796 824 80.0 778 720
+suM. 81.0 812 873 843 743 738
XLM-R
ZSHOT 87.8 877 894 84.9 86.3 75.1
+TTEST 87.8 88.0 894 87.1 86.3 77.8
+SUM. 87.8 868 928 90.2 830 759

Table 4: Ablations of our best data augmentation strat-
egy: summarization. ZSHOT: trains on the original En-
glish and summarized English IMDD reviews. +TTEST:
additionally translates test samples to English. +SUM.:
further summarizes the English translated test samples
prior inference.

surpassing both classifiers trained on CORE and
manually constructed counterfactuals (CAD), ex-
cept for mBERT and Amazon, where CAD results
in a minor accuracy gain of 0.6% over summariza-
tion. (ii) Surprisingly, for Tweets, only classifiers
trained on manually constructed CAD show consis-
tent OOD generalization improvements over origi-
nal-only classifiers. This is in contrast to the results
observed for non-English, where CORE and our
summarization augmentation approach were able
to improve upon the original-only classifiers.

Overall, these results highlight that our summa-
rization strategy can also benefit monolingual OOD
generalization, surpassing classifiers augmented ei-
ther with CAD or CORE generated counterfactuals
for Amazon and Restaurants.

Ablations: We provide ablations in Table 4 for
our most effective strategy, i.e., summarization, and
find that:

(i) The benefits of translating test samples into
English (translate-test) versus solely augmenting
the training data with summaries (zero-shot) vary
based on the multilingual and/or OOD test data:
there are clear OOD improvements to non-English
samples for mBERT and XLLM-R, but results for
LaBSE are mixed and comparable to the zero-shot
strategy;

(i) More importantly, further summarizing the En-
glish translated test samples improves OOD gen-
eralization more than solely translating them to



English, consistently boosting accuracies by up
to +5% for LaBSE and +4.3% mBERT, across
all datasets. For XLM-R, summarization slightly
reduces accuracy, e.g., —1.2% for non-English lan-
guages on Amazon and —1.9% for Tweets com-
pared to translation alone, yet still boosts OOD gen-
eralization to Restaurants by 3.1% over translate-
test.

Cost-effectiveness of LLM-based augmentation:
To assess the cost-effectiveness of our LLM-based
augmentation, we discuss the costs of our best ap-
proach, i.e., summarization, and compare it to that
cost of employing human workers to manually con-
struct counterfactuals. Kaushik et al. (2019) report
that human workers spent an average of 5 minutes
revising a single IMDb review, with each worker
earning $0.65 per revised review. Therefore, man-
ually revising 1.7K training reviews incurs a total
cost of ~$1,105 and ~141 hours of labor.

In contrast, our summarization strategy costs
$0.0003 on average for summarizing a single train-
ing IMDb review, totaling $0.51 for all 1.7K train-
ing reviews. However, our best OOD generaliza-
tion is achieved not only by summarizing training
reviews, but also by using an LLM during infer-
ence to: (1) translate non-English test samples to
English (translate-test), and (2) further summa-
rize the English translated test samples. For (1),
the cost is $0.00015 per OOD sample. For (2), an
additional cost of $0.00007 is required per OOD
sample.> The reported costs per test sample are
taken as the average among all OOD test sets and
non-English languages.

In conclusion, our summarization strategy costs
$0.51 to summarize all 1.7K training samples, and
$0.00022 (=(1)+(2)) per inference. Thus, for the
same cost of employing human workers for CAD
creation (= $1,105), our summarization strategy
enables inference for SM test samples. Note, how-
ever, that the best overall performance of classifiers
augmented with CAD are achieved for translate-
test. Therefore, if we also account for translation
costs of the CAD-augmented classifiers, our sum-
marization method can perform inference for 15M
test samples for the same cost as employing human
workers for CAD creation. This demonstrates the
cost-effectiveness of our summarization approach
when scaled up to 5SM test samples as compared to

*Summarizing OOD test samples is less costly than sum-
marizing IMDb training samples due to the test samples com-
prising fewer tokens.
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zero-shot +CAD, and up to 15M when compared
to translate-test +CAD. For future work, explor-
ing open-source LLMs -or translation and summa-
rization models could prove valuable for reducing
inference costs.

5 Conclusions

We explored the generalization of zero-shot cross-
lingual transfer to out-of-distribution (OOD) test
data, considering both language and domain shifts.
Our experiments on binary sentiment classifica-
tion with pre-trained multilingual models LaBSE,
mBERT, and XLM-R finetuned on English IMDb
movie reviews and evaluated on non-English
test samples comprising Amazon product reviews,
Restaurant feedback, and Tweets, demonstrate that
model performance substantially degrades, align-
ing with previous OOD generalization studies in
a monolingual English setting. We also found
that mBERT and XLM-R suffer more from per-
formance reduction on OOD in non-English lan-
guages compared to English OOD degradation,
while LaBSE’s generalization strongly depends on
the OOD dataset. Our experiments with models
finetuned on original data augmented with man-
ually constructed English counterfactual (CAD)
IMDb reviews show that CAD’s OOD generaliza-
tion gains observed in a monolingual English set-
ting also translate well to a zero-shot cross-lingual
setup. Finally, to avoid costly manually constructed
counterfactuals, we propose two new data augmen-
tation approaches for OOD generalization based
on large language models: (i) domain transfer, and
(ii) summarization. Models trained with data aug-
mented by our summarization strategy, show sub-
stantial gains across all datasets and models, and
on Amazon and Restaurants surpassing models ei-
ther augmented with (i) manually constructed CAD
(Kaushik et al., 2019), or (ii) state-of-the-art gener-
ated CORE counterfactuals (Dixit et al., 2022).

Limitations

Task domain: In this exploratory study, we only
presented results for zero-shot cross-lingual binary
sentiment classification. To investigate whether
our findings generalize beyond binary classifica-
tion, and to other non-classification tasks, further
analysis is required. Nevertheless, as mentioned in
§4.2, our data augmentation approaches scale better
for classification tasks with more than two classes,
since it only requires summarizing/transferring the



training samples of each class once, whereas it is
unclear how to scale counterfactuals to a larger
number of classes.

Automatically translated in-distribution test
data: Since we followed a similar setup as
Kaushik et al. (2019), our experiments used the
IMDb movie reviews as in-distribution sentiment
data. While the main focus in our study is on out-of-
distribution generalization, the in-distribution test
set was only provided in English. Hence, we used
translation tools to automatically translate the En-
glish IMDb test set to the considered non-English
languages. This may have caused annotation arti-
facts in the translated in-distribution tests, making
it unclear how well the reported in-distribution re-
sults for non-English languages match real-world
test data for non-English languages.

Translate-test based on a multilingual model:
As our aim was to analyze the out-of-distribution
generalization of multilingual models and compare
their performance, we did not include results for
the rranslate-test based on a monolingual English
model. We believe that using such a monolingual
model could further boost the accuracy of translate-
test, as well as for our summarization and domain
transfer strategies. However, we leave exploration
thereof for future work.

Applicability to low-resource languages: The
effectiveness of the translate-test and translate-
train approaches are highly dependent on the accu-
racy of the adopted machine translation system. In
this study, we used ChatGPT-turbo (v@301) as
our translation tool, and found it to produce high-
quality translations for all languages considered in
our experiments, i.e., boosting OOD generalization
compared to the zero-shot strategy. However, such
machine translations systems may not work well
for low-resource languages that lack high-quality
translation data.

Ethics Statement

Since our data augmentation methods use LLMs to
generate summaries or create domain-transferred
training (and test) samples, any biases present in the
data used to train these LLMs could be transferred
to the augmented data. We should therefore be
careful to ensure that these biases do not carry over
when training models on the augmented data, to
avoid models that could discriminate against and/or
potentially be harmful to certain demographics.
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# Test

Dataset EN DE NL FR ES IT PT TU RU JA ZH AR HI
AMAZON 4,000 4,000 - 4,000 4,000 - - - - 4,000 4,000 - -
TWEETS 580 580 - 580 580 580 580 - - - - 580 580
RESTAURANTS 980 - 960 1,268 760 - - 780 1,012 - - - -

Table 5: Out-of-distribution dataset statistics.

IMDB (EN) # Train # Val # Test
Original 1,707 245 488
CAD 1,707 245 -

Table 6: In-distribution dataset statistics.

A Appendix

Datasets: Tables 5 and 6 summarize respectively
the number of out-of-distribution test samples
and the number of train, validation and test in-
distribution test samples. Note that the number
of samples for translate-train and translate-test
exactly match those shown in the tables.

Prompts: Figs. 2 and 3 show our adopted
prompts for instructing ChatGPT-turbo to trans-
late (i) non-English out-of-distribution test samples
into English for translate-test, and (ii) English in-
-distribution English training and validation sam-
ples into non-English for translate-train.

Detailed ID and OOD results per language:
The in-distribution and out-of-distribution results
per language are presented in Tables 7 and 8. As
mentioned in §4.1, the translate-test in-distribution
scores are not included for non-English languages.
This is because these test sets are automatically
translated versions of the original English test set.
Including translate-test scores would require trans-
lating the already translated test samples back to
English, which would evaluate the quality of back-
translation rather than the translate-test perfor-
mance itself. In our pilot experiments, we observed
that the backtranslation quality was quite high. As
such, small differences in accuracy between the
performance of translate-test and the model perfor-
mance on the original English test set appeared
overly optimistic. Hence, we opted to exclude
them.
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Translate-test Translate-train

Translate from {Language} to English. Translate from English to {Language}.
{Language}: {test sample} English: {train sample}
English: {Language}:

Fig. 2: Translation prompts for ChatGPT-turbo (v0301).

Summarization Domain transfer

Summarize the review in a maximum of Make minimal changes to adapt the review
10 words. such that it becomes about books.
Review: {train -or English translated test Review: {train or English-translated test
sample} sample}

. J - J

Fig. 3: Data augmentation prompts for ChatGPT-turbo (v@301). Left: Summarization prompt. Right: Domain
transfer prompt.

64



IMDB

LaBSE

Method EN DE NL FR ES IT PT TU RU AR HI JA ZH

Original only
- ZSHOT 8.0 853 860 89 8.1 8.4 8.5 835 8.1 8.2 812 835 86.0
- TTRAIN 8.0 8.0 870 845 871 854 8.9 830 865 8.0 81.8 839 856

Original & CAD (Kaushik et al., 2019)
- ZSHOT 814 8.0 801 82.0 8.6 81.6 81.6 805 80.1 793 80.1 803 795
- TTRAIN 814 830 80.7 824 830 818 838 8.0 807 787 787 80.7 79.

Original & CORE (Dixit et al., 2022)
- ZSHOT 80.1 779 803 793 814 793 787 79.1 783 799 754 795 79.1

Domain transfer (ours)

- zSHOT* 833 845 845 844 8.0 854 855 823 838 846 790 827 833
+TRANS. 85.5 - - - - - - - - - - _ -

Summarization (ours)
- zSHOT* 83.6 840 859 848 850 840 86.1 824 842 848 809 857 83.6

+SUM. 86.7 - - - - - - - - - - - -
mBERT
Method EN DE NL FR ES IT PT TU RU AR HI JA ZH
Original only
- ZSHOT 805 840 778 842 869 834 832 761 80.0 752 722 819 848
- TTRAIN - 872 8.1 8.1 902 887 888 874 87.8 84.1 819 87.1 885

Original & CAD (Kaushik et al., 2019)
- ZSHOT 863 828 758 822 836 794 797 723 785 70.1 69.1 789 845
- TTRAIN - 8.0 866 868 876 870 86.7 845 86.1 832 788 869 870

Original & CORE (Dixit et al., 2022)
- ZSHOT 845 797 73.0 80.6 782 774 777 70.1 747 66.5 650 756 803

Domain transfer (ours)
- ZSHOT* 86.7 829 7677 84.1 843 820 8.0 758 777 743 711 793 844
+TRANS. 87.8 - - - - - - - - - - - -

Summarization (ours)
- ZSHOT* 872 831 744 823 844 81.1 823 744 773 736 71.0 809 829

+SUM. 88.2 - - - - - - - - - - -
XLM-R
Method EN DE NL FR ES IT PT TU RU AR HI JA ZH
Original only
- ZSHOT 924 904 909 899 8.8 8.5 907 885 894 847 823 854 89.6
- TTRAIN - 914 922 917 916 913 918 91.0 909 892 864 892 91.1

Original & CAD (Kaushik et al., 2019)
- ZSHOT 904 88.1 880 8.1 87.8 870 874 868 868 81.6 822 859 883
- TTRAIN - 88.9 885 89.8 897 893 898 892 889 832 857 879 88.8

Original & CORE (Dixit et al., 2022)
- ZSHOT 88.1 8.9 875 872 875 872 867 86.1 87.0 83.6 824 854 859

Domain transfer (ours)
- ZSHOT* 90.5 89.6 899 892 893 884 898 875 887 836 828 867 892
+TRANS.  91.1 - - - - - - - - - - - -

Summarization (ours)

-ZSHOT® 914 895 903 899 895 89.1 838 883 888 836 817 851 897
+SUM. 899 - - - - - - - - - - - -

Table 7: In-distribution accuracies for LaBSE, mBERT, and XLM-R. &: ablations. Scores for translate-test are
omitted due to the English ID test sets being translated into the respective non-English languages. Note, for English,
TTRAIN does not involve any translation, hence its EN scores are equivalent to ZSHOT.
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LaBSE

IMDB — AMAZON IMDB — RESTAURANTS IMDB — TWEETS

Method EN DE FR ES JA ZH AVG. EN NL FR ES RU TU AVG. EN DE FR ES AR HI 1T PT AVG.

Original only

-ZSHOT 663 753 70.6 700 69.5 739 719 727 75.0 73.6 749 746 726 74.1 763 70.5 67.6 723 603 61.6 72.1 702 67.8
-TTRAIN 663 71.6 742 725 77.0 748 740 7277 762 715 76.7 76.1 754 764 763 663 67.1 70.1 56.1 623 69.3 71.1 66.0
-TTEST 663 70.0 67.6 66.4 664 67.5 67.6 727 756 725 73.8 704 733 73.1 763 70.6 64.8 724 60.6 67.7 733 724 688

Original & CAD (Kaushik et al., 2019)
-zsHoT  81.2 854 853 850 804 785 829 847 868 86.4 88.6 835 833 857 81.7 76.6 722 803 71.6 67.8 752 778 74.5

-TTRAIN 81.2 85.0 83.5 845 80.0 787 823 847 844 81.6 88.6 80.8 815 834 81.7 77.6 72.6 81.0 674 647 748 778 73.7
-TTEST  81.2 844 849 837 79.8 793 824 847 88.0 864 879 822 850 859 817 79.8 71.7 81.6 71.0 748 750 79.3 76.2

Original & CORE (Dixit et al., 2022)
-zsHOT  81.0 84.8 842 84.6 802 763 82.0 850 84.6 854 88.7 847 812 849 774 712 67.6 76.0 669 64.0 757 76.0 71.1
-TTEST  81.0 844 839 832 79.8 77.1 81.7 850 86.5 853 895 84.1 862 863 774 779 69.8 80.5 653 72.8 76.0 77.8 743

Original & Domain transfer (ours)
-zsHOT*® 760 825 79.5 79.1 77.7 758 78.9 814 83.1 812 826 82.0 784 81.5 80.9 723 68.1 762 652 647 748 743 70.8

+TTEST® 76.0 80.6 79.8 79.2 76.6 756 78.4 814 844 828 81.6 80.7 81.6 822 80.9 727 69.1 754 66.3 74.1 743 743 723
+TRAN. 81.7 83.6 83.7 83.0 8I.1 78.0 819 84.1 859 842 852 83.1 82.1 84.1 723 69.1 62.0 749 62.6 71.0 71.1 76.5 69.6

Original & Summarization (ours)
-zsHOT® 77.1 825 80.7 812 77.8 762 79.7 83.6 852 83.7 847 842 80.5 83.7 81.9 734 709 779 650 662 755 740 71.8

+TTEST® 77.1 81.1 804 80.2 76.6 76.1 78.9 83.6 867 83.5 83.0 841 826 840 81.9 747 693 77.6 68.1 753 73.1 734 73.1
+SUM.  86.27 86.37 87.61 87.57 82.67 79.71 84.7 91.67 89.57 89.11 89.5 89.21 86.57 88.8 76.6] 74.7| 73.37 81.017 70.27 74.37 71.7] 73.1] 74.0

mBERT

IMDB — AMAZON IMDB — RESTAURANTS IMDB — TWEETS

Method EN DE FR ES JA ZH AVG. EN NL FR ES RU TU AVG. EN DE FR ES AR HI 1T PT AVG.

Original only

-ZSHOT 793 722 73.1 745 71.6 69.8 722 802 69.8 68.8 722 733 64.1 69.6 759 60.5 662 64.0 61.4 583 658 634 62.8
- TTRAIN 793 72.6 77.6 768 71.0 69.4 73.5 802 754 753 784 76.8 66.7 745 759 57.7 69.5 66.7 643 52.6 669 624 629
-TTEST 793 789 79.8 803 752 746 77.8 80.2 79.4 782 822 792 754 789 759 674 67.1 73.8 683 72.0 73.5 757 71.1

Original & CAD (Kaushik et al., 2019)

-zsHot  81.7 76.0 76.0 77.7 73.1 719 749 818 68.6 712 77.1 727 649 709 79.0 643 749 689 69.0 61.0 683 642 67.2
- TTRAIN 81.7 79.0 80.5 80.4 76.5 745 782 81.8 759 76.6 815 745 699 757 79.0 649 756 712 650 548 704 66.7 66.9
-TTEST  81.7 827 833 832 794 774 812 81.8 81.4 81.5 839 79.1 799 812 79.0 739 74.1 783 755 733 72.6 77.5 75.0

Original & CORE (Dixit et al., 2022)
-zsHot  80.2 743 753 772 73.6 702 74.1 804 653 72.1 753 712 639 69.6 73.6 594 72.0 703 62.7 593 683 61.5 64.8
-TTEST  80.7 81.3 804 825 79.2 763 799 80.4 79.2 79.7 829 785 794 799 73.6 70.6 70.0 77.9 73.0 70.1 73.0 75.1 72.8

Original & Domain transfer (ours)
-ZSHOT*® 79.6 732 748 764 723 71.0 735 802 708 704 73.6 73.1 639 704 78.1 60.5 69.0 638 62.6 58.8 660 649 63.7

+TTEST® 79.6 80.3 81.0 80.8 76.8 758 78.9 80.2 782 77.8 809 783 764 783 78.1 688 682 739 723 727 729 756 72.1
+TRAN. 813 814 81.6 819 79.5 77.0 80.3 83.3 81.0 80.4 83.6 804 79.6 81.0 724 67.5 662 722 65.1 70.6 703 759 69.7

Original & Summarization (ours)
-zsHOT® 80.7 74.1 754 77.1 723 692 73.6 824 71.1 724 768 755 66.6 725 77.8 60.6 67.1 668 61.5 59.5 653 63.8 63.5

+TTEST® 80.7 81.5 82.3 824 767 753 79.6 824 80.0 802 83.0 79.7 773 80.0 77.8 70.1 675 756 70.8 72.4 714 762 72.0
+SuM.  81.01 82.37 83.61 84.07 78.1] 77.81 81.2 87.37 84.67 85.57 87.37 83.61 80.47 84.3 74.37 73.01 72.17 76.9] 76.17 71.67 69.9] 77.07 73.8

XLM-R

IMDB — AMAZON IMDB — RESTAURANTS IMDB — TWEETS

Method EN DE FR ES JA ZH AVG. EN NL FR ES RU TU AVG. EN DE FR ES AR HI 1T PT AVG.

Original only

-ZSHOT  86.3 86.7 85.0 839 869 824 850 86.0 81.2 78.6 80.7 819 734 79.2 843 755 66.0 729 684 63.6 70.0 68.0 69.2
-TTRAIN 863 86.9 86.5 882 87.1 814 86.0 86.0 859 79.2 86.7 855 779 83.0 843 754 669 82.1 713 66.6 71.6 73.6 725
-TTEST 863 86.7 87.8 86.6 855 81.4 856 86.0 81.6 822 86.0 79.8 79.8 81.5 843 76.6 67.5 773 70.2 700 694 712 71.7

Original & CAD (Kaushik et al., 2019)

-zsHoT  87.0 869 863 863 862 827 857 87.5 825 81.8 833 821 79.6 819 8.7 77.6 76.1 8277 782 679 742 74.6 759
-TTRAIN 87.0 87.6 87.8 884 87.0 81.0 864 875 853 835 87.6 85.0 81.7 84.6 86.7 804 75.1 85.0 79.6 684 756 77.0 773
-TTEST  87.0 87.8 888 884 869 82.1 86.8 87.5 873 86.5 89.2 858 869 87.1 86.7 81.4 77.6 843 79.6 76.0 77.8 80.6 79.6

Original & CORE (Dicxit et al., 2022)
-zsHOT  86.8 88.1 87.7 88.7 889 81.6 87.0 89.7 88.8 87.2 904 89.1 819 875 839 757 794 829 809 67.8 799 788 779
-TTEST  86.8 884 89.0 89.0 87.6 81.1 87.0 89.7 892 89.0 91.2 83.0 88.1 89.1 839 8l.1 77.6 862 822 754 79.6 81.2 80.5

Original & Domain transfer (ours)
-ZSHOT® 864 869 855 84.6 87.1 82.0 852 854 80.1 792 81.7 823 744 795 852 757 692 75.6 70.6 656 71.1 69.7 71.1

+TTEST® 86.4 88.1 89.0 88.0 87.5 81.7 86.9 854 84.0 83.4 857 83.0 837 840 852 784 718 804 749 738 735 747 754
+TRAN. 87.1 883 89.2 884 87.1 825 87.1 87.2 843 85.0 87.0 82.8 834 845 72.7 724 66.0 73.7 658 70.0 664 739 69.7

Original & Summarization (ours)
-zsHOT*™ 87.8 89.1 89.3 88.7 88.1 833 87.7 89.4 86.1 838 86.5 86.5 81.7 849 863 766 71.7 81.6 758 69.0 757 752 75.1

+TTEST® 87.8 89.5 90.5 89.5 88.0 824 88.0 89.4 875 87.7 88.6 858 857 87.1 863 79.8 737 83.0 77.1 757 75.1 80.4 77.8
+SUM.  87.87 87.6/ 89.71 89.27 86.1] 81.27 86.8] 92.81 91.07 90.17 91.81 89.57 88.81 90.2 83.0. 78.0] 74.6] 80.0] 76.0| 74.1| 71.4] 77.0] 75.9

Table 8: Out-of-distribution accuracies for LaBSE, mBERT, and XLM-R. Best model in bold with the runner-up
underlined. #: ablations. For English, TTRAIN and TTEST do not involve any translation, hence their EN scores
are equivalent to ZSHOT. Highlighted rows show a 1-on-1 comparison between classifiers augmented with (i) our
(summarization) strategy, and (ii) the state-of-the-art generated CORE counterfactuals.
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Abstract

Choosing an appropriate tokenization scheme
is often a bottleneck in low-resource cross-
lingual transfer. To understand the downstream
implications of text representation choices,
we perform a comparative analysis on lan-
guage models having diverse text represen-
tation modalities including 2 segmentation-
based models (BERT, mBERT), 1 image-based
model (PIXEL), and 1 character-level model
(CANINE). First, we propose a scoring Lan-
guage Quotient (LQ) metric capable of provid-
ing a weighted representation of both zero-shot
and few-shot evaluation combined. Utilizing
this metric, we perform experiments compris-
ing 19 source languages and 133 target lan-
guages on three tasks (POS tagging, Depen-
dency parsing, and NER). Our analysis reveals
that image-based models excel in cross-lingual
transfer when languages are closely related and
share visually similar scripts. However, for
tasks biased toward word meaning (POS, NER),
segmentation-based models prove to be supe-
rior. Furthermore, in dependency parsing tasks
where word relationships play a crucial role,
models with their character-level focus, outper-
form others. Finally, we propose a recommen-
dation scheme based on our findings to guide
model selection according to task and language
requirements. !

1 Introduction

The performance of multilingual language mod-
els varies substantially across languages, with
low-resource languages demonstrating particu-
larly sub-optimal results compared to their high-
resource counterparts. This disparity poses a global
challenge for deploying effective NLP applica-
tions, given the diverse linguistic landscape world-
wide (Blasi et al., 2022).

To address this challenge, cross-lingual transfer
has emerged as a promising solution. By leveraging

'The code for reproducing our results is available here
https://github.com/mushfiqur1 1/tokenfreetransfer.

67

knowledge from high-resource languages, cross-
lingual transfer aims to enhance the performance
of low-resource ones. However, the effectiveness of
cross-lingual knowledge transfer is not uniformly
observed across all language pairs. It is influ-
enced by various factors, including language style,
structure, origin, dataset quality (Yu et al., 2022;
Kreutzer et al., 2022), and the specific relation-
ship between the source and target languages (Ah-
mad et al., 2019; He et al., 2019). On top of that,
the selection of an appropriate language model be-
comes crucial to achieve successful cross-lingual
knowledge transfer. While most state-of-the-art
models rely on tokenization (Schuster and Naka-
jima, 2012; Gage, 1994), yielding high scores for
various linguistic downstream tasks, their perfor-
mance in terms of cross-lingual transfer has room
for further investigation. Considering that word
formation can significantly vary across different
languages, differences in tokenization techniques
can hinder the transfer of linguistic capabilities be-
tween languages (Hofmann et al., 2022). Hence,
the exploration of tokenization-free models is also
imperative.

This study thoroughly investigates the role and
effectiveness of both tokenization-based (Devlin
et al., 2019a) and tokenization-free models (Rust
et al., 2022) in cross-lingual knowledge transfer.
Our selection of models encompasses BERT and
mBERT (Devlin et al., 2019a), which uses tradi-
tional subword-based segmentation. In addition,
we delve into tokenization-free models such as
CANINE (Clark et al., 2022) and PIXEL (Rust et al.,
2022). CANINE leverages character-level informa-
tion to accommodate the diverse word formations
and structures found in different languages. On
the other hand, PIXEL represents texts using visual
elements, introducing new possibilities for script-
based transfer in visually similar languages.

In this study, we perform standard syntactic task
evaluation in both zero-shot and few-shot manner
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to evaluate the cross-lingual transfer capabilities of
these models. While accuracy, F1 score, Labeled
Attachment Score (LAS), etc. are all effective eval-
uation indicators of the goodness of a model, they
are not particularly representative of how much
a model has learned in a short span of training.
We utilize these common metrics over zero-shot
and few-shot steps and propose the Learning Quo-
tient (LQ) metric, a novel scoring metric that de-
pends on the relation between the zero-shot and
few-shot scores. The metric evaluates the linguistic
characteristics of the languages with the model’s
performance on the tasks. This metric enables a
comprehensive evaluation of cross-lingual trans-
fer capabilities, offering valuable insights into the
strengths and weaknesses of the models. Our find-
ings suggest contrastive downstream performance
that relates to the model architecture. Furthermore,
we present a decision tree framework, based on
this extensive analysis providing practical guidance
for selecting appropriate models based on specific
task requirements and language relationships. This
framework serves as a tool for researchers and prac-
titioners seeking to harness the potential of NLP
applications across diverse languages.

2 Methodology

Problem formulation In this work, we use pre-
trained language models and fine-tune them on
source languages followed by few-shot training on
the target languages. Consider the sets of target
T = {t1,ta,...,t,} and source languages S =
{s1, s2,...,sn}. We assume source languages s €
S have adequate resources for effective language
model training. Conversely, target languages t € T’
are low-resource languages with limited data. For
any language pair (s,t), we aim to quantify how
efficiently a language model can learn the target
language t using knowledge transferred from the
source language s. Given the scarcity of data for
t, our focus lies on the model’s performance in
the early stages of fine-tuning it, denoted by the
evaluation score E.

Let (M )2° represents a language model M fully
finetuned on the language s and (M )§ represents
the model finetuned up to c steps. We investigate
how fast can a model learn the language ¢ in the
early steps if it was previously finetuned on s. Es-
sentially, we measure the performance of the model
((M)S°)¢ where c is a small positive integer. It’s

S
important, however, to acknowledge that the effi-
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ciency of this method can be influenced by factors
such as the similarities between the source and tar-
get languages, as well as the quality and quantity
of data available for both.

Our methodology can be broadly divided into
two steps:

Fine-tuning on Sources Following the pre-
trained model selection, each system is fine-tuned
using the selected source languages. This fine-
tuning stage allows each system to adjust and opti-
mize its parameters based on specific requirements.
Once fine-tuned, the systems are prepared for the
evaluation phase in a cross-lingual transfer sce-
nario.

Evaluation and Scoring The last step involves
evaluating each system’s performance on target lan-
guage tasks after undergoing a certain amount of
fine-tuning. Two scores are measured at this point:
zero-shot and few-shot scores. To measure the final
score, we calculate the LQ-score (§2). This score
allows us to determine the speed and efficiency at
which each system learns a new language based
on the knowledge transferred from the source lan-
guage.

Learning Quotient(LQ) metric Let us denote
E{") as the score achieved by the model (M)s
on the language ¢ after c steps of training on ¢. For
different tasks, E can be different. We use accuracy
for POS tagging and NER, and Labeled Attachment
Score (LAS) for dependency parsing. Egto) stands
for the zero-shot score of the model on ¢. Using the

o0

. 2 .
same logic, % A EZ( °) is the average zero-shot

score across all source languages, denoted as Z 4.

Now, let’s introduce our proposed scoring metric,
applicable for any pair of languages t € T and
s€S:

(Egtc) _ ZA) (Egtc) + ES(tO))
Za+e

LQ(ta 5) = (1)

LQ(t,s) is comprised of two primary terms,
along with a normalization factor. The first term
measures the performance of the model after few-
shot training on language ¢, relative to the average
zero-shot scores for that target language. The sec-
ond term simply sums the zero-shot and the few-
shot scores. To normalize the metric value, we
employ the average zero-shot score, Z4. A minute
value € is added to the denominator to avoid divi-
sion by zero cases.



Finnic Semitic
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Sinitic Baltic
Japanese

Germanic
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Figure 1: Distribution of the languages according to
their sub-families. The majority of these are of Indo-
European origin. The languages belong to 28 sub-
families spanning 13 different families

Figure 2: Distribution of the languages according to
their scripts. The majority of these use Latin script. The
languages use 19 different scripts

The L() score provides positive reinforcement
for both zero-shot and few-shot scores. Any few-
shot score that falls below the zero-shot average
incurs a substantial penalty. This metric proves
effective in quantifying the pace at which a model
adapts to a new language.’

3 Experimentation

Task Selection We perform the evaluation on
three downstream tasks that heavily depend on fun-
damental linguistic capabilities and syntactic struc-
ture: Dependency Parsing, Part-of-Speech (POS)
tagging and Named Entity Recognition (NER).
These tasks can work as indicators of a model’s
understanding of language dynamics and its ability
to comprehend and interpret linguistic information
(Chen and Manning, 2014; Manning, 2011; Lample
etal., 2016)

Language and Dataset Selection For the execu-
tion of POS tagging and Dependency Parsing, we
utilized the Universal Dependencies (UD) Dataset

The proof can be found in Appendix A.2
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(Nivre et al., 2017, 2020). To maintain focus and
ensure a meaningful study, we selected 9 languages
(as listed in Figure 3(a)) as our source languages
and 123 languages as our target languages for
the experiments®. All the models were compre-
hensively fine-tuned on the selected source lan-
guages, thereby establishing a baseline for perfor-
mance comparison*. For NER, we utilized the
MashakhaNER dataset (Adelani et al., 2021) and
all its associated languages as sources and targets
(as described in Figure 3(b)). MasakhaNER mainly
focuses on a few African languages. These lan-
guages are quite low-resource. Hence, these were
perfect for this research.

Model Selection To ensure a fair comparison, we
use BERT, mBERT, CANINE, and PIXEL as our choice
of pre-trained models. BERT and mBERT use sub-
word segmentation whereas CANINE is a character-
based model. Unlike these, PIXEL represents text
using visual elements rather than traditional tokens.
We selected BERT, as it is the most well-established
tokenization-based model that aligns with PIXEL’s
pre-training dataset. On the other hand, character-
level models provide another perspective for un-
derstanding and processing languages, capturing
the distinct attributes of word formations. CANINE,
with its pre-training on 104 languages, emerged
as a strong candidate. As a counterpart, we chose
mBERT, which shares a similar scope of pre-training
languages.

Experimental Setup Our experiments involved
two major training phases followed by a result ex-
traction step. In the first training phase, each lan-
guage model was fully fine-tuned on each of the
source languages for each task. The experimental
setup maintained a high computational standard to
ensure robust training and evaluation. All experi-
ments were conducted on a remote server equipped
with an A100 GPU. The analysis was conducted
over 4 (models) x 9 (source languages) x 123 (tar-
get languages) data points for Dependency Parsing
and POS tagging. For NER, the analysis was con-
ducted over all 4 (models) x 12 (source languages)
x 12 (target languages) data points. We used 10
fine-tuning steps (for §1, set ¢ = 10) for the target
languages for all tasks.

For reproducing the results, the language models
can be fully fine-tuned on the source languages (our

3A detailed list is provided in appendix A.5

*All fine-tuned models are available on HuggingFace for
further research and investigation



Languages
Hindi - Devanagari - Indo-Aryan
Japanese - Japanese - Japanese
English - Latin - Germanic
Korean - Hangul - Korean
Chinese - Han Script - Sinitic
Vietnamese - Latin - Vietic
Coptic - Coptic - Egyptian
Tamil - Tamil - Tamil-Kannada
Arabic - Arabic - Semitic

Languages
Amharic- Ge'ez- Afro-Asiatic
Hausa- Latin- Afro-Asiatic
Igbo- Latin- Niger-Conga
Kinyarwanda- Latin- Niger-Congo
Luganda- Latin- Niger-Congo
Luo- Latin- Nilo-Saharan
Nigerian Pidgin- Latin- Creole
:J | Swabhili- Latin- Niger-Congo
Wolof- Latin- Niger-Congo
“Yoruba- Latin- Niger-Congo

‘I\L)_//r

(a) POS tagging and Dependency Parsing tasks

(b) Named Entity Recognition

Figure 3: Geographic distribution of source languages (with script and family) used in the analysis across tasks.

finetuned versions can be used directly from Hug-
gingFace) to get the zero-shot results. These mod-
els can then be finetuned on the target languages
for 10 steps to get the few-shot score.

4 Results and Discussion

First, we break down the results by several key vari-
ables including the visual similarity of languages,
their lexical correspondence, and the type of lan-
guage task. Then, we discuss the performance of
these models in light of these variables, revealing
patterns regarding model characteristics.

4.1 Visual similarity is all you need

Casel (English — European) Both of PIXEL
and BERT are pre-trained in English. Therefore, for
a fair comparison with other models, we perform
a comparison where English is the only source
language. For evaluation, we consider various Eu-
ropean languages, taking into account both lexical
similarity and the LQ score on the POS tagging
task. Figure 4 represent the LQ scores of PIXEL
and CANINE when English is used as the source lan-
guage and various other languages as the targets.
Here, in Figure 4(a) we observe the proficiency of
PIXEL in handling tasks between languages shar-
ing a similar script. For example, English shares
similar degrees of lexical similarity with French
(0.27) and Russian (0.24) (§A.5 and §A.6). How-
ever, when considering the LQ scores, French sig-
nificantly outperforms Russian for PIXEL. More-
over, despite Spanish and Portuguese exhibiting
low lexical similarity coefficients with English,
they both have achieved high LQ scores. A key
factor contributing to these scores is the usage of
the Latin script. French, Spanish, and Portuguese,
which have all garnered high scores, also use the
Latin script. Russian employs a different (Cyril-
lic) script, which likely explains its relatively lower
score. Finnish, despite its use of the Latin script,
belongs to a different language family compared to
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English, which may account for the less impressive
performances. Moreover, when the script is non-
Latin as presented in Figure 4(b), CANINE has an
edge over PIXEL. The lexical similarities between
different European languages are outlined in Table
8 in the appendix.

POS Tagging
Hindi—Urdu | Hindi—Marathi
Model Score Rank | Score Rank
PIXEL | -0.4 94 17.9 5
CANINE | 96.1 3 14.6 15
mBERT 1022 2 7.3 112

Table 1: Comparison between different language models
on Hindi as the source and Urdu and Marathi as target
shows CANINE and mBERT massively favor linguistically
similar languages. PIXEL favors visual similarity

Case2 (Hindi — Urdu | Marathi) Despite the
high mutual intelligibility and substantial gram-
matical and linguistic similarities between Hindi
and Urdu, as acknowledged in the literature (Bhatt,
2005), the LQ score on the POS tagging task at-
tained by PIXEL for this language pairing is not as
high as one would anticipate (ranked 94th). The rel-
atively low performance can be attributed to their
disparate scripts, underscoring the importance of
visual similarity when using image-based language
models such as PIXEL. However, for the other three
models, with Hindi as the source, Urdu ranked in
the top 3 target languages. Table 1 represents this
phenomenon.

On the flip side, Hindi and Marathi are not mu-
tually intelligible. But both of these languages use
the Devanagari script. Sorting the LQ scores for
Hindi as the source language, Marathi comes out as
one of the top-performing target languages (4th).

Case3 (Arabic — X) In the case of Arabic as the
source language, PIXEL received the highest scores
for Persian (ranked 2nd) and Urdu (ranked 3rd) as
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Figure 4: LQ score obtained by PIXEL and CANINE on Latin and non-Latin scripts on POS tagging. PIXEL
outperforms CANINE on the POS tagging task when both source and target use the same script (on the left portion of
the graph). Conversely, PIXEL does not outperform CANINE when the scripts are dissimilar (on the right portion of

the graph)
Arabic—X (POS Tagging)

CANINE PIXEL Script  Linguistics
Lang. (X)|LQ Score, LQ Score, SimilaI;it Si rrglilarit

(Rank)  (Rank) y y
Maltese 5924) 1.5(@0) Dissimilar Very Close
Persian 15.7(6) 42.8(2) Same Dissimilar
Hebrew 43.1 (3) 36.9 (3) Close Related
Urdu 0.3(74) 24.1(6) Same Dissimilar

Table 2: LQ score and rank of PIXEL with Arabic as
the source language shows PIXEL receives a high score
when scripts are visually similar rather than when lan-
guages are only linguistically similar.

respective source languages. Persian and Urdu are
both Indo-European languages and are not at all
lexically similar to Arabic. However, these are both
written using Arabic script. On the contrary, like
Arabic, Maltese is an Afro-Asiatic language with
Semitic origin. But PIXEL performed extremely
poorly in the case of Maltese (ranked 81st). This,
we suspect, is due to the use of Latin script in
Maltese, which further emphasizes the effect of
visual similarity for PIXEL.

In the case of mBERT and CANINE, these patterns
of favoring similar-looking scripts were absent.
Rather, we saw an average score for the languages
irrespective of the script.

Cased (African — African) We’ve compared all
four models using 10 African languages from the
MasakhaNER dataset for the Named Entity Recog-
nition (NER) task. Aside from Amharic, which
uses the Ge’ez script, all other languages use the
Latin script. Figure 5 shows the average LQ score
obtained by PIXEL and CANINE models for each lan-
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guage as sources. The Table shows Amharic as an
unfit choice for the source language when the target
languages are in Latin script. Comparing PIXEL
and CANINE, we notice CANINE outperforms PIXEL.
Since PIXEL was only pre-trained on English, it is
comparatively difficult for PIXEL to perform well
on African languages. Conversely, CANINE was
pre-trained on Yoruba (an African language) which
has strong linguistic similarities with other African
languages.

Observation Clearly, the above findings high-
light the positive correlation between the perfor-
mance of PIXEL, an image-based language model,
and the visual similarity between languages. It
is logical to expect that visually similar language
would demonstrate better performance in cross-
lingual transfer when utilizing PIXEL. The findings
in the CANINE and mBERT comparison further re-
inforce the notion that language models that do
not rely on visual representations do not exhibit
a strong correlation between their scores and the
visual similarity of the source and target languages.

4.2 Task Specific Performance

POS tagging In general, mBERT learns quickly
compared to other models. This can be attributed
to several reasons. First of all, mBERT operates on
token-level representations and manifests heavy re-
liance on word-level semantics. So it is easier to
associate the word or subword tokens with their
respective POS tags, compared to character-level
models like CANINE. Moreover, mBERT’s predefined
vocabulary, which includes commonly used sub-
words can potentially expedite the learning process
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Figure 5: Average LQ scores with each language as sources for NER task (for PIXEL and CANINE) shows Amharic
(only non-Latin script) pairs significantly worse with other languages that use Latin script

as the model can leverage semantic associations
between these known tokens and their POS tags.
On the contrary, character-level models have larger
input sequence lengths and may require more exam-
ples to adequately learn the pattern in data which
can lead to slower learning as compared to the
tokenization-based models.

In addition, mBERT is trained on multilingual data.
So it is more efficient than BERT at transferring
knowledge from a high-resource language to a low-
resource language, enhancing its few-shot learning
capabilities for POS tagging tasks across different
languages.

Dependency Parsing Interestingly, CANINE per-
forms better than mBERT or BERT. This may be
partly attributed to the nature of the task. Parsing is
centered more on understanding the syntactic rela-
tionships between words in a sentence rather than
on the meanings of individual words. As CANINE
works on character level, it is more equipped to
capture finer-grained patterns in these relationships,
outperforming mBERT, exactly because the neces-
sary information is marked with affixal morphemes
in many languages. Moreover, CANINE operates
without a predefined vocabulary, and its language
independence might be advantageous when parsing
sentences in a low-resource language or multilin-
gual context. As a result, it can transfer knowl-
edge across languages more fluidly. On top of
that, the occurrence of out-of-vocabulary words or
rare words can impact the parsing accuracy. As a
character-level model, CANINE is better equipped in
handling out-of-vocabulary words, which might be
the reason for its improved performance in parsing
in few-shot scenarios.
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Coptic—X (POS tagging)
Lang. (X) | mBERT | CANINE | BERT
Telegu 38.84 37.45 55.76
French 20.73 26.93 50.59
Italian 22.63 26.07 47.12
Russian 33.48 27.15 43.55
Persian Seraji | 23.21 21.26 43.53

Table 3: Few-shot accuracy for POS tagging task with
Coptic as the source language highlighting the perfor-
mance of BERT (monolingually pre-trained) over mBERT
and CANINE. Coptic is the only source language (in our
analysis) that is not part of the pre-training languages of
mBERT and CANINE and the only language where BERT
significantly outperforms mBERT and CANINE

Named Entity Recognition NER, like POS tag-
ging, leans heavily on understanding the mean-
ings of individual words in order to accurately
identify and classify named entities. This se-
mantic nature of the task presents an advantage
for segmentation-based models such as mBERT
over character-level models like CANINE. Despite
the multilingual strength of CANINE, its focus on
character-level patterns may not sufficiently cap-
ture the semantic nuances needed for effective
NER. Conversely, mBERT, with its token-based ap-
proach, can better handle the word meanings cen-
tral to NER tasks. Therefore, in our analysis,
mBERT demonstrates slightly superior performance
in NER compared to CANINE. This suggests that
while character-level models may excel in tasks
centered on syntactic relationships, segmentation-
based models may still hold the edge in tasks with
a strong semantic dependency.

4.3 Unseen Languages

BERT performs better than mBERT and CANINE on
some languages that these multilingual models
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Figure 6: Model Recommendation Tree

were not pre-trained on. For example, consider
the case study of Coptic. In comparison to CANINE
and mBERT, BERT has better scores for POS tag-
ging when Coptic is used as the source language
(Table 3). Multilingual models like CANINE and
mBERT underperform in this case. Among all the
source languages used in our analysis, Coptic is the
only source that is not part of the pre-training lan-
guages of CANINE and mBERT. It is also the only lan-
guage where BERT has consistently outperformed
the multi-lingually pre-trained models.

This inability to effectively adapt to a new un-
seen language could be attributed to the influence
of the scripts of those languages. In these cases,
transliterating the target to a high-resource lan-
guage has been shown to improve performance
on downstream tasks (Muller et al., 2021).

5 Model Recommendation Tree

Based on our findings, we propose a model selec-
tion pathway predicated on three primary consider-
ations: resource availability for the target language,
the presence of a visually similar high-resource
language, and the task’s semantic dependency.

High Resource Languages In the context of
high-resource languages, we recommend employ-
ing the most advanced models. Our research indi-
cates that both character-based models like CANINE
and tokenization-based models like mBERT ex-
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hibit superior performances in this setting. Gener-
ally, multilingual pre-training grants these models
a notable edge over their monolingually trained
counterparts, making them well-suited for tasks
involving high-resource languages and ensuring
efficient performance.

Visual Similarity In cases where the target lan-
guage is resource-poor but visually resembles a
high-resource language, our suggestion is to under-
take a cross-lingual transfer from the high-resource
language using a tokenization-free model like the
PIXEL. PIXEL is explicitly designed to discern and
capitalize on visual correspondences between lan-
guages, which makes it an optimal choice in in-
stances where such resemblances can be exploited.

Semantic Dependency If a high-resource lan-
guage somewhat closely related to the target lan-
guage has been used in pre-training a multilin-
gual model, the choice between different mod-
els should be guided by the task’s semantic con-
tent requirements. If the task depends heavily on
semantic understanding, models like mBERT or
similar tokenization-based models are advisable.
These models excel in scenarios where deep se-
mantic comprehension is key. Conversely, if the
task doesn’t require a strong understanding of se-
mantics, character-based models like CANINE may
be a more efficient choice. These models typically
perform well in scenarios where semantic depen-
dence is lower.

Special Cases For scenarios that do not fall
within the purview of the above-mentioned con-
ditions, a multitude of factors come into play. For
instance, when the source language was not part
of the pre-training set for the multilingual model,
we suggest transliterating the target language to a
high-resource language. Transliterating those lan-
guages substantially enhances the performance of
these multilingual models on downstream tasks.

6 Related Work

Cross-lingual transfer Cross-lingual transfer
has emerged as a valuable approach to enhance
model performance in low-resource languages
without requiring extensive amounts of target lan-
guage data (Conneau et al., 2020). XLM-R, pro-
posed by Conneau et al., demonstrates the effec-
tiveness of pre-training on a large-scale masked
language model trained on 100 languages from
CommonCrawl data. It outperforms multilingual



BERT (mBERT) on various cross-lingual bench-
marks. Similarly, Devlin et al. and Xue et al. pro-
pose finetuning approaches for existing pre-trained
language models (PLMs). Recently, another ap-
proach by Lee et al. employs adapters for cross-
lingual transfer in low-resource languages. Fus-
ing Multiple Adapters for Cross-Lingual Trans-
fer (FAD-X) utilizes language adapters and task
adapters to address the imbalance in lower-resource
languages. MAD-X (Pfeiffer et al., 2020) is another
adapter-based method that employs language, task,
and invertible adapters. Moreover, this similar set-
ting coupled with language phylogeny information
proved to be useful for low-resource cross-lingual
transfer (Faisal and Anastasopoulos, 2022).

Tokenization-free models Tokenization-based
models such as BERT (Devlin et al., 2019b),
RoBERTa (Liu et al., 2019), GPT-3 (Brown et al.,
2020), ALBERT (Lan et al., 2020), T5 (Raffel et al.,
2020) and ELECTRA (Clark et al., 2020b) are
leading the field when it comes to performance
across a broad range of natural language process-
ing tasks. However, tokenization-based models
like BERT demonstrate poor performance in unex-
plored domains (Boukkouri et al., 2020) and lack
resilience to noisy data such as typos and missed
clicks (Sun et al., 2020).

Studies have shown that models using visual
text representations are more robust (Salesky et al.,
2021). PIXEL (Rust et al., 2022) proposes the use
of visual embeddings for language modeling, elim-
inating the need for a fixed vocabulary. Research
suggests that models utilizing visual text represen-
tations exhibit greater resilience to noisy texts and
enable rapid adaptation to new languages while
maintaining performance.

CANINE (Clark et al., 2022), a character-based
model, provides an alternative approach that elim-
inates the reliance on predefined vocabularies.
CANINE surpasses vanilla BERT on the TyDiQA
benchmark (Clark et al., 2020a) by downsampling
input sequences to achieve similar speeds.

ByT5 (Xue et al., 2021a) introduces a modified
version of the standard transformer that processes
byte sequences, addressing the limitations of a fi-
nite vocabulary. Similarly, CHARFORMER (Tay
etal., 2021) proposes a gradient-based sub-word to-
kenization method that operates directly on a byte
level. It performs on par with tokenizer-based ap-
proaches and outperforms most byte-level methods.
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Language Similarity Metrics Several re-
searchers have proposed different methodologies
to quantify similarity among languages. For
instance, (Petroni and Serva, 2010) introduced
a measure of lexical distance, which quantifies
the difference between languages based on their
vocabulary. On the other hand, (Chiswick and
Miller, 2005) suggests a metric of linguistic
distance that represents how challenging it is
for English speakers to learn other languages.
However, this method relies on English speakers’
learning difficulty, making it language-biased and
not generalizable for speakers of other languages.

A different approach is presented by Ciobanu
and Dinu, who propose an automated method for
identifying pairs of cognates (words with a com-
mon etymology) across languages. But this cog-
nate identification method requires a known list of
cognates, limiting its usefulness for less-studied
languages, and it may overlook non-lexical aspects
of language similarity.

Another common tool is the Automated Sim-
ilarity Judgment Program (Automated Similarity
Judgment Program, 2023) which uses a comprehen-
sive database of vocabulary to analyze linguistic
relationships but has been criticized for its sim-
plified standard orthography and its reliance on a
limited vocabulary list.

7 Conclusion

This study provides pivotal insights into the practi-
cal application of tokenization-based as well as
tokenization-free models in cross-lingual trans-
fer tasks, accentuating the importance of con-
text and task-based model selection. However,
there’s an abundance of uncharted territory await-
ing exploration. The gaps in our understanding
of tokenization-free models such as PIXEL and
CANINE present a significant opportunity for fur-
ther research. These models, though promising,
are still in their early stages of development. This
paves the way for studies aiming to enhance their
performance, potentially through the integration
of advanced learning algorithms or novel feature
extraction techniques.

Additionally, investigating the role of tokeniza-
tion in handling different language families could
provide profound insights. For instance, how do
these models perform with agglutinative languages
like Turkish or Finnish, or with logographic lan-
guages like Chinese? Exploring such linguistic



diversity could further clarify the strengths and
weaknesses of different model types. An iterative
inclusion of extinct or less commonly spoken lan-
guages is also essential at this point.

In summary, this study marks a significant step
in understanding the capabilities and limitations of
different models in cross-lingual transfer tasks. It
opens several doors for future research, promising
an exciting trajectory for the evolution of language
modeling and translation tasks. The journey ahead,
albeit challenging, presents a wealth of opportuni-
ties for innovation and discovery.

Limitations

This research, while extensive, presents certain
limitations. Our study focuses primarily on syn-
tactic tasks, leaving semantic tasks unexplored.
While our work delves into the performance of
specific models like BERT, mBERT, PIXEL, and
CANINE, other models, especially emerging ones
like decoder-based language models, remain un-
examined in this context. The research also pre-
dominantly concerns low-resource languages, po-
tentially limiting the applicability of our findings
to high-resource contexts. Moreover, the consid-
eration of different language families, such as ag-
glutinative or logographic languages, is lacking in
this analysis. Looking ahead, we plan to address
these limitations by incorporating a broader range
of language tasks, investigating a wider array of
language models, and expanding our research to
include high-resource languages and different lan-
guage families. This will allow us to present a more
holistic understanding of cross-lingual transfer in
future studies.
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A Appendix

A.1 Frequently Asked Questions

1. Q: What did the authors mean by ‘few-shot’
and ‘zero-shot’?
A: The term ‘few-shot’ is quite loosely used in
this paper. Each model is at first fully trained
on a source language and then evaluated on
some target language. In the evaluation phase,
the model is either (i) directly evaluated on
the target language (termed as zero-shot), or
(i1) fine-tuned for a few steps on the target
language (termed as few-shot).

. Q: How can LQ score be negative and what
does it imply?
A: The LQ score does not have strong bounds.
So it can have negative scores. Since it is
a relative metric rather than an absolute one,
having a negative score does not create any
issue. It implies that the model is performing
worse for the source-target pair compared to
other sources in the system.


http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/2021.naacl-main.38
https://doi.org/10.18653/v1/2021.naacl-main.38
https://doi.org/10.18653/v1/2021.naacl-main.38
https://aclanthology.org/2020.lrec-1.497
https://aclanthology.org/2020.lrec-1.497
https://aclanthology.org/E17-5001
https://doi.org/10.1016/j.physa.2010.02.004
https://doi.org/10.1016/j.physa.2010.02.004
http://arxiv.org/abs/2005.00052
http://arxiv.org/abs/2005.00052
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
https://doi.org/10.48550/ARXIV.2207.06991
https://doi.org/10.48550/ARXIV.2104.08211
https://doi.org/10.48550/ARXIV.2104.08211
https://doi.org/10.1109/ICASSP.2012.6289079
https://doi.org/10.1109/ICASSP.2012.6289079
https://doi.org/10.48550/ARXIV.2003.04985
https://doi.org/10.48550/ARXIV.2003.04985
https://doi.org/10.48550/ARXIV.2106.12672
https://doi.org/10.48550/ARXIV.2106.12672
https://doi.org/10.48550/ARXIV.2105.13626
https://doi.org/10.48550/ARXIV.2105.13626
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.18653/v1/2021.naacl-main.41
http://arxiv.org/abs/2211.15649
http://arxiv.org/abs/2211.15649
http://arxiv.org/abs/2211.15649

3. Q: Can LQ metric be used to compare differ-
ent models?
A: Yes, LQ metric can be used to compare dif-
ferent models if the same pair of source and
target languages are considered.

A.2 LQ Score

Proof of Effectiveness of LQ Score Let Eéte) =
F,E!" = Zy, and Z4 = s, Ei(to). We can
rewrite the LQ score as:

(F = Z4) (F + %))

LQ(z, k) = S

2

We assume that a score would effectively mea-
sure the cross-lingual transfer capabilities if it gets
positively rewarded for a higher score after a few
shots of training in comparison to other language
pairs and in comparison to the state before few-shot
training. That means the growth of F' from Z; and
the difference of F' with Z4 should play a high
impact on the score.

Simplifying the right-hand-side of Eqn 1, we
get,

F2_FZA+FZy— ZaZy
ZA+e€
F Zo

=F——-F+F——7 4
Z + 7 0 4

. F+ Z Z0
—F( 7 >—F<1+F> (&)

In equation 5, the term (F + Zj) /Z 4 will be
greater than 1 when either F' is very large or Zj is
significantly larger than Z 4. That means a strong
positive score can be obtained when the few-shot
score is very high or the leap from zero-shot to
few-shot is high. The remaining term F' (1 + %)
ensures the stability of the score. So, if a model
learns quickly and gains good accuracy/las in the
early steps of training, the LQ score will give out
a strong score. If a model achieves a good score
in zero-shot learning, it also receives a good LQ
score.

3)

Limitations of LQ Score The score utilizes a
normalizing term that averages the zero-shot scores
across all source languages. So, for any pair of
languages, = and k, the LQ score will not always
be the same. It will vastly depend on the list of
source languages used in the experimentation. So,
the numeric value of the LQ score does not have a

direct meaning. However, for a given source, the
relation between the target languages is indicative
of how compatible the source and target are. On the
flip side, for a target language, the relation between
the source languages is also meaningful.

A.3 Hyper-parameters

A.3.1 Dependency Parsing

Full Fine-tuning (on source)

* Train batch size: 32

* Max Training Steps: 15000
Early Stopping: Yes

* Learning Rate: 5e-5

* Maximum Sequence Length: 256
* Eval metric: LAS

Few-shot Fine-tuning (on targets)
e Train batch size: 32

* Max Training Steps: 10

* Learning Rate: Se-5

* Maximum Sequence Length: 256
e Eval metric: LAS

A.3.2 POS Tagging

Full Fine-tuning (on source)

* Train batch size: 32

* Max Training Steps: 15000

» Early Stopping: Yes

* Learning Rate: Se-5

e Maximum Sequence Length: 256
» Eval metric: Accuracy

Few-shot Fine-tuning (on targets)
* Train batch size: 32

* Max Training Steps: 10

* Learning Rate: 5e-5

* Maximum Sequence Length: 256
» Eval metric: Accuracy

A.3.3 Named Entity Recognition

Full Fine-tuning (on source)

* Train batch size: 32

* Max Training Steps: 15000
 Early Stopping: Yes

* Learning Rate: 5Se-5

* Maximum Sequence Length: 256
» Eval metric: Accuracy

Few-shot Fine-tuning (on targets)
* Train batch size: 32

* Max Training Steps: 10

* Learning Rate: 5e-5

* Maximum Sequence Length: 256



* Eval metric: Accuracy

A.4 Source languages as target languages

Table 4 provides a comprehensive analysis of the
PIXEL model’s performance in terms of accuracy
in the POS-tagging task, evaluated in both zero-
shot and few-shot scenarios. Here, the set of source
languages also serves as the target languages, cre-
ating a self-referential evaluation method. This
unique approach further allows for a deeper under-
standing of the model’s strengths and weaknesses
when dealing with identical sources and target lan-
guages.

A.5 List of target languages

Tables 5, 6, and 7 give an elaborate list of languages
and their scripts along with their respective families.
The languages are spread across multiple scripts
and multiple families.

A.6 Lexical Similarity

Lexical similarity is the percentage obtained by
comparing standardized wordlists from two linguis-
tic varieties and tallying words similar in form and
meaning (Ethnologue, 2023). It ranges from O to
100, representing the vocabulary overlap between
two languages. Values over 85% often suggest the
speech variant may be a dialect of the compared lan-
guage. The proportion of lexical similarity between
two kinds of language is calculated by comparing
standardized lists of words and tallying the forms
that demonstrate similarity in both structure and
meaning.

Table 8 gives the similarity scores between differ-
ent European Language pairs (Ethnologue, 2023;
Fan et al., 2021).

B Additional Materials
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L;l;nagriztge English Arabic Korean Vietnamese Tamil Chinese Japanese Coptic Hindi | Average (Z4)
English 0.967 0.238 0.297 0.284 0.255 0.149 0.297 0.289 0.219 0.33
Arabic 0.238 0.958 0412 0.379 0.289 0.152 0.403 0.177 0.07 0.34
Korean 0.28 0.382 0.944 0.476 0.284 0.23 0.413 0.329 0.172 0.39
Vietnamese 0.286 0.341 0.47 0.86 0.3 0.234 0.458 0.321 0.233 0.39
Tamil 0.135 0.3 0.388 0.331 0.817 0.224 0.37 0.25 0.223 0.34
Chinese 0.336 0.32 0.428 0412 0.3 0.93 0.525 0.3 0.274 043
Japanese 0.276 0.294 0.376 0.349 0.229 0.303 0.973 0.226 0.179 0.36
Coptic 0.103 0.144 0.189 0.188 0.154 0.056 0.162 0.962 0.093 0.23
Hindi 0.229 0.215 0.292 0.302 0.24 0.202 0.274 0.209 0.964 0.33

(a) Accuracy for POS task at zero-shot
Arabic Chinese Coptic English Hindi Japanese Korean Tamil Vietnamese
Arabic 0.958 0.328 0.337 0.396 0.277 0.34 0.388 0.337 0.355
Chinese 0.371 0.93 0.339 0.366 0.395 0.531 0.414 0.328 0.391
Coptic 0.191 0.11 0.962 0.183 0.163 0.188 0.193 0.166 0.229
English 0.25 0.219 0.324 0.968 0.283 0.304 0.292 0.265 0.29
Hindi 0.311 0.288 0.331 0.319 0.964 0.264 0.261 0.257 0.349
Japanese 0.417 0.403 0.295 0.374 0.334 0.973 0.385 0.295 0.364
Korean 0.42 0.373 0416 0.404 0.403 0.409 0.943 0.384 0.47
Tamil 0.328 0.303 0.298 0.33 0.298 0.302 0.39 0.817 0.337
Vietnamese | 0.385 0.312 0.328 0.379 0.395 0.439 0.454 0.336 0.859

(b) Accuracy for POS task at few-shot

Table 4: Accuracy of PIXEL model (on POS-tagging task) of zero-shot evaluation and few-shot evaluation of 9
source languages on the same languages as targets
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Language Name Script Language Family  Sub-family
Armenian-ArmTDP Armenian Indo-European Armenian
Armenian-BSUT Armenian Indo-European Armenian
Western_Armenian-ArmTDP  Armenian Indo-European Armenian
Latvian-LVTB Latin Indo-European Baltic
Lithuanian-ALKSNIS Latin Indo-European Baltic
Lithuanian-HSE Latin Indo-European Baltic
Irish-IDT Latin Indo-European Celtic
Scottish_Gaelic-ARCOSG Latin Indo-European Celtic
Welsh-CCG Latin Indo-European Celtic
Afrikaans-AfriBooms Latin Indo-European Germanic
Danish-DDT Latin Indo-European Germanic
Dutch-Alpino Latin Indo-European Germanic
Dutch-LassySmall Latin Indo-European Germanic
English-Atis Latin Indo-European Germanic
English-ESL Latin Indo-European Germanic
English-EWT Latin Indo-European Germanic
English-GUM Latin Indo-European Germanic
English-GUMReddit Latin Indo-European Germanic
English-LinES Latin Indo-European Germanic
English-ParTUT Latin Indo-European Germanic
Faroese-FarPaHC Latin Indo-European Germanic
German-GSD Latin Indo-European Germanic
German-HDT Latin Indo-European Germanic
Icelandic-IcePaHC Latin Indo-European Germanic
Icelandic-Modern Latin Indo-European Germanic
Norwegian-Bokmaal Latin Indo-European Germanic
Norwegian-Nynorsk Latin Indo-European Germanic
Norwegian-NynorskLIA Latin Indo-European Germanic
Swedish-LinES Latin Indo-European Germanic
Swedish-Talbanken Latin Indo-European Germanic
Gothic-PROIEL Gothic Indo-European Germanic
Turkish_German-SAGT Latin Indo-European Germanic (German)
Ancient_Greek-Perseus Greek Indo-European Hellenic
Ancient_Greek-PROIEL Greek Indo-European Hellenic
Greek-GDT Greek Indo-European Hellenic
Hindi_English-HIENCS Devanagari and Latin  Indo-European Indo-Aryan
Hindi-HDTB Devanagari Indo-European Indo-Aryan
Marathi-UFAL Devanagari Indo-European Indo-Aryan
Urdu-UDTB Arabic Indo-European Indo-Aryan
Persian-PerDT Arabic Indo-European Iranian
Persian-Seraji Arabic Indo-European Iranian
Latin-ITTB Latin Indo-European Italic
Latin-LLCT Latin Indo-European Italic

Table 5: List of Target Languages (Part 1)
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Language Name Script Language Family  Sub-family
Latin-PROIEL Latin Indo-European Italic
Latin-UDante Latin Indo-European Italic
Catalan-AnCora Latin Indo-European Romance
French-FTB Latin Indo-European Romance
French-GSD Latin Indo-European Romance
French-ParTUT Latin Indo-European Romance
French-Rhapsodie Latin Indo-European Romance
French-Sequoia Latin Indo-European Romance
Galician-CTG Latin Indo-European Romance
Italian-ISDT Latin Indo-European Romance
Italian-MarkIT Latin Indo-European Romance
Italian-ParTUT Latin Indo-European Romance
Italian-PoSTWITA Latin Indo-European Romance
Italian-TWITTIRO Latin Indo-European Romance
Italian-VIT Latin Indo-European Romance
Old_French-SRCMF Latin Indo-European Romance
Portuguese-Bosque Latin Indo-European Romance
Portuguese-GSD Latin Indo-European Romance
Romanian-Nonstandard Latin Indo-European Romance
Romanian-RRT Latin Indo-European Romance
Romanian-SiMoNERo Latin Indo-European Romance
Spanish-AnCora Latin Indo-European Romance
Spanish-GSD Latin Indo-European Romance
Croatian-SET Latin Indo-European Slavic
Czech-CAC Latin Indo-European Slavic
Czech-CLTT Latin Indo-European Slavic
Czech-FicTree Latin Indo-European Slavic
Czech-PDT Latin Indo-European Slavic
Polish-LFG Latin Indo-European Slavic
Polish-PDB Latin Indo-European Slavic
Slovak-SNK Latin Indo-European Slavic
Slovenian-SSJ Latin Indo-European Slavic
Old_Church_Slavonic-PROIEL  Glagolitic and Cyrillic  Indo-European Slavic
Belarusian-HSE Cyrillic Indo-European Slavic
Bulgarian-BTB Cyrillic Indo-European Slavic
Old_East_Slavic-Birchbark Cyrillic Indo-European Slavic
Old_East_Slavic-TOROT Cyrillic Indo-European Slavic
Pomak-Philotis Cyrillic Indo-European Slavic
Russian-GSD Cyrillic Indo-European Slavic
Russian-SynTagRus Cyrillic Indo-European Slavic
Russian-Taiga Cyrillic Indo-European Slavic
Serbian-SET Cyrillic Indo-European Slavic
Ukrainian-IU Cyrillic Indo-European Slavic

Table 6: List of Target Languages (Part 2)
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Language Name Script Language Family = Sub-family
Coptic-Scriptorium Coptic Afro-Asiatic Egyptian
Maltese-MUDT Latin Afro-Asiatic Semitic
Ancient_Hebrew-PTNK  Hebrew Afro-Asiatic Semitic
Hebrew-HTB Hebrew Afro-Asiatic Semitic
Hebrew-IAHLTwiki Hebrew Afro-Asiatic Semitic
Arabic-NYUAD Arabic Afro-Asiatic Semitic
Arabic-PADT Arabic Afro-Asiatic Semitic
Vietnamese-VTB Latin Austroasiatic Vietic
Indonesian-GSD Latin Austronesian Malayo-Polynesian
Tamil-TTB Tamil Dravidian Tamil-Kannada
Telugu-MTG Telugu Dravidian Telugu-Kui
Japanese-BCCWJ Japanese (Kanji, Hiragana, Katakana) Japonic Japanese
Japanese-BCCWILUW Japanese (Kanji, Hiragana, Katakana)  Japonic Japanese
Japanese-GSD Japanese (Kanji, Hiragana, Katakana)  Japonic Japanese
Japanese-GSDLUW Japanese (Kanji, Hiragana, Katakana)  Japonic Japanese
Korean-GSD Hangul and Hanja Koreanic Korean
Korean-Kaist Hangul and Hanja Koreanic Korean
Basque-BDT Latin Language Isolate Language Isolate
Naija-NSC Latin Niger-Congo Benue-Congo
Wolof-WTB Latin Niger-Congo Senegambian
Swedish_Sign_Language Swedish Sign Language (SignWriting)  Sign Language Sign Language
Chinese-GSDSimp Simplified Chinese (Han script) Sino-Tibetan Sinitic
Classical_Chinese-Kyoto  Classical Chinese (Han script) Sino-Tibetan Sinitic
Chinese-GSD Chinese (Han script) Sino-Tibetan Sinitic
Uyghur-UDT Arabic Turkic Karluk
Turkish-Atis Latin Turkic Oghuz
Turkish-BOUN Latin Turkic Oghuz
Turkish-FrameNet Latin Turkic Oghuz
Turkish-IMST Latin Turkic Oghuz
Turkish-Kenet Latin Turkic Oghuz
Turkish-Penn Latin Turkic Oghuz
Turkish-Tourism Latin Turkic Oghuz
Estonian-EDT Latin Uralic Finnic
Estonian-EWT Latin Uralic Finnic
Finnish-FTB Latin Uralic Finnic
Finnish-TDT Latin Uralic Finnic
Hungarian-Szeged Latin Uralic Ugric
Table 7: List of Target Languages (Part 3)
Catalan English French German Italian Portuguese Romanian Russian  Spanish
Catalan 1 - 0.85 - 0.87 0.85 0.73 - 0.85
English - 1 0.27 0.6 - - - 0.24 -
French 0.85 0.27 1 0.29 0.89 0.75 0.75 - 0.75
German - 0.6 0.29 1 - - - - -
Italian 0.87 - 0.89 - 1 0.8 0.77 - 0.82
Portuguese 0.85 - 0.75 - 0.8 1 0.72 - 0.89
Romanian 0.73 - 0.75 - 0.77 0.72 1 - 0.71
Russian - 0.24 - - - - - 1 -
Spanish 0.85 - 0.75 - 0.82 0.89 0.71 - 1

Table 8: Lexical similarity among European languages (Ethnologue, 2023; Fan et al., 2021)
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| mBERT | CANINE | BERT

UD_Telugu-MTG 38.83 37.45 55.76
UD_French-ParTUT 20.37 26.93 50.52
UD_Italian-ParTUT 22.63 26.07 47.12
UD_French-Sequoia 22.57 27.72 46.64
UD_Spanish-AnCora 24.10 24.17 46.09
UD_French-GSD 22.94 28.09 46.03
UD_Galician-CTG 27.80 22.67 45.95
UD_Italian-ISDT 23.07 26.80 45.62
UD_Italian-VIT 24.43 27.54 44.61
UD_Spanish-GSD 22.55 232 43.80
UD_Russian-GSD 33.48 27.15 43.54
UD_Persian-Seraji 23.21 21.26 43.54
UD_Catalan-AnCora 22.42 23.93 4341
UD_Turkish-Kenet 32.31 32.29 43.21
UD_Portuguese-Bosque 26.99 22.92 42.51
UD_Portuguese-GSD 26.36 22.36 41.95
UD_Italian-MarkIT 21.57 26.19 41.78
UD_Turkish-FrameNet 33.33 32.45 41.38
UD_Turkish-Penn 29.87 30.68 41.25
UD_French-Rhapsodie 27.63 32.16 40.88
UD_Hebrew-IAHLTwiki 26.53 19.43 40.13
UD_Russian-SynTagRus 33.16 27.29 40.09
UD_Polish-PDB 30.01 25.15 39.90
UD_Lithuanian-ALKSNIS | 34.08 25.40 39.78
UD_Arabic-PADT 30.52 19.67 39.62
UD_Belarusian-HSE 30.87 23.30 38.41
UD_Polish-LFG 30.18 29.38 38.24
UD_Ukrainian-IU 30.56 37.60
UD_Hebrew-HTB 23.88 17.32 37.58
UD_Vietnamese-VTB 21.60 25.97 37.52
UD_Turkish-BOUN 30.42 25.66 37.35
UD_Greek-GDT 25.18 15.39 37.26
UD_Latvian-LVTB 32.35 2442 37.24
UD_Romanian-SiMoNERo | 34.12 21.87 37.23

Table 9: LQ scores of different models (using Coptic as source language)
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Abstract

While foundational speech models such as
Whisper demonstrate state-of-the-art perfor-
mance across various benchmarks, it necessi-
tates an adaptation process for specific down-
stream tasks, particularly in low-resourced lan-
guages. Classical full fine-tuning (FFT) suc-
cessfully adapts the model to downstream tasks,
but requires computational resources propor-
tional to the extensive model size. Parameter-
efficient fine-tuning (PEFT) methods intro-
duced to address this issue effectively adapt
a given model with less trainable parameters,
but demand higher inference complexities for
the increased number of overall parameters. In
response to these issues, we propose PEPSI—a
Parameter-Efficient adaPtation for the Speech
foundatIonal model. Our PEPSI integrates a
compact adapter module into the decoder layers
of the foundational model and removes neurons
irrelevant to the downstream task. Through ex-
periments, we showcase that PEPSI achieves
performance surpassing PEFT methods and
comparable to FFT, while significantly reduc-
ing trainable and inference parameters to uti-
lize Whisper on low-resourced languages that
require additional adaptation.

1 Introduction

Recent advancements in speech foundational mod-
els pre-trained on large-scale, multilingual data
have facilitated the resolution of speech recog-
nition tasks to human standards in a wide array
of languages. However, such models, including
the recently introduced Whisper (Radford et al.,
2023) and Universal Speech Model(USM) (Zhang
et al., 2023), tend to exhibit suboptimal perfor-
mance in languages like Swahili or Malayalam
that cover only a small portion of their pre-training
data. A prevalent strategy to address this limita-
tion involves adapting these models to the target

“Equal Contribution
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language of interest (Singh et al., 2023). Full fine-
tuning (FFT) involves updating all the parameters
within the model, demanding substantial computa-
tional resources. Parameter Efficient Fine-Tuning
(PEFT) methods, proposed to reduce the training
costs required for FFT, introduce additional small-
scale, trainable parameters referred to as adapters
into the model’s architecture (Houlsby et al., 2019;
Liu et al., 2021). These techniques, such as Low-
Rank Adaption (Hu et al., 2021), update only the
adapter parameters while freezing the backbone
model. While significantly reducing the compu-
tational resources for training, such methods hold
drawbacks of increasing the parameter number dur-
ing inference.

Another avenue to mitigate computational costs
involves model compression and pruning. These
approaches propose methods to reduce the model
size by eliminating specific neurons from model
weight matrices (LeCun et al., 1989). These sub-
networks are identified by assessing magnitude
changes before and after training the model, re-
moving neurons with low weight magnitudes as
they are considered less crucial (Han et al., 2015;
Frankle and Carbin, 2018). Although these pruning
methods succeeded in reducing the weight of foun-
dational models, the resulting task performances
were not adequate for practical utilization.

1.1 Main Idea and Its Novelty

Building upon previous research by (Wang et al.,
2020; Houston and Kirchhoff, 2023), which un-
covered the existence of language-specific param-
eters and multilingual interference within Large
Language Models (LLMs), we propose that a sim-
ilar phenomenon may also be present in the foun-
dational speech recognition model, Whisper. We
hypothesize that not all neurons are essential for
addressing ASR tasks in a specific target language.
Hence, eliminating these non-essential neurons
could alleviate computational load while maintain-

Proceedings of the The 3rd Workshop on Multi-lingual Representation Learning (MRL), pages 85-94
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ing task performance. Furthermore, we postulate
that not all layers are language-dependent and ques-
tion whether incorporating adapters into the text-
related layers (decoders) could enhance predicting
text token outputs.

In this context, we introduce PEPSI, a
Parameter-Efficient adaPtation for the Speech foun-
datlonal model, designed to address ASR tasks
for a specific language. We adopt the established
PEFT method introduced in Hu et al. (2021) to
align the foundational model’s knowledge with the
target language. Subsequently, we maintain the
LoRA adapter attached to the Whisper and remove
language-irrelevant neurons.

We emphasize the novelty of our work. While
prior studies have focused on pruning models fol-
lowed by fine-tuning or simultaneous pruning and
fine-tuning, we take a step further by identifying
language-relevant parameters and retaining adapter-
friendly neurons to enable efficient adaptation. Un-
like previous research that concentrated on show-
casing Whisper’s capabilities or enhancing its per-
formance during adaptation, our study addresses
the practical concern of reducing computation over-
head during adaptation, an aspect that has received
limited attention.

Secondly, we identify that the language-relevant
components of Whisper are associated with text-
related decoders, rather than speech-related en-
coders. Building on this insight, we pioneer the
application of the LoRA adapter to Whisper, exclu-
sively integrating adapters at decoder layers. This
is in contrast to prior adapter studies that focused
on incorporating adapters throughout all layers of
the parent model. Lastly, we introduce PEPSI as
an innovative approach that combines LoRA and
model pruning to achieve a streamlined utilization
of Whisper. Notably, our experimental focus cen-
ters on Whisper, the only available open-sourced
model that achieves state-of-the-art performance.
Through experiments, we confirm the effectiveness
of our approach in adapting the Whisper model to
a target language or a specific domain that are low-
resourced. PEPSI outperforms LoRA and matches
FFT, but with significantly less active parameters.

1.2 Key Contributions

* We discover language-specific networks
within Whisper, which can be solely utilized
to perform comparably to FFT with significant
parameter reduction.
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* From analyzing the effect of LoRA on differ-
ent layers, we demonstrate that ASR task re-
lies heavily on text decoder layers, especially
on the attention heads.

Upon the above findings, we propose PEPSI,
a novel paradigm to adapt multilingual speech
foundational models to a target language.

* We conduct experiments on 5 low-resourced
languages to demonstrate that our approach
outperforms the commonly used LoRA and
matches FFT while reducing the number of
parameters up to 50% on specific languages.

2 Related Works

2.1 Automatic Speech Recognition

Automatic Speech Recognition (ASR), or Speech
to Text (STT), transcribes a given audio into text.
Previous ASR systems utilize RNNs and CNNs as
backbone networks to improve performance (Han-
nun et al., 2014; Schneider et al., 2019). Further
research demonstrated that Transformer architec-
ture achieves a competitive recognition rate com-
pared to prior models (Baevski et al., 2019). Recent
works following the Scaling Laws (Kaplan et al.,
2020) of the NLP domain demonstrated that the
same applies to the speech domain; large speech
models pre-trained on web-scale data can solve
ASR tasks at human standards. An example is
Whisper, which effectively addresses the challenge
of weakly supervised pre-training by utilizing a
large amount of labeled audio data collected from
the web. Nevertheless, such models demand high
computational complexity and latency due to the
scale of their parameters. To address this concern,
researchers explore methods to lightly fine-tune the
large model to mitigate the cost associated with
full fine-tuning large parameter models (Shao et al.,
2023; Gong et al., 2023). We share the same goal
with the full fine-tuning scheme, but our approach
employs distinct methods.

2.2 Parameter-Efficient Fine-Tuning

Several studies have been proposed to rectify the
limitations of full fine-tuning when applied to
downstream tasks in Pre-trained Language Mod-
els(PLMs). Liu et al. (2021) and Li and Liang
(2021) optimize the input word embedding by trans-
forming it into a trainable continuous prompt em-
bedding vector. In work by Houlsby et al. (2019),
the bottleneck adapter with a transformer-based
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Figure 1: The three steps of PEPSI: (Left): Attaching LoRA onto the Whisper model. (Middle): Pruning the
Whisper neurons irrelevant to the target language; LTH is applied with the pruning input dataset in the target
language. (Right): Adapting the new language-specific model onto the target dataset.

model was proposed to improve diverse text clas-
sification tasks. To concurrently accommodate
multiple linguistic target tasks, Bapna and Firat
(2019) adds small task-specific adapter layers into
the frozen language model. Hu et al. (2021) pro-
posed LoRA, which is trainable low-rank decom-
position matrics within PLMs to diminish the train-
able parameters for downstream tasks. Our ap-
proach adopts a similar strategy to LoRA, utilizing
an injected adapter layer. However, while LoRA
integrates attention layers into the language model,
we enhance the STT performance by integrating a
compact adapter module into the decoder.

2.3 Pruning

The pruning technique implicates removing un-
necessary weights from neural networks, reduc-
ing the number of parameters while minimizing
the decrease in performance. LeCun et al. (1989)
first introduced the pruning technique using second
derivatives. Recently, Han et al. (2015) and Fran-
kle and Carbin (2018) showed that by repeatedly
removing weights with low magnitudes, the size
of image networks can be significantly reduced. In
addition, there are various pruning heuristics, such
as activations (Hu et al., 2016), redundancy (Mariet
and Sra, 2015), per-layer second derivatives (Dong
et al., 2017), and energy/computation efficiency
(Yang et al., 2017).

The Lottery Ticket Hypothesis (LTH) (Frankle
and Carbin, 2018) goes against the shared wis-
dom of pruning after training (Han et al., 2015).
LTH demonstrates the existence of subnetworks
that reach similar performance comparable to the
original network and are independently trainable
from scratch.LTH has been studied in many fields.
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Early follow-up efforts have been researched in vi-
sion tasks (Frankle et al., 2020; Renda et al., 2020).
Then, with the emergence of studies proving LTH is
applicable in NLP and RL tasks (Renda et al., 2020;
Yu et al., 2019), its scope extends. In particular, it
is shown that LTH can be applied in Transformer
architecture, commonly used as large models in
NLP downstream (Chen et al., 2020). Furthermore,
the first research, Audio Lottery, proposed apply-
ing LTH in speech tasks appeared (Ding et al.,
2021). Although we share a common topic and
scope, the difference lies in that while Audio Lot-
tery pruned a model for a single language, we ap-
plied the LTH to a multilingual model, Whisper
(Radford et al., 2023). Additionally, in contrast
to conventional research that conducts pruning on
the entire model, our approach involves using a
pruning technique that improves the performance
of models with adapters attached.

3 Discovering Language-specific Neurons

As preliminary analyses, we investigate the exis-
tence of language-specific neurons within Whisper
and whether using only these neurons damages
the ASR performance on the target language. We
conducted two experiments on the widely utilized
ASR dataset Commonvoice 13 (Ardila et al., 2020).
We selected 5 languages (i.e., Korean, Malayalam,
Japanese, Swahili, Chinese) that cover only a small
portion in the pre-training data of Whisper, and
compared with English, a language that covers the
most portion.
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Figure 2: Visualized representation similarity between
different language tokens. Note that (b) is conducted
on Whisper’s decoder module. Both experiments were
conducted using Whisperriy, as the base model.

3.1 Does language token influence the
network?

Setup In this study, we investigate the impact
of language tokens on both representation and
activation patterns within the Whisper model.
The prompt utilized in Whisper is as follows:
< |sot] >< |language| >< |task| ><
|notimestamps| >, where < |language| > cor-
responds to the language token of interest. We alter
the language tokens as < |ko| > for Korean and
< len| > for English, then quantitatively assess
the influence of its variations. We employ Cen-
tered Kernel Alignment (CKA) (Kornblith et al.,
2019) and NeuronSim (Wu et al., 2020) to analyze
activation patterns. CKA evaluates representation
similarity between layers, producing a score from 0
to 1, while NeuronSim quantifies neuron activation
similarity on a scale from O to 1, where 0 indicates
dissimilarity. It is noteworthy that CKA focuses
on representation similarity, whereas NeuronSim
concentrates on neuron activation similarity, distin-
guishing between these two concepts.

Results Figure 2 shows that different patterns are
discovered by changing the decoder input of the
model under the same audio signal conditions.
Comparing the heatmaps of similarity layers, (a)
CKA exhibits high level of similarity, whereas (b)
NeuronSim reveals a discernible block-diagonal
heatmap. We attribute this phenomenon to the
Whisper’s representation varies depending on the
decoder input language. Building upon prior re-
search, we can deduce that two models may have
similar representations but different individual neu-
rons (Wu et al., 2020).
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Alive params %

pruned on
100.0% 81.0% 65.7%
Whisperga Korean 10.5 10.2 12.9
Malayalam 10.5 10.8 15.2

Table 1: Zero-shot CER (%) results on Korean when
pruned with each language. The 100.0% is the unpruned
Whisper model.

3.2 Impact of Pruning Language-irrelevant
Neurons

Setup The previous experiment confirmed that
each language’s parameters are activated differently
in Whisper. Therefore, we identify crucial param-
eters for the specific language and determine if
achieving reasonable performance compared with
the original model is possible using only these sig-
nificant parameters. We use Whispergyai as our
backbone model. We employ iterative weight mag-
nitude pruning (IMP), a widely used algorithm in
previous LTH literature (Frankle and Carbin, 2018;
Renda et al., 2020; Ding et al., 2021), to detect
subnetworks. To identify subnetworks, IMP carries
out the following three steps: (1) Train an unpruned
model to completion on a dataset D; (2) Remove
a portion of unimportant weights with the globally
smallest magnitudes; (3) Rewind model weights to
0 (0 = Opre, the weights from a pre-trained model;
or § = 0;, the weights from ¢ training step) and
fine-tune the subnetworks to converge. Steps (2)
and (3) typically require iterative repetition to dis-
cover highly competitive winning tickets. In all
experiments, we set 5;% = (1 — 0.9%) x 100%,
where ¢ is the number of iterations and s; is the
remaining weights after pruning. We conducted
three experiments to identify parameters that oper-
ate differently for each language in Whisper.

3.2.1 Results

Language-specific Subnetworks We use LTH to
determine if we can identify significant parame-
ters for specific languages in the Whisper model.
We pruned the model separately for Korean and
Malayalam, low-resource languages in Common-
voice. After identifying subnetworks for each lan-
guage, we conducted zero-shot evaluation on Ko-
rean. In Table 1, we report our results on CER
with Whisperg,ai1 model. We observe that the
model pruned in Korean is better than that pruned
by Malayalam in all subnetworks. Furthermore,
the subnetworks exhibit reasonable performance
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Figure 3: (a) CER curves for each language. We conduct Whisperg,a;1 pruned on Korean on the Commonvoice
dataset. Also, we use IMP to prune the model. (b) Alive parameters percentage bar chart per iteration for each

model layer. We prune Whisperg,a11 based on Korean.

compared to the unpruned Whisper model. This
fact demonstrates that the model pruned in Korean
has more appropriate parameters for Korean data,
and we can detect subnetworks for Whisper. In
other words, it is evident that there are significant
parameters for specific languages in Whisper, and
we can identify subnetworks composed of these
parameters.

Zero-Shot CER for each Languages Also, in Fig-
ure 3(a), we evaluated the zero-shot CER of the
model pruned in Korean across 5 languages ex-
cept English, which covers majority of Whisper’s
pre-training data. We prune the model iteratively
at the same ratio to create subnetworks. Then,
we calculate each language’s zero-shot CER from
the subnetworks found at each iteration. As a re-
sult, the best CER score is observed in Korean and
shows minimal performance drop in all iterations,
while other languages exhibit notable performance
degradation. These results also mean that essen-
tial parameters for specific languages exist within
Whisper and can be identified.

Layer-Wise Analysis of Pruning Ratios To gain
a more detailed understanding of Whisper pruning,
we investigated the pruning ratios for each layer.
As shown in Figure 3(b), we divide the model’s
layers into eight distinct segments, and analyze the
pruning ratios of each layer at each iteration. In
Figure 3(b), we observe that no pruning occurs
in Encoder Layer Normalization, Decoder Posi-
tion Embedding, and Decoder Layer Normalization.
Furthermore, the trend in the pruned ratio of each
layer changes as the iteration progresses. Initially,
the encoder convolution layers (i.e., Encoder Con-
volution Layer I and Encoder Convolution Layer
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2) are the dominantly pruned layers, while the de-
coder layers (i.e., Decoder Token Embedding and
Decoder Transformer Blocks) are pruned more sig-
nificantly as the iteration increases. As a result, we
can deduce that subnetworks exist for specific lan-
guages, even within the encoder convolution layers
responsible for processing audio. Also, we find
that the transformer blocks in the decoder layers,
which handle text processing, are mainly pruned.

4 Our Method: PEPSI

Upon our findings from above sections, we design
and propose PEPSI, a Parameter-Efficient adapta-
tion scheme for the Speech foundational model. We
illustrate the overall architecture of our method in
Figure 1. As can be seen, our method is composed
of three parts. The first phase injects lightweight
adapters into the Whisper model for efficient adap-
tation in the following steps. Next, LTH is con-
ducted to determine the Whisper neurons relevant
to a particular language and remove those irrelevant.
In the last step, we align the model representation
with the distribution of the target language dataset
of interest by tuning the adapters injected in the
model.

4.1 Injecting Adapters to Whisper

The first part of PEPSI injects a lightweight adapter
in the Whisper model for efficient adaptation in the
following steps. We adopt LoRA as the adapter
architecture as it was shown in Hu et al. (2021) to
be the most effective in their works. Whisper fol-
lows an encoder-decoder transformer architecture
with an audio encoder attached with cross attention
to a text decoder. The adapter is injected into the



KO ML JA SW  ZH-CN EN
Train 192 509 7,071 34,980 29,383 1,013,968
Test 131 215 4961 11,271 10,624 16,372

Table 2: Statistics of each language in Commonvoice
13; the abbreviations represent Korean, Malayalam,
Japanese, Swahili, Chinese and English, in the respec-
tive order.

decoder attention layers following our hypothesis
that the text decoder requires further adaptation
than the audio encoders for an ASR task. We con-
duct experiments to verify this hypothesis in the
sections to follow.

4.2 Model Pruning

We carry out pruning on the Whisper model param-
eters to ease the increase in the number of parame-
ters brought by the addition of LoRA. Specifically,
LTH is conducted on the Whisper parameters only,
without pruning any of the adapter neurons and the
Whisper neurons attached to the adapters. This way,
the parameters and neurons of Whisper required
for connecting with LoRA remains unpruned. The
process of pruning follows the previous settings,
where we constantly remove unimportant weights
every iteration while fine-tuning the model. We
prune 50% of Whisper parameters as we figure
it is the maximum possible prune percentage to
maintain ASR performance on a specific language.

4.3 Tuning LoRA

Through the first and second steps of Adapter In-
jection and Model Pruning, we obtain a language-
specific Whisper model which is able to perform
close to the original Whisper without training. Still,
the adaptation process on the target language is
required to enhance its performance. Hence, we
train the pruned model but only the added LoRA
adapters for computational efficiency. Low-Rank
Adaptation (LoRA) enables training injected inter-
mediate layers within a neural network by optimiz-
ing rank decomposition matrices while maintain-
ing the pre-trained Whisper weights in a frozen
state—the formulation of adapter in equation 1.
output = W(x) + BA(x) (1)
where W (-) represents the frozen pre-trained
weight, with the weight matrix denoted as W &
Rk matrices B € R¥™" A € R, and the
rank r < min(d, k).
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5 Experiments

Setup We conduct experiments to test the effective-
ness of our proposed method on 5 low-resourced
languages and compare with the high-resourced
English. We aim to verify 2 objectives in our ex-
periments: 1) To prove our proposed method does
indeed bring competitive ASR performances on
a specific target language despite the significant
reduction in the number of active parameters. 2)
To confirm the proposed method eliminates un-
necessary neurons for a target language, and the
knowledge left in the model is transferable to other
datasets of the same language.

Implementation Details Following the prior
works of Choi and Park (2022), we evaluate our
method on Commonvoice, a standard evaluation
suite for multilingual ASR models. The detailed
statistics of each train/test set is summarized in
Table 2. As for the second objective of our ex-
periment, we test the transferability of our pruned
model by measuring the ASR performance on a sep-
arate dataset with the same language. The model
is first pruned with the Korean dataset in Common-
voice, then adapted to Clovacall (Ha et al., 2020)
dataset, a Korean speech dataset mainly containing
words and phrases from contact centers.

For PEPSI, we use Whisperpa,ge as our base
model, and prune 50% of its parameters. LoRA
is used as the adapter architecture and is added to
the attention heads in the text decoder. For the
LTH stage, we observe the magnitude change in
the Whisper parameters by training the model for 2
epochs with a learning rate of 1e-5. During LoRA
adaptation phase, we train the LoRA parameters
using the target language set using a learning rate
of le-3 using the AdamW optimizer.

Baselines We compare the results of PEPSI with
the following baselines:

* Whisper zero-shot: We compare the ASR
performance with zero-shot Whisper, and
show the model is not competent to be used
as-is for low-resource languages.

Whisper Full Fine-tuning: To test the effi-
ciency of our approach, we compare the num-
ber of parameters in comparison to the ASR
performance with the standard Whisper FFT.

Whisper LoRA: We compare the number of
train/test parameters with the typical LoRA, a
widely used PEFT method.
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Model # train param  # test param
CER WER CER WER CER WER CER WER CER WER CER WER
whisper zero-shot - 1.5B 6.71 2276 1024 117.8 1730 96.13 36.02 83.38 2556 98.70 5.88 11.78
whisper FFT 1.5B 1.5B 6.12 20.54 21.67 67.78 16.88 80.52 6.72 27.53 13.56 69.33 5.78 1145
whisper LoRA 2.6M 1.5B 632 21.33 3146 76.79 2236 91.70 11.38 3546 16.67 7342 581 11.52
whisper LTH - 0.77B 8.10 3047 46.89 96.62 3041 9344 1598 3870 16.12 7559 6.12 13.22
whisper LTH FT 0.77B 0.77B 7.83 28.67 33.84 8447 2838 9237 14.67 3451 1596 8336 599 12.01
OURS 2.6M 0.77B 6.28 21.39 3096 76.54 1891 90.31 1195 3502 14.03 71.71 584 11.52

Table 3: ASR performance comparison of our method (PEPSI) with baselines on each language dataset. We use
Whispery,arge as the base model and prune 50% of its parameters for LTH and PEPSI. The scores are written in %.

* Whisper LTH: We apply sole LTH on Whis-
per using the target language dataset to com-
pare its efficiency with ours. The metric is
measured under zero-shot settings after prun-
ing is complete.

Whisper LTH FT: To test the effect of tuning
a pruned model, we adapt the Whisper LTH
model with the target language dataset.

We observe the effectiveness of each method
using the standard CER / WER plus the number
of active parameters during training and inference,
and the results are summarized in Tables 3 and 4.
Note that we set the above methods as baselines
as our work is mainly focused on effectively utiliz-
ing a multilingual speech foundational model on a
specific target language; comparison with monolin-
gual models (Baevski et al., 2020) are beyond the
scope of our study.

5.1 Enhanced Parameter Efficiency

Observing the results in Table 3, it is foremost
visible that the Whisper model itself exhibits low
performance and cannot be utilized as-is for low-
resourced languages such as Malayalam or Swahili
while showing supreme performance on the high-
resourced English. While the FFT scheme on Whis-
per yields promising results across most datasets,
it requires a considerable amount of both train-
ing and inference parameters. On the contrary,
LoRA achieves error rates almost as low as the
FFT paradigm while only requiring the number
of parameters corresponding to the adapter itself.
Still, it can be observed that LoRA requires more
test time parameters than the FFT during inference
time. The LTH methods introduced to reduce the
test time parameters generally exhibit higher er-
ror rates than the abovementioned methods. Our
method, PEPSI, mitigates the drawbacks of each
work by reducing both train and test time param-
eters while matching the performance of FFT. As
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Model # train param  # test param pruned (Y/N) trained on

whisper zero-shot
whisper FFT
whisper LoRA
whisper LTH
whisper LTH FT
OURS

Clovacall
Clovacall

1.5B
2.6M

< =K=<zZzZZ

Clovacall
Clovacall

0.77B
2.6M

Table 4: ASR Results on Clovacall. For pruned models,
the models are pruned on Commonvoice Korean then
trained on Clovacall. The scores are written in %.

can be seen in Table 3, our method achieves er-
ror rates lower than the commonly used LoRA for
lower-resourced languages, and shows results com-
parable to FFT for low-resourced languages.

5.2 Transferability on Other Datasets

Aside from the performances on Commonvoice, we
measure the transferability of models pruned on a
general speech dataset to a more specific domain
with the same language of interest, such as Clo-
vacall. Table 4 shows that the Whisper zero-shot
shows high error rates on the Clovacall dataset,
hinting that the domain knowledge for contact cen-
ters is not well-formed within the Whisper model
itself. The FFT scheme is able to inject the do-
main knowledge into the model but at high com-
putational costs. LoORA shows comparable results
with low training and high inference costs, shar-
ing the identical takeaways from the above exper-
iment. Unlike the original Whisper model, the
model pruned on Commonvoice Korean causes
higher error rates than the original Whisper model
under the same zero-shot settings. Fine-tuning
the pruned model does lower the error rates, but
only to a slight degree. Our method, PEPSI, while
sharing the same two phases of pruning and adapt-
ing, lowers the error rates further to match that of
FFT but with fewer parameters. The result sug-
gests that the mismatching scale of the large-scale
Whisper model and a low-resourced language may
cause overfitting. It necessitates a more parameter-
efficient training scheme such as LoRA to prevent



# train param CER WER
i Siok 0 PN
C . .
Encoder attn 98K 2748 6062
fcl+attn 344K 2701 5871
fe2+attn 344K 2758 6113
i Siok R B
C . .
Decoder attn 98K 2411 5308
fcl+attn 344K 2479 5337
fc2+attn 344K 2427 5468

Table 5: ASR performance of LoRA injected in each
layer. attn refers to the attention layers while fcl and
fc2 refer to the fully connected layers. The scores are
written in %.

such phenomena and compression techniques to
reduce the model size to match the dataset size.

6 Ablations

6.1 Optimal Injection Point for LoRA

We excavate the optimal positioning approach for
integrating the LoRA adapter throughout the Whis-
per. We assume the adequate adaptation location
will differ from the language model to which the
original LoRA is applied. In default settings, LoORA
is applied to each attention layer in the model. How-
ever, we apply the adapters to each attention and
MLP layer to discover the optimal injection lo-
cation. We trained the model on Commonvoice
Korean. For LoRA parameter settings, we estab-
lish the alpha at 64 and the dropout at 0.05. We
summarize our results in Table 5.

We find that the components excelling in the en-
coder differ from those in the decoder. Injecting
LoRA in the decoder significantly enhances the
STT performance more than the encoder. We pre-
sume the underlying reason behind these phenom-
ena is the architectural difference in the Whisper.
In this framework, the encoder transforms input au-
dio into a representation vector while the decoder
predicts the corresponding text caption.

6.2 Trade-off between Pruned Neurons and

Performance

We aim to observe the correlation between the ratio
of neurons and performance in the Whispery,arge
model. By measuring the change in zero-shot CER
with respect to the increase in prune percentage,
we can estimate the ratio of the neurons essential
to solving ASR tasks in a particular language. Dur-
ing inference, we apply our proposed PEPSI, which
involves applying LTH to the Whisper model along-
side LoRA adapters, and we assess its performance
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Figure 4: Change in the ASR performance of PEPSI
according to the prune percentage.

using the Commonvoice Korean. The prune per-
centage is gradually incremented from 10 to 90,
with a step size of 10. For each prune percent-
age, we conduct IMP with two epochs to obtain
the pruning masks. The masks are applied to the
updated weights of the Whisper+LoRA model, and
the zero-shot performance is measured on the test
set of each language; the results are illustrated in
Figure 4.

By analyzing the overall trend between prune
percentage and CER, we observe that the Whisper
model can maintain its performance until approxi-
mately 50% of its neurons/parameters are pruned.
We assume that 50% of the parameters are com-
posed of the parameters heavily relevant to the tar-
get language, plus those containing the general rea-
soning ability the model gains from large-scale pre-
training, as similarly suggested in Lu et al. (2022).

7 Conclusion

In this paper, we proposed PEPSI, a parameter-
efficient adaptation strategy for the speech founda-
tion model in low-resource language, demonstrat-
ing competitiveness with high-parameter multilin-
gual models. The method incorporates compact
adapter modules into the decoder layers of the pre-
trained model and then eliminates neurons irrele-
vant to the target language by LTH-based pruning.
For adaptation, only the parameters of the added
LoRA are updated for efficient tuning. We exhibit
the efficiency of our approach by comparing the
ASR error rates with existing Whisper baselines in
5 low-resourced languages. We expect our study to
serve as a practical guideline for lightweight tuning
with speech foundation models and be applied to
various low-resource language research.



Limitations

Our method achieves performance surpassing the
commonly used LoRA approach with fewer infer-
ence parameters. The results are comparable to
the standard FFT but with significantly less com-
putational burden. Although our proposed PEPSI
exhibits promising results, several improvement
avenues exist. While PEPSI applies LoRA with
LTH, future works might utilize other adapter ar-
chitectures or pruning methodologies. Moreover,
enhancements to our PEPSI method might involve
integration with other speech foundational models,
such as USM (Zhang et al., 2023).

Ethics Statement

We hereby clarify that our work complies with
ACL Ethics policy. As potential social harms, our
method utilizes a well-pretrained Whisper model;
thus, any bias or fairness issues in the original pre-
trained Whisper model can be carried out during
our experiments on ASR. We encourage candidate
researchers or any users to thoroughly examine the
base model to prevent bias and fairness issues.
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Abstract

Very low-resource languages, having only a
few million tokens worth of data, are not well-
supported by multilingual NLP approaches due
to poor quality cross-lingual word representa-
tions. Recent work showed that good cross-
lingual performance can be achieved if a source
language is related to the low-resource target
language. However, not all language pairs are
related. In this paper, we propose to build mul-
tilingual word embeddings (MWESs) via a novel
language chain-based approach, that incorpo-
rates intermediate related languages to bridge
the gap between the distant source and target.
We build MWEs one language at a time by
starting from the resource rich source and se-
quentially adding each language in the chain
till we reach the target. We extend a semi-joint
bilingual approach to multiple languages in or-
der to eliminate the main weakness of previous
works, i.e., independently trained monolingual
embeddings, by anchoring the target language
around the multilingual space. We evaluate our
method on bilingual lexicon induction for 4 lan-
guage families, involving 4 very low-resource
(< 5M tokens) and 4 moderately low-resource
(£ 50M) target languages, showing improved
performance in both categories. Additionally,
our analysis reveals the importance of good
quality embeddings for intermediate languages
as well as the importance of leveraging anchor
points from all languages in the multilingual
space.

1 Introduction

Cross-lingual word representations are shared em-
bedding spaces for two — Bilingual (BWEs) — or
more languages — Multilingual Word Embeddings
(MWEs). They have been shown to be effective
for multiple tasks including machine translation
(Lample et al., 2018c) and cross-lingual transfer
learning (Schuster et al., 2019). They can be cre-
ated by jointly learning shared embedding spaces
(Lample et al., 2018a; Conneau et al., 2020) or via
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mapping approaches (Artetxe et al., 2018; Schus-
ter et al., 2019). However, their quality degrades
when low-resource languages are involved, since
they require an adequate amount of monolingual
data (Adams et al., 2017), which is especially prob-
lematic for languages with just a few millions of
tokens (Eder et al., 2021).

Recent work showed that building embeddings
jointly by representing common vocabulary items
of the source and target languages with a single em-
bedding can improve representations (Wang et al.,
2019; Woller et al., 2021). On the other hand, these
approaches require the source and target to be re-
lated, which in practice means high vocabulary
overlap. Since for many distant language pairs
this requirement is not satisfied, in this paper, we
propose to leverage a chain of intermediate lan-
guages to overcome the large language gap. We
build MWEs step-by-step, starting from the source
language and moving towards the target, incorpo-
rating a language that is related to the languages
already in the multilingual space in each step. In-
termediate languages are selected based on their
linguistic proximity to the source and target lan-
guages, as well as the availability of large enough
datasets.

Since our main targets are languages having just
a few million tokens worth of monolingual data,
we take static word embeddings (Mikolov et al.,
2013a) instead of contextualized representations
(Devlin et al., 2019) as the basis of our method,
due to the generally larger data requirements of
the latter. Additionally, the widely used mapping-
based approaches (Mikolov et al., 2013b), includ-
ing multilingual methods (Kementchedjhieva et al.,
2018; Jawanpuria et al., 2019; Chen and Cardie,
2018), require good quality monolingual word em-
beddings. Thus, to incorporate a single language to
the multilingual space in each step we rely on the
anchor-based approach of Eder et al. (2021). We re-
fer to this method as ANCHORBWES. It builds the
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target embeddings and aligns them to the source
space in one step using anchor points, thus not only
building cross-lingual representations but a better
quality target language space as well. We extend
this bilingual approach to multiple languages. In-
stead of aligning the target language to the source
in one step, we maintain a multilingual space (ini-
tialized by the source language), and adding each
intermediate and finally the target language to it
sequentially. This way we make sure that the lan-
guage gap between the two spaces in each step
stays minimal.

We evaluate our approach (CHAINMWES) on
the Bilingual Lexicon Induction (BLI) task for 4
language families, including 4 very (< 5 million
tokens) and 4 moderately low-resource (< 50 mil-
lion) languages and show improved performance
compared to both bilingual and multilingual map-
ping based baselines, as well as to the bilingual
ANCHORBWES. Additionally, we analyze the im-
portance of intermediate language quality, as well
as the role of the number of anchor points during
training. In summary, our contributions are the
following:

* we propose to strengthen word embeddings of
low-resource languages by employing a chain
of intermediate related languages in order to
reduce the language gap at each alignment
step,

we extend ANCHORBWES of Eder et al.
(2021) to multilingual word representations
which does not take the distance between the
source and target languages into considera-
tion,

we test our approach on multiple low-resource
languages and show improved performance,

+ we make our code available for public use.

2 Related Work

Bilingual lexicon induction is the task of induc-
ing word translations from monolingual corpora in
two languages (Irvine and Callison-Burch, 2017),
which became the de facto task to evaluate the
quality of cross-lingual word embeddings. There
are two main approaches to obtain MWEs: map-
ping and joint learning. Mapping approaches aim
at computing a transformation matrix to map the

lhttps ://cistern.cis.lmu.de/anchor-embeddings
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embedding space of one language onto the embed-
ding space of the others (Ravi and Knight, 2011;
Artetxe et al., 2017; Lample et al., 2018b; Artetxe
et al., 2018; Lample et al., 2018a; Artetxe et al.,
2019, inter alia). Alternatively, joint learning ap-
proaches aim at learning a shared embedding space
for two or more languages simultaneously. Luong
et al. (2015) learn sentence and word-level align-
ments jointly and create BWEs by modifying the
Skip-gram model. The Skip-gram model is also
used by Vulic and Moens (2015) who train it on a
pseudo-bilingual corpus obtained by merging two
aligned documents. Artetxe and Schwenk (2019)
use a large parallel corpus to train a bidirectional
LSTM and jointly learn representations for many
languages. Most recently, transformer based large
LMs are trained jointly on multiple languages using
a shared subword vocabulary to obtain contextu-
alized cross-lingual representations (Devlin et al.,
2019; Conneau et al., 2020). However, large LMs
require more training data than static word embed-
dings, thus we focus on the latter in our work.

Ruder et al. (2019) provided a survey paper on
cross-lingual word embedding models and identi-
fied three sub-categories within static word-level
alignment models: mapping-based approaches,
pseudo-multilingual corpus-based approaches and
joint methods, highlighting their advantages and
disadvantages. To combine the advantages of map-
ping and joint approaches Wang et al. (2019) pro-
posed to first apply joint training followed by a
mapping step on overshared words, such as false
friends. Similarly, a hybrid approach was intro-
duced in (Woller et al., 2021) for 3 languages,
which first applies joint training on two related
languages which is then mapped to the distant
third language. A semi-joint approach was intro-
duced in (Ormazabal et al., 2021) and (Eder et al.,
2021), which using a fixed pre-trained monolin-
gual space of the source language trains the target
space from scratch by aligning embeddings close to
given source anchor points. We utilize (Eder et al.,
2021) in our work, since it is evaluated on very
low-resource languages which is the main interest
of our work.

Most work on cross-lingual word embeddings
is English-centric. Anastasopoulos and Neubig
(2019) found that the choice of hub language to
which others are aligned to can significantly affect
the final performance. Other methods leveraged
multiple languages to build MWEs (Kementched-
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jhieva et al., 2018; Chen and Cardie, 2018; Jawan-
puria et al., 2019), showing that some languages
can help each other to achieve improved perfor-
mance compared to bilingual systems. However,
these approaches rely on pre-trained monolingual
embeddings, which could be difficult to train in
limited resource scenarios. In our work we also
leverage multiple languages, but mitigate the issue
of poor quality monolingual embeddings.

Se¢gaard et al. (2018) showed that embedding
spaces do not tend to be isomorphic in case of dis-
tant or low-resource language pairs, making the
task of aligning monolingual word embeddings
harder than previously assumed. Similarly, Patra
et al. (2019) empirically show that etymologically
distant language pairs are hard to align using map-
ping approaches. A non-linear transformation is
proposed in (Mohiuddin et al., 2020), which does
not assume isomorphism between language pairs,
and improved performance on moderately low-
resource languages. However, Michel et al. (2020)
show that for a very low-resource language such as
Hiligaynon, which has around 300K tokens worth
of available data, good quality monolingual word
embeddings cannot be trained, meaning that they
can neither be aligned with other languages. Eder
et al. (2021) found that mapping approaches on lan-
guages under 10M tokens achieve under 10% P@1
score when BLI is performed. In our work, we
focus on such low-resource languages and propose
to combine the advantages of related languages
in multilingual spaces and hybrid alignment ap-
proaches.

3 Method

The goal of our approach is to reduce the distance
between two languages which are being aligned
at a time. Thus instead of directly aligning the
source and target languages we incorporate a chain
of intermediate related languages in order for a
reduced distance. Our approach starts from the
source language as the initial multilingual space
and iteratively adds the languages in the chain till
it reaches the target language. We build upon the
bilingual ANCHORBWES algorithm presented in
(Eder et al., 2021) by extending it to multilingual
setting. First, we discuss the ANCHORBWES ap-
proach, followed by our proposed intermediate
language-based CHAINMWES method.
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3.1 ANCHORBWES

The anchor-based method assumes that the source
language is high-resource, thus starts by training
source monolingual word embeddings with a tradi-
tional static word embedding approach, more pre-
cisely word2vec (Mikolov et al., 2013a). Using this
vector space it trains an embedding space for the
low-resource target language by aligning them at
the same time, this way the properties of the good
quality source space, such as similar embeddings
for words with similar meaning, is transferred to the
target space. Given a seed dictionary defining word
translation pairs, the source side of the pairs are
defined as the anchor points. Instead of randomly
initializing all target language words at the begin-
ning of the training process, the method initializes
target words in the seed dictionary using their re-
lated anchor points. The rest of the training process
follows the unchanged algorithm of either CBOW
or Skip-gram on the target language corpus. This
approach significantly outperforms previous meth-
ods in low-resource bilingual settings, as demon-
strated by strong results on both simulated low-
resource language pairs (English-German) and true
low-resource language pairs (English-Hiligaynon).
Additionally, Eder et al. (2021) shows that not only
the cross-lingual performance is improved, but the
monolingual space is of better quality compared
when the target space is trained independently of
the source language.

3.2 CHAINMWES

We extend ANCHORBWES by first defining a chain
of languages C' = [c1,ca, ..., ¢p], starting from
the high-resource source language (c;) and ending
at the low-resource target language (c,,), includ-
ing intermediate languages that are related to the
preceding and following nodes. As described in
Section 4, we define chains in which the lower-
resource languages are of the same language fam-
ily. The intuition is to interleave the source and
target with languages that are similar in terms of
linguistic properties. After selecting the intermedi-
ate languages, our method comprises five steps as
depicted in Figure 1:

1. As the first step (: = 1), we construct the ini-
tial monolingual embedding space (£7) for
the source language (c;) using its monolin-
gual corpus (D7), by training a Word2Vec
(Mikolov et al., 2013a) model. We consider
this space as the initial multilingual space
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Figure 1: Visual depiction of our CHAINMWES method. The resulting embedding (), in green) is multilingual

involving all languages in the chain.

(M, := E1) which we extend in the following
steps.

In the next step (+ = ¢ + 1), we collect the
seed lexicon (L;) for training embeddings for
the next language in the chain (c;) by concate-
nating the seed lexicons of all the languages
before ¢; in the chain paired with ¢;. More
precisely:

i—1
Li=J i
k=1

where [ ; is the seed lexicon between lan-
guages k and i. Since Eder et al. (2021)
showed that ANCHORBWES performs better
as the number of available anchor points in-
crease, our goal is to take all available anchor
points already in M;_;.

Apply ANCHORBWES using M;_; as the
source embedding space, D; as the training
corpus and L; as the anchors to build embed-
dings (F;) for c¢;.

Since ANCHORBWES builds embeddings for
¢; which are aligned with the maintained mul-
tilingual space, we simply concatenate them
M, =M, 1 UE,.

Goto step 2 until the target language is
reached.
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By strategically integrating intermediate lan-
guages, we enrich the quality of the multilingual
space by making sure that the distance between
two languages at any alignment step is minimal.
Our experiments show that without the intermedi-
ate languages the quality of the embeddings built
by ANCHORBWES is negatively affected by the
large gap between the source and target.

4 Experimental Setup

In this section, we describe the experimental setup,
including the selection of languages, datasets, and
model parameters used in our study.

4.1 Data

We select four language families of different geo-
graphic locations for evaluation. Figure 2 depicts
the language similarities in 2D using lang2vec lan-
guage embeddings based on their syntactic features
(Malaviya et al., 2017). We discuss their relevance
on the final results in Section 5. Although, we
selected low-resource target and intermediate lan-
guages based on language families, we stepped
over their boundaries in order to have intermediate
languages related to the source language as well
by considering the influence some languages had
on others, e.g., during the colonial era. Our source
language is English in each setup, and sort the in-
termediate languages based on their monolingual
corpora sizes. We present the exact chains of these
languages in section 5.



Austronesian We select two languages spoken
in the Philippines: Tagalog as moderately and Hili-
gaynon as very low-resource target languages, with
Indonesian and Spanish as the intermediates. Span-
ish being an Indo-European language is related to
English. Additionally, due to colonization, it in-
fluenced the selected Austronesian languages to a
varying degree. Furthermore, Indonesian, Tagalog
and Hiligaynon show similarities, especially the
two languages of the Philippines, due to their close
proximity.

Turkic languages using the Cyrillic script. We
take Kazakh as moderately, and Chuvash and Yakut
as very low-resource languages. Since they use the
Cyrillic alphabet and mostly spoken in Russia, we
use Russian as the intermediate language. Due to
Russian being high-resource, it can be well aligned
with English.

Scandinavian We select Icelandic and Faroese as
two very low-resource languages, with Norwegian
and Swedish as the intermediates that are related to
both of them and to English.

Atlantic-Congo Finally, we select Swahili as a
moderately low-resource language, which has a
high number of loanwords from Portuguese and
German which we take as the intermediate lan-
guages. We note that we experimented with the
very low-resource Zulu and Xhosa languages as
well, however due to difficulties acquiring good
quality lexicons for training and evaluation, we
achieved near zero performance, thus we do not
present them in this paper.

The embeddings were trained on Wikipedia
dumps for all languages except Hiligaynon, which
was trained on the corpus used in (Michel et al.,
2020) due to comparison reasons. Hiligaynon is
extremely low-resource, having 345K tokens in its
monolingual corpus. Corpus sizes for each lan-
guage are presented in Table 1. Bilingual dictionar-
ies for training and testing are taken from the Wik-
tionary based resource released in (Izbicki, 2022).
As mentioned in the previous section, at each itera-
tion of our approach we take training dictionaries
between the current language and all languages
which are already in the multilingual vector space.
Since, Izbicki (2022) only release resources for En-
glish paired with various target languages, we build
dictionaries for the other language pairs through

99

otd
hil
swa °
spa o .
[}
oP0r ond
ocng
rus . swe
€€ " nor
fao .deu

chv kaz

sah

Figure 2: Visualization of language embeddings using
lang2vec syntax features. Colors indicate different lan-
guage families: Austronesian in turquoise, Turkic in
green, Scandinavian in yellow and Atlantic-Congo in
blue.

pivoting, more precisely:

lei = {(trge i, trge,i) |
(8TCe ks tTGe iy STCeis trGei) € Lo X le i,

STCei = STCe }

where [, , is a dictionary between English (e) and
an arbitrary language (), while src; , and trg, , is
a source (x) and target (y) language translation pair.
Number of dictionary entries for each language
pair is presented in Table 2.

4.2 Baselines and Model Parameters

We compare our approach to the mapping-based
bilingual VecMap (Artetxe et al., 2018) and mul-
tilingual UMWE (Chen and Cardie, 2018) ap-
proaches. Additionally, we run ANCHORBWES
(Eder et al., 2021) as our joint alignment baseline.

We trained word2vec embeddings (Mikolov
et al., 2013a) with a maximum vocabulary size
of 200000 in every setup, i.e., for the mapping-
based baselines as well as in ANCHORBWES and
CHAINMWES. The training was performed us-
ing standard hyperparameters included in the Gen-
sim Word2Vec package (Rehiiek and Sojka, 2010):
context window of 5, dimensionality of 300 and
for 5 epochs, with the exception that we used mini-
mum word frequency of 3 due to the small corpora
for the target languages. Additionally, since Eder
et al. (2021) showed that CBOW outperforms SG
in ANCHORBWES, we used the former in our ex-
periments.



Language ISO  #tokens (M)
English eng 3044

{% German deu 1124
5  Spanish spa 836
g Russian rus 717
8 Portuguese  por 377
& Swedish swe 252
Indonesian  ind 128
Norwegian  nor 127

&2  Kazakh kaz 32
% Tagalog tgl 11
B Icelandic ice 10
E  Swahili swa 9
z  Chuvash chv 4
= Yakut sah 3
g Faroese fao 2
~  Hiligaynon hil 0.35

Table 1: Selected intermediate as well as moderately
and very low-resource languages. Monolingual corpora
sizes are shown in millions.

We use the MUSE evaluation tool (Lample et al.,
2018Db) to report precision at 1, 5, and 10, using the
nearest neighbor search. For the mapping based
approaches we leverage the CSLS similarity score
as it was shown to perform better by handling the
hubness problem (Lample et al., 2018b). However,
similarly to (Woller et al., 2021) we found that
jointly trained embeddings do not benefit from the
CSLS method, thus we use simple cosine similarity
(NN) based search for both ANCHORBWES and
CHAINMWES.

5 Results

We present our results in Table 3 split into the mod-
erately and very low-resource language groups and
sorted based on the size of available monolingual
data for each target language (Table 1). Overall,
the results show the difficulties of building cross-
lingual word embeddings for the selected target
languages, since the performance is much lower
compared to high resource languages in general,
which for example is around 50% P@1 for English-
German on the Wiktionary evaluation set (Izbicki,
2022). Comparing the multilingual UMWE ap-
proach to the bilingual VecMap the results support
the use of related languages, since they improve
the performance on most source-target language
pairs. However, this is most apparent on the mod-
erately low-resource languages. The results on the
very low-resource languages are very poor for the
mapping-based approaches, which as discussed de-
pend on the quality of pre-trained monolingual em-

lang. train test | lang. train
en-de 65120 - | es-id 19952
en-es 88114 - | es-tl 26088
en-ru 67397 - | es-hil 4661
en-pt 53336 - | ru-kk 21147
en-sv 25214 - | ru-cv 1212
en-id 9868 - | ru-sah 6913
en-no 18916 - | pt-sw 13197
en-kk 8990 2358 | sv-no 15843
en-tl 15242 2597 | sv-is 13749
en-is 17004 2568 | sv-fo 6425
en-sw 5203 2132 | id-tl 6089
en-cv 170 823 | id-hil 1575
en-sah 1202 2065 | no-is 10759
en-fo 4505 1786 | no-fo 4917
en-hil 1132 200 | kk-cv 160
de-pt 44791 - | kk-sah 1000
de-sv 34659 - | tl-hil 1683
de-sw 14818 - | is-fo 5587

Table 2: Number of unique words in the train and test
dictionaries of the used language pairs.

beddings. In contrast, the semi-joint anchor-based
approaches can significantly improve the embed-
ding quality showing their superiority in the very
low-resource setups.

Our proposed CHAINMWES method outper-
forms mapping-based approaches on 7 out of 8
target languages, and ANCHORBWES on 6 target
languages, which is most apparent when retriev-
ing more than one translation candidate (P@5 and
P@10). Interestingly when looking at P@1, the
systems are close to each other, indicating that our
method improves the general neighborhood rela-
tions of the embedding space instead of just improv-
ing the embeddings of a few individual words. This
is further supported in the case of Kazakh and Ice-
landic where UMWE outperforms CHAINMWES
in terms of P@1, however it performs lower when a
larger neighborhood is leveraged for the translation.
This property is caused by the combination of the
semi-joint anchor-based training, instead of relying
on independently trained monolingual spaces, and
the smaller distances between aligned languages.

When comparing moderately and very low-
resource languages, we found similar trends in
the two groups. In both cases CHAINMWES
outperforms ANCHORBWES on 3 out of 4 lan-
guages, however in case of Hiligaynon, which has
less than 1 million tokens, the results are mixed,
i.e., ANCHORBWES tends to perform better when
the smaller neighborhood of P@5 is considered,
but it is the opposite when P@10 is measured.
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Method Intermediate P@1 P@5 P@10
Moderately low-resource

5 VecMap - 12.37 23.06 29.42
g UMWE rus 14.58 25.18 29.95
Q ANCHORBWES - 12.79 2451 3122

CHAINMWES rus 14.37 2690 33.16
oy VecMap - 7.63 1494 17.76
< UMWE esp - ind 1559 24.69 29.08
5” ANCHORBWES - 1538 26.57 3201

CHAINMWES esp - ind 1590 28.66 33.79
o VecMap - 448 926 12.68
'c% UMWE SWe - nor 12.35 18.23 21.02
§ ANCHORBWES - 877 1794 21.67
~ CHAINMWES swe - nor 8.17 18.75 23.19
. VecMap - 229 7.08 10.68
£ UMWE deu - por 13.38 24.05 28.07
% ANCHORBWES - 10.23 2144 2622

CHAINMWES deu - por 1099 20.78 25.90

Very low-resource

< VecMap - 0.00 0.00 0.00
s UMWE rus 0.00 0.30 0.30
5 ANCHORBWES - 031 061 153

CHAINMWES rus 031 092 2.75

VecMap - 0.00 0.25 0.38
2 UMWE rus 0.76 1.78 2.42
% ANCHORBWES - 292 749 990

CHAINMWES rus 203 6.98 9.14
o YecMap - 0.00 0.51 0.63
§ UMWE Swe - nor 1.01 3.42 3.93
E ANCHORBWES - 409 920 12.26

CHAINMWES SWe - nor 4.21 996 13.67
& VecMap - 0.00 0.00 0.00
= UMWE esp - ind 0.00 000  0.00
%‘3 ANCHORBWES - 5.08 7.63 8.47
T CHAINMWES esp - ind 508 6.78 10.17

Table 3: Precision at k € {1,5,10} values for the target languages paired with English as the source in each
case. The Intermediate column shows the languages in between the source and target (e.g., line 2 shows the chain

English— Russian— Kazakh

Furthermore, UMWE tends to be more compet-
itive with ANCHORBWES on the moderately low-
resource languages, e.g., it performs better in case
of Kazakh, while it does not improve over CHAIN-
MWES. Overall however, we found no strong
correlation between the available monolingual re-
sources for a given language and on which target
language CHAINMWES achieved the best results,
since the two cases where it did not improve over
the baselines are the 3" (Yakut) and 5" (Swahili)
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lowest resource languages. Looking at the visual-
ization of language embeddings in Figure 2, the
negative results on Swabhili can be explained by the
relatively large distance between its two intermedi-
ate pairs. Although Swahili has a large number of
German and Portuguese loan words, the syntactic
properties of the languages seem to be too different.
Similarly, Yakut (sah) is the furthest away from
Russian which could explain our negative results.



Method Inter. P@l1 P@5 P@I0 Method Inter. P@l P@5 P@I0
5 CHAINMWES  rus 2.03 6.98 9.14 Moderately low-resource
~ CHAINMWES _ rus - kaz 178 558 812 N CHAINMWES  rus 1437 2690 33.16
g CHAINMWES  swe - nor 421 996 13.67 =~ CHAINMWES* rus 13.67 26.19 31.22
CHAINMWES swe-nor-ice 38 7.15 881 =, CHAINMWES esp-ind 1590 2866 33.79
2 CHAINMWES esp -ind 5.08 6.78 10.17 = CHAINMWES* esp-ind 13.28 2343 28.66
CHAINMWES -ind-tgl  5.08 6.78 7.63
“p-mne-e 5 CHAINMWES swe-nor 817 1875 23.19
. . ™ CHAINMWES* swe-nor 827 1542 19.96
Table 4: Experiments on adding related moderately low-
resource languages to the language chains of very low- S CHAINMWES  deu-por 1099 20.78 25.90
resource languages ?  CHAINMWES* deu-por 11.21 20.67 2492
Very low-resource
= CHAINMWES  rus 0.31  0.92 2.75
5.1 Adding Moderate Resource Languages S  CHAINMWES* rus 061 153  3.67
Since some moderately low-resource languages are § CHAINMWES = rus 2036938 9.14
related to the very low-resource ones (Kazakh to CHAINMWES™ _ rus 228 685 901
Yakut?, Icelandic to Faroese and Tagalog to Hili- g CHAINMWES = swe-nor 421 996 13.67
.. CHAINMWES* swe-nor 396 856 12.52
gaynon), we add them to the language chain in the
. : — CHAINMWES esp-ind 508 6.78 10.17
experiments presented in Table 4. The results show, E  CHAINMWES® esp-ind 424 593 847

that although these languages are closely related,
they do not contribute positively to the quality of
the resulting MWESs. These results indicate, that
the languages involved in the language-chains as
intermediate steps should have good quality embed-
dings (the BLI performance P@5 for the Russian,
Swedish, Norwegian and Spanish range between
45% and 65%), thus embedding quality is more
important than language closeness. Additionally,
Figure 2 shows that Tagalog is less similar to In-
donesian and Spanish than to Hiligaynon, and Ice-
landic is less similar to Faroese than to Norwegian
or Swedish.

5.2 Ablation Study

An advantage of the sequential nature of our ap-
proach is that as we add more languages to the
multilingual space step-by-step, the number of po-
tential anchor points for aligning the language next
in line increases. We exploit this by accumulat-
ing all word translation pairs from the dictionaries
between all languages already in the multilingual
space and the currently trained language (Step 2).
Although this requires dictionaries between all lan-
guage pairs, we mitigated this requirement by piv-
oting through English. In Table 5 we present an
ablation study, where we turn dictionary accumu-
lation off, by using dictionaries only between the
trained language and its preceding neighbor. The
results show that this has a sizable impact on the
performance. Although there are a few cases where
P@1 is marginally improved (Icelandic, Swahili,

Kazakh is also related to Chuvash which we omitted in
these experiments due to low results on Chuvash in general.

Table 5: Results of the ablation experiments, where
we turn training dictionary accumulation off in CHAIN-
MWESs*, by using only the dictionary between a given
language and its preceding neighbor.

Chuvash and Yakut), both P@5 and P@10 are de-
creased in most cases even where P@1 is improved
except Chuvash. The least impacted by the accu-
mulated dictionaries are Turkic languages which
indicates their strong relation to Russian and dis-
tance from English which could stem from their
different scripts. Overall, these findings align with
the results of (Eder et al., 2021), who showed that
the embedding quality improves as more dictionary
entries are available.

6 Conclusion

In this paper we proposed CHAINMWES, a novel
method for enhancing multilingual embeddings of
low-resource languages by incorporating interme-
diate languages to bridge the gap between distant
source and target languages. Our approach extends
ANCHORBWES, the bilingual approach of Eder
et al. (2021) to MWEs by employing chains of re-
lated languages. We evaluate CHAINMWES on
4 language families involving 4 moderately and 4
very low-resource languages using bilingual lex-
icon induction. Our results demonstrate the ef-
fectiveness of our method showing improvements
on 6 out of 8 target languages compared to both
bilingual and multilingual mapping-based, and the
ANCHORBWES baselines. Additionally, we show
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the importance of involving only those interme-
diate languages for which building good quality
embeddings is possible.

Limitations

One limitation of our work is the manual selec-
tion of intermediate languages. Although, the se-
lection and ordering of languages in the chains
was straightforward based on language family in-
formation, such as Glottolog (Nordhoff and Ham-
marstrom, 2011), and available data size, it could
be possible that other languages which we did
not consider in our experiments are also helpful
in improving the quality of MWEs. Addition-
ally, we did not consider all possible ordering
of intermediate languages, such as the order of
English—Norwegian—Swedish—Faroese instead
of English—Swedish—Norwegian—Faroese, in
order to save resources. Thus, a wider range of
chains could uncover further improvements.
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Abstract

In this paper, we experiment with building
multilingual neural machine translation models
to translate the extremely under-resourced In-
digenous Costa Rican languages Cabécar and
Bribri — members of the Viceitic branch of
the Chibchan family — to and from Spanish.
We explore a variety of techniques, including:
(1) training trilingual models that can trans-
late Bribri or Cabécar to and from Spanish; (2)
performing self-supervised training, such as de-
noising autoencoding and masked sequence-
to-sequence reconstruction; (3) adding data
from a bilingual lexicon as additional paral-
lel data; and (4) prepending indicator tokens
to source sentences that tell the model which
language it is translating to (<2tgt>) or from
(<4src>). We observe some modest gains from
self-supervised training and adding lexical data
in this extremely under-resourced setting, and
also find that trilingual models can outperform
bilingual models, including models trained to
translate in just one direction. We also see
that prepending <2tgt> and <4src> tokens
to source sentences yields modest gains. Our
best model achieves around 26 CHRF averaged
across the four directions (Spanish <+ Cabécar,
Bribri <> Spanish), despite being trained on
only 8K parallel sentences for Bribri-Spanish
and 4K for Cabécar-Spanish.

1 Introduction

This paper focuses on building neural machine
translation (NMT) systems that translate two In-
digenous Costa Rican languages to and from Span-
ish: Cabécar and Bribri. Cabécar and Bribri both
fall under the Viceitic branch of the Chibchan lan-
guage family. The Chibchan family is native to the
Isthmo-Colombian Area, stretching from eastern
Honduras to northern Colombia, including Costa
Rica, Panama, and Nicaragua. There are hundreds
of thousands of Chibchan speakers spread through-
out this region. Along with Teribe, Cabécar and
Bribri are the only living languages in the Viceitic

branch. Cabécar and Bribri, like the other Chibchan
languages, tend to have rich and complex morphol-
ogy, compounding the challenge of building ma-
chine translation systems for them.

The Cabécar people live in the Chirripé and Ta-
lamanca regions in Eastern and Southern Costa
Rica. As of 2011, the population numbered around
14,000 (INEC, 2011), and there are an estimated
11, 100 native speakers of Cabécar presently. The
Bribri people live in southern Costa Rica and north-
ern Panama. Their population is around 17,000
(INEC, 2011), with approximately 7,000 speak-
ers of the language. Both languages are classified
as vulnerable (Moseley, 2010; Sanchez Avendaiio,
2013).

There are a number of objectives we have in
mind with this work, some of them purely tech-
nical and some of them related to language docu-
mentation and revitalization. On the technical side,
we aim to see whether multilingual MT training
and/or self-supervised training can improve trans-
lation performance for extremely under-resourced
languages. Unlike other works that attempt these
techniques at massive scale, involving hundreds
of languages and billions of sentences, we wish
to put multilingual training and self-supervision to
the test using realistic under-resourced conditions:
only three languages, four translation directions,
and tens of thousands of parallel sentences. We
hope that in training models with both Bribri and
Cabécar the model will leverage linguistic simi-
larity to improve performance in one or both lan-
guages.

On the documentation and revitalization side, we
ultimately want to build systems that Indigenous
people can use to engage with content in their com-
munity’s language, e.g. by translating Spanish web
text to Cabécar or Bribri. This capability becomes
increasingly important as indigenous cultures adopt
digital technologies and come into contact with con-
tent in other languages. If people cannot continue
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using their culture’s language in the digital age, the
language may lose even more domains of usage
and ultimately become dormant (Jany, 2018; Stern,
2018; Cruz and Waring, 2019; Zhang et al., 2022;
Orynycz, 2022). On the flip side, translating in the
other direction (e.g. {Bribri, Cabécar} — Span-
ish) can facilitate communication or help outsiders
learn indigenous languages.

The contributions of this work are as follows:

1. We train and evaluate a multilingual NMT sys-
tem that translates Cabécar and Bribri to and
from Spanish. To our knowledge, we are the
first to train and evaluate an MT system with
Cabécar, and among the first to train multi-
lingual NMT systems tailored to Indigenous
languages of the Americas.

2. We compare a number of methods for en-
hancing multilingual NMT performance on
extremely under-resourced languages, includ-
ing self-supervised methods like denoising
autoencoding and masked reconstruction, as
well as other techniques like <4src> tagging
or using bilingual lexicon entries as additional
parallel data.

3. We provide comparisons between unidirec-
tional bilingual models and bidirectional bilin-
gual models, as well as between bilingual and
trilingual models. Notably, we show that mul-
tilingual NMT models can beat bilingual mod-
els, even in an extremely resource-poor set-
ting.

2 Related Work

2.1 MT and NLP for indigenous languages of
the Americas

There are a number of previous efforts that have
looked at machine translation and other NLP tasks
for Indigenous languages of the Americas. For an
extensive list of works in this area, we recommend
the Naki GitHub page!. We will provide a brief
overview of some recent work, with a focus on MT.

The closest work to ours, who our project is in
part a follow-up to, is Feldman and Coto-Solano
(2020), which experimented with training NMT
models with back-translation for Bribri — Spanish
and Spanish — Bribri. We use an extended version
of Bribri-Spanish parallel dataset from their paper,
but there are a number of differences: (1) we train

lhttps ://github.com/pywirrarika/naki

on Cabécar-Spanish data as well; (2) we train mul-
tilingual, multidirectional models, rather than only
unidirectional bilingual models; and (3) we experi-
ment with self-supervised training on monolingual
data.

There have been various other efforts at MT
for other Amerindian languages. Some recent
works include: Zhang et al. (2020), who work
with Cherokee-English translation; Le and Sadat
(2020), who work with Inuktitut-English transla-
tion; Montoya (2019), who work with Shipibo
Konibo-Spanish translation; and Hois (2017), who
work with Wixarika-Spanish translation. These
works deploy a number of techniques for train-
ing low-resource MT models, such as incorporat-
ing language models and back-translation (Zhang
et al., 2020), morphologically segmenting polysyn-
thetic words before training (Le and Sadat, 2020),
and leveraging related-language data from higher-
resource languages to effect transfer learning (Mon-
toya, 2019). Due to the extremely low level of re-
sources for these languages, some of these works
experiment with statistical machine translation, ei-
ther in addition to NMT (e.g. Zhang et al. (2020))
or in place of it (e.g. Hois (2017)). In the Amer-
icasNLP (Mager et al., 2021) shared task on MT
for Indigenous languages of the Americas, vari-
ous authors built and evaluated systems for a di-
verse set of languages, namely: Ashéninka, Ay-
mara, Bribri, Guarani, Nahuatl, Otomi, Quechua,
Rardmuri, Shipibo-Konibo, and Wixarika.

Also of note is a recent collaborative effort be-
tween many NLP researchers who work on Indige-
nous languages of the Americas, called Americas-
NLI (Ebrahimi et al., 2022). This paper examined
the natural language understanding capabilities of
pretrained multilingual models on Indigenous lan-
guage data, investigating both zero-shot transfer
and continued pretraining on these languages. They
found that the pretrained multilingual models’ per-
formance was poor on the 10 Indigenous languages
they examined, although continued pretraining of-
fered substantial improvements. This is one of the
few large-scale collaborative efforts for Indigenous
NLP in the Americas, but there will hopefully be
more projects of this sort that focus on other tasks
such as MT.

2.2 Multilingual NMT

Multilingual NMT refers to training machine trans-
lation models on many languages, in many direc-
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tions, with a single set of parameters and a shared
vocabulary. Currently, the largest industry labs with
the most data and compute resources (e.g. Google,
Meta, Microsoft) can train models capable of trans-
lating hundreds of directions, a procedure known as
“massively multilingual machine translation” (John-
son et al., 2017; Aharoni et al., 2019; Fan et al.,
2020; NLLB Team et al., 2022; Bapna et al., 2022).
This is how state-of-the-art production MT systems
are now trained.

Multilingual NMT has a number of appeals com-
pared to training bilingual models. For one, the
parameter efficiency is much greater. The num-
ber of possible language pairs scales quadratically
with the number of languages, and if one wants
the option of translating between all possible lan-
guage pairs then the number of bilingual models
required would scale quadratically as well. For in-
stance, accommodating all possible language pairs
for 30 languages would require 435 bilingual mod-
els. By contrast, a single model could be trained
on all 30 languages, with parallel data for some
language pairs, and then there is also the possibil-
ity of performing zero-shot translation for some of
the language pairs not seen in training (Johnson
et al., 2017). Multilingual models of course must
be larger than bilingual models, but not so much
larger that their use of parameters is less efficient.

Another appeal of multilingual MT systems is
the potential for transfer learning. Specifically, it
is possible for the model to improve on translating
under-resourced languages by being trained on the
rich data for higher-resource languages. Notably,
however, this type of positive transfer is most likely
to happen when the languages are closely related
to each other genealogically (Ko et al., 2021; Kha-
tri et al., 2021). In our case, we do not have a
high-resource Chibchan language that we can use
to bootstrap training for Cabécar and Bribri (and
this is probably the case for most language families
in the world). However, it is still theoretically pos-
sible to see gains on one or both languages due to
their relatedness, even if they are both very under-
resourced.

Although multilingual NMT has been spear-
headed by large industry labs, there have been a
number of recent efforts at training multilingual
models specifically for low-resource languages.
Among these are Yigezu et al. (2021), Emezue and
Dossou (2022), and Vegi et al. (2022). All three of
these papers build systems for African languages.

Multilingual NMT hasn’t been attempted for many
Indigenous languages in other parts of the world,
and certainly not for the Chibchan languages. It
is promising, however, that industry labs are be-
ginning to introduce Indigenous languages (of the
Americas and elsewhere) into both research and
production MT systems, e.g. Aymara and Guarani
for Google Translate, and Yucatec Maya and Inuk-
titut for Microsoft Translator.

2.3 Self-supervised training

The other class of techniques we experiment with
in this paper is self-supervised training. Self-
supervised training refers to feeding the model
some manipulated (e.g. noised or masked) form
of monolingual sentences to the model and then
tasking the model with reconstructing the original
sentences. There are two types of self-supervised
training methods we experiment with in this paper:
denoising autoencoding and masked reconstruc-
tion.

The denoising autoencoding training we do is
inspired by BART (Lewis et al., 2019) and mBART
(Liu et al., 2020). In these works, sequence-to-
sequence models are fed noisy (e.g. randomly shuf-
fled) sentences and made to reconstruct the original
sentences. By pretraining on this task in multiple
languages, Liu et al. (2020) showed that the result-
ing model could be finetuned to perform well on
MT.

The second self-supervised task we experiment
with is MASS, or MAsked Sequence-to-Sequence
pretraining (Song et al., 2019). In this method, the
masked language modeling objective is generalized
such that spans of arbitrary length are masked and
the model has to predict either the masked tokens
or reconstruct the entire original sentence. We opt
for the latter approach (reconstructing the whole
sentence), and try two different masking variants
(see Section 4.2.2).

Self-supervised training has been shown to be
successful in training massively multilingual NMT
models, improving performance on low-resource
and unsupervised languages in particular (Bapna
et al., 2022; Siddhant et al., 2022; NLLB Team
et al., 2022). A limited number of works have
also looked at self-supervised training for MT in
low-resource settings, and found it to be beneficial
(Kuwanto et al., 2021; Dhar et al., 2022).

20ur masked sequence-to-sequence reconstruction task
could be viewed as denoising autoencoding as well, but we
keep it separate from our other denoising task for clarity.

108



3 Data

We have two parallel datasets at our disposal for
this work: one for Bribri-Spanish, one for Cabécar-
Spanish. The Bribri-Spanish dataset contains ~
8600 sentence pairs. These come from textbooks
for Spanish speakers to learn Bribri (Constenla
et al., 2004; Jara Murillo and Garcia Segura, 2013),
bilingual dictionaries (Margery, 2005), grammar
books (Jara Murillo, 2018a), compilations of tran-
scribed oral literature (Constenla, 2006, 1996; Gar-
cia Segura, 2016; Jara Murillo, 2018b), pedagog-
ical textbooks (Sanchez Avendaiio, 2020), and a
digitized and transcribed oral corpus with tradi-
tional stories and songs (Flores Sol6rzano, 2017).
Most of these sentences belong to general domains
(e.g. Ye’ dor bua’é ‘1 am doing well’), but they also
include technical passages from narrations about
mythology and traditional practices. This corpus is
available at the AmericasNLP 2021 repository>.

The Cabécar-Spanish dataset contains ~ 4200
sentence pairs. These come from the bilingual dic-
tionary by Gonzélez Campos and Obando Martinez
(2020). This corpus is also composed of gen-
eral sentences (e.g. Yis sér da él da ‘I live
with my brother’). These were gathered from
the authors’ fieldwork and pedagogical books
(Gonzélez Campos et al., 2020; Gonzalez Campos
and Obando Martinez, 2018).

For both language pairs, we use a 90/5/5
train/validation/test split. Due to the lack of mono-
lingual data for Bribri or Cabécar (besides Biblical
data, which we deliberately do not use due to its
linguistic and topical skew), we use the sentences
from the parallel datasets as our monolingual data
for the self-supervised (denoising/MASS) tasks as
well. We also have a small bilingual lexicon avail-
able for Cabécar-Spanish, containing 1350 entries.
We use this as additional parallel data in training a
bidirectional Cabécar <+ Spanish model (see Sec-
tion 5.2).

4 Methods

4.1 Model

We use the OpenNMT (Klein et al., 2017) imple-
mentation of the Transformer (Vaswani et al., 2017)
model for all our experiments. Each model has
~ 50M parameters and we tokenize our data using
the OpenNMT implementation of BPE (Sennrich

Shttps://github.com/AmericasNLP/
americasnlp2021

et al., 2016) with n_symbols = 10000. Unless in-
dicated otherwise, we train our models with Adam
optimization (Kingma and Ba, 2015) for 4000 steps
with a batch size of 4096, a learning rate of 2.0, 6
hidden layers, 8 attention heads, a hidden layer di-
mension of 512, a feedforward layer dimension of
2048, and a dropout probability of 0.1. We train on
one NVIDIA A100 GPU provided by Google Co-
lab, which took around 20-30 minutes per model.
Full hyperparameters are given in Section B of the
Appendix.

4.2 Training Techniques

We experiment with a variety of training techniques
to arrive at the best method, or combination of
methods. First, we train two types of bilingual mod-
els: unidirectional models, which only translate one
language to another, and bidirectional models that
translate two languages in both directions. Because
we have Cabécar-Spanish bilingual lexicon data,
we also experiment with adding that as additional
parallel signal. Second, we experiment with train-
ing trilingual models, which translate Bribri <
Spanish and Cabécar <+ Spanish.

Next, we experiment with several different self-
supervised training schemes to improve the trilin-
gual models. These methods are described below.

4.2.1

One of our main interests in this paper is training
multilingual models that translate Bribri <+ Spanish
and Cabécar <> Spanish. The only modification we
make to the training data for training the baseline
trilingual model is prepending a <2tgt> token that
tells the model which language to translate to, as in
Bapna et al. (2022). For example, when translating
Spanish to Cabécar we use the tag <2cjp>. The
models are then trained in all four directions with
a cross-entropy loss.

Multilingual Training

4.2.2 Self-supervised Training

We also experiment with self-supervised training
using monolingual data (taken from the parallel
datasets).

Denoising autoencoding One of the self-
supervised tasks we try is denoising autoencoding,
where the model is fed a noisy version of a sen-
tence and has to reconstruct the original sentence.
As our noising function, we randomly shuffle the
order of words in a sentence, similar to Lewis et al.
(2019); Liu et al. (2020). Once again following
Bapna et al. (2022), we add a <2task> tag to all
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sentences in the dataset to help the model distin-
guish the denoising task from the MT task. In this
case, that token is <2denoise> for the denoising
task and <2translate> for the MT task.

MASS The second self-supervised training tech-
nique we experiment with is MASS (Song et al.,
2019). This method involves masking tokens in the
source sentence and having the model try to recon-
struct the original sentence. Bapna et al. (2022);
Siddhant et al. (2022) show this can be used to
improve performance for many low-resource and
unsupervised languages in massively multilingual
MT systems. We employ two variants of MASS. In
the first, text spans of arbitrary length in the source
are replaced with a single [MASK] token (following
Lewis et al. (2019)). In the second, each masked
token is replaced with its own [MASK] token. In
either case, we mask 50% of the words in each sen-
tence and train on the task for all three languages.
The <2task> token we use here is <2mass>.

4.2.3 Using bilingual lexicons

We also experiment with adding bilingual lexicon
entries as extra parallel data. For this, we use a
Cabécar-Spanish bilingual lexicon to help train a
bidirectional Cabécar <+ Spanish model. Once
again, <2lang> tags are used so the model knows
which language to translate to.

5 Experiments

All models use the hyperparameters described
in Section 4.1 and Section B of the Ap-
pendix unless stated otherwise. We arrive at
these hyperparameters through manual tuning of
train_steps, learning_rate, warmup_steps,
enc/dec_layers, heads, hidden_size, and
transformer_ff. The remaining hyperparameters
are left as the defaults selected by OpenNMT.

5.1 Unidirectional bilingual models

The simplest models we train are unidirectional
bilingual models: models which just translate one
language to one other language, e.g. Spanish —
Bribri. These models act as baselines against which
to compare our bidirectional bilingual models, de-
scribed below. No modification to the training data
is necessary for these models. The models here
are referred to as Cabécar — Spanish, Spanish
— Cabécar, Bribri — Spanish, and Spanish —
Bribri.

5.2 Bidirectional bilingual models

The second type of models we train are bidirec-
tional bilingual models, which translate two lan-
guages in both directions, e.g. Cabécar <+ Spanish.
For these models, we add a <2tgt> tag to the train-
ing data so the model knows which language to
translate to. The models here are referred to as
Bribri+Spanish and Cabécar+Spanish.

We also train a Cabécar <> Spanish model
using bilingual lexicon entries as additional
parallel data, which we will refer to as
the Cabécar+Spanish+bilingual lexicon data
model.

5.3 Trilingual models

We train multilingual models that translate Bribri
< Spanish and Cabécar <+ Spanish as well.

Baseline In the baseline setup, we simply use the
hyperparameters from 4.1 to train a three-language,
four-directional model. This model is called Trilin-
gual baseline. We also train two additional models,
which are trained for 8000 steps and 12000 steps
but otherwise use the same hyperparameters as the
baseline. We do these as basic checks for approxi-
mately how long it takes the model to converge.

<4src> tagging Although all our trilingual mod-
els have <2tgt> tags to indicate which language
to translate to, we also experiment with adding
<4src> tags to tell the model which language
it’s translating from (e.g. <4cjp> when translat-
ing from Cabécar). The motivation here is that
the model could potentially get confused between
Cabécar and Bribri due to their similarity, and
an explicit tag may mitigate some of this confu-
sion. The source sentences for this model took
the form <4src> <2tgt> wordl word2. . .wordN.
This model is referred to as the Baseline+<4src>
tagging model.

Joint denoising training We also experiment
with jointly training the model on the denoising au-
toencoding task and the MT task. We try two vari-
ants of this: in the first, we simply train the model
on both tasks simultaneously for 4000 steps. This
model is called Baseline+joint denoising training.
In the second variant, we do the same but then con-
tinue finetuning the model on the MT task, with
the same data, for an extra 4000 steps. This variant
is called Baseline+joint denoising training, MT
finetuning.
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Joint MASS training Additionally, we try
jointly training the model on the MASS task and the
MT task. We use two different variants of MASS:
in the first, we replace spans of arbitrary length in
the source with a single [MASK] token. This model
is called Baseline+joint MASS training (replace
span). In the second, we replace each ablated to-
ken with a [MASK] token. This model is called
Baseline+joint MASS training (replace token).

6 Results

The results are summarized in Tables 1 and 2. Table
1 shows a comparison between the unidirectional
and bidirectional bilingual models. Table 2 gives
a comparison between the bilingual and trilingual
models.

The first thing to note is that the bidirectional
models outperform unidirectional models in all di-
rections. Across all four directions, the average
improvement (A CHRF) of the best-performing
bidirectional model was +4.9. The model with
bilingual lexicon data performs best on Spanish
— Cabécar (+5.2 over unidirectional baseline), al-
though it slightly underperforms the vanilla bilin-
gual model on Cabécar — Spanish (+0.1 vs +1.2).

Next, there are a number of takeaways from
the comparison between the bilingual and trilin-
gual models. First, note that at least one trilin-
gual model outperformed each bilingual baseline
except in the Bribri — Spanish direction, where
the next-best model got —5.7 CHRF relative to the
bilingual Bribri+-Spanish model. The reason for
this deviation from the general trend is not clear
to us. There were five trilingual models that im-
proved over the bilingual baselines in at least one
direction: Trilingual baseline, Trilingual base-
line+8000 steps, Trilingual baseline+12000 steps,
Baseline+<4src> tagging, and Baseline+joint de-
noising training, MT finetuning. The remaining
models failed to improve over the bilingual base-
lines in any direction.

Looking at average CHRF across all four
directions—denoted p4 in Table 2—we see a
near three-way tie between Baseline+joint de-
noising training, MT finetuning (26.1 CHRF),
Baseline+8000 steps (26.0 CHRF), and Base-
line+<4src> tagging (25.9 CHRF). Just looking at
the averages, it appears that these three techniques
work pretty well in our training setting: (1) simply
training the model a bit longer; (2) performing joint
denoising training, followed by MT finetuning; and

(3) adding <4src> tags to the beginning of source
sentences.

Next, we examine each translation direction
separately. For Cabécar-Spanish, the model with
<4src> tagging wins in both directions, with gains
of +3.9 CHRF in the Cabécar — Spanish direction
and +1.9 in the Spanish — Cabécar direction. For
Bribri-Spanish, the results are somewhat less clear-
cut. For Bribri — Spanish, the bilingual baseline
performs best, netting 30.8 CHRF. For Spanish —
Bribri, the 8000 steps model does best, improving
+1.2 CHRF over the bilingual baseline.

The models co-trained on the MASS task per-
formed poorly, seeing huge losses across the board.
There are a number of reasons why this might have
happened. One is that we simply did not have
enough data for the model to learn from the task ef-
fectively. The MASS task has been shown to work
well for very high-resource settings on models with
hundreds of millions or billions of parameters, and
this result might simply not scale to the extremely
low-resource, small model scenario. Another possi-
bility is that there are different ways to implement
MASS that would be more amenable to datasets of
the size studied here. In personal correspondence
with various authors on Bapna et al. (2022), we
learned that the MASS task can be difficult to im-
plement properly given the description in Song et al.
(2019). Further experimentation with the MASS
task in resource-poor settings is left for future work.

In regard to the denoising autoencoding task,
it is interesting to note that while model perfor-
mance decreased relative to the trilingual base-
line using the Baseline+joint denoising training
setup, we were able to see gains by adding in 4000
steps of MT finetuning following the joint dual-
task training. It could be that this is a quirk of very
low-resource training, as the extra finetuning step
isn’t necessary to see substantial improvements on
large, high-resource, massively multilingual mod-
els (Bapna et al., 2022; Siddhant et al., 2022). In
our setting, it seems that the model does indeed
learn from the denoising task but that it needs more
training passes on the MT data for it to really make
use of those gains on unseen MT queries at infer-
ence time.

7 Discussion

There are a number of contributions that our ex-
periments make from both a technical and a so-
cial angle. On the technical side, our experiments
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Cabécar — Spanish

Spanish — Cabécar

Bribri — Spanish

Spanish — Bribri

Unidirectional
Cabécar — Spanish 21.3 - - -
Spanish — Cabécar - 23.8 - -
Bribri — Spanish - - 249 -
Spanish — Bribri - - - 21.2
Bidirectional
Cabécar+Spanish 22.5 26.4 - -
+bilingual lexicon data 214 29.0 - -
Bribri+Spanish - - 30.8 28.6

Table 1: A comparison between unidirectional and bidirectional bilingual models (CHRF). All models are trained
for 4000 steps with identical hyperparameters. The “+4-bilingual lexicon data” model was trained with 1352 Cabécar-
Spanish bilingual lexicon entries as additional parallel data.

ha cab spa bri spa
e
spa cab spa bri
Bilingual
Cabécar+-Spanish (4000 steps) - 225 264 - -
+bilingual lexicon data - 214 290 - -
Bribri+Spanish (4000 steps) - - - 30.8 28.6
Trilingual
Trilingual baseline (4000 steps) 242 21.8 28.8 189 273
Trilingual baseline with additional training (8000 steps) 260 242 293 205 29.8
Trilingual baseline with additional training (12000 steps) 25.1 242 283 19.6 28.2
Trilingual baseline4-<4src> tagging 259 1264 309 19.1 273
Trilingual baseline+-joint denoising training 22.0 20.2 255 18.8 233
Trilingual baseline+-joint denoising training, MT finetuning 261 221 295 25.1 27.7
Trilingual baseline+joint MASS training (replace span) 11.1 9.0 147 115 93
Trilingual baseline+joint MASS training (replace token) 86 67 95 98 85

Table 2: A comparison between the bilingual and trilingual models that translate Cabécar and Bribri to/from Spanish
(performance is measured in CHRF). Green-colored indicate improvements over the baseline, with bright green
cells being the best performers. Red-colored cells indicate losses relative to the bilingual baselines. p4 indicates the

average performance across all 4 directions.

are noteworthy because they put to the test tech-
niques that have been shown to work for giant-scale
machine translation models trained with copious
amounts of data, but haven’t been rigorously ex-
amined in very under-resourced settings. Namely,
the two classes of techniques we investigate here
are (1) multilingual machine translation, and (2)
self-supervised training, namely denoising autoen-
coding and masked reconstruction (MASS).

Our results show that we can get benefits from
multilingual training even in this resource-scarce
scenario, as well as from denoising autoencoding
training. The first of these results suggests that
there is some transfer learning happening between
Bribri and Cabécar even with < 10K sentences

for each. Of course, these are closely related lan-
guages, and we would not expect such transfer to
happen between distantly related languages with
such little data. But this is a promising result for
extremely low-resource MT nonetheless.

The fact that denoising autoencoding training
did reasonably well, especially when followed by
MT finetuning, is also interesting. The upshot here
is that even a small amount of monolingual data
for a low-resource language can potentially yield
benefits on the MT task. By contrast, it is puzzling
that our implementation of MASS yielded poor re-
sults. This could be an indication that the MASS
task requires a certain amount of data to benefit MT
training, and that we were well below that thresh-
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old, but this hypothesis needs further investigation
in future work. It is also possible that a different
implementation of the MASS task could work bet-
ter for extremely low-resource settings, e.g. one
where only tokens at the beginning or end of source
sentences are masked.

Lastly, although MT performance on under-
resourced languages is far from where it needs to
be to suit the demands of actual speakers, we see
our work on these indigenous languages as a step
in the right direction. Whenever an NLP method
is shown to help high-resource, politically and eco-
nomically dominant languages like English, Span-
ish, or Chinese, that same method should be tested
on under-resourced languages, which constitute
the vast majority of the world’s languages (Joshi
et al., 2020). If the method works, then that is a
step toward making language technology better and
more inclusive. If it doesn’t, then that shows a fun-
damental limitation in state-of-the-art techniques,
because it suggests they don’t scale to down to the
languages that much of the world speaks. What we
have seen in this paper is a mixture of both these
results. We hope that these findings are helpful
for the research community and, ultimately, the
indigenous speaker communities for whom this
technology is made.

8 Conclusions

In this paper, we have experimented with train-
ing multilingual neural machine translation models
that translate the indigenous Costa Rican languages
Cabécar and Bribri to and from Spanish. First, we
provide a comparison between unidirectional bilin-
gual models and bidirectional bilingual models,
showing that the latter can outdo the former in all
directions. Next, we show that the trilingual mod-
els we train beat the bilingual baselines in all but
one of the four translation directions (namely Bribri
— Spanish). In training the trilingual models, we
experiment with a number of variables: (1) train-
ing for more steps; (2) prepending a <4src> tag to
source sentences to tell the model what language
it’s translating from, in addition to the <2tgt> tag
we use for all multidirectional models; (3) adding
in self-supervised training on monolingual data, ei-
ther denoising autoencoding or masked reconstruc-
tion (MASS); and (4) finetuning models on the MT
task following joint training on denoising autoen-
coding and MT. Out of these, the most promising
findings are that <4src> tags appear useful (espe-

cially for Cabécar <+ Spanish) and that joint de-
noising training followed by MT finetuning is an
efficacious approach. We also show that adding
bilingual lexicon entries as additional parallel data
improves performance somewhat on Spanish —
Cabécar.

Future work should look at combining these
strategies with other techniques, such as back-
translation. Additionally, with the increasing capa-
bilities of Large Language Models as general NLP
systems, much work must be done to see how their
translation abilities on under-resourced languages
can be evaluated and improved.

Limitations

One limitation of this work is the small number of
languages explored. While it is important to exam-
ine the members of the Chibchan language family
individually due to the extreme scarcity of attention
they’ve been given in the NLP literature, it is true
that the results in our paper are only directly appli-
cable to Cabécar, Bribri, and Spanish. To mitigate
this narrowness, future work should incorporate
Chibchan languages into broader multilingual NLP
efforts.

Another limitation of this work is the small
amount of training data available. Of course, this
is simply the state of affairs for extremely under
resourced languages like Cabécar and Bribri, and it
is part of the experimental design itself. However,
future efforts should focus on data resource cre-
ation in addition to modeling in order to improve
the state of technology for these languages.

Finally, a limitation of this work at present is
the fact that some of the data we used is not yet
open-source, due to intellectual property restric-
tions. However, it is our hope that all the data
associated with this project will soon be released
for public use.

Ethics Statement

Perhaps the greatest ethical concern in working on
language technology for Indigenous languages is
the European colonialist history that looms over
these languages and their associated cultures. This
history is one of violence, genocide, cultural theft
and destruction, exploitation, and bigotry. Count-
less Indigenous languages across the world have
been suppressed, stigmatized, diminished, or alto-
gether wiped out in the wake of colonialism. These,
of course, are only the linguistic consequences of a
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history that has been violent in many distinct ways.

First and foremost, the purpose of building tech-
nology for Indigenous languages should be to ben-
efit the speakers themselves. The features and po-
tential applications of the technology should be
guided by the speakers’ needs and desires. It is our
hope that our research will lead to technologies that
the Cabécar, Bribri, and other peoples can use and
benefit from, and that they can develop these tools
themselves in the near future.

Building Indigenous language technologies eth-
ically entails more than just constructing useful
systems. It also entails respect for concerns such as
data sovereignty and the ways in which the speak-
ers want their language to be used (for instance,
whether they would like outsiders to interact with
their language). While some of these matters are
not particular to Indigenous languages, they are
especially pertinent to these languages because of
the colonialist history described above.
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A Appendix: Sample outputs

Table 3 shows some examples of outputs from each
of our models in each direction.

B Hyperparameters

The full list of hyperparameters for all our models,

except where stated otherwise, is as follows:
1. train_steps = 4000

batch_size = 4096

valid_batch_size = 600

optimizer = adam

learning_rate = 2.0

warmup_steps = 8000

decay_method = noam

adam_beta2 = 0.998

label_smoothing = 0.1

position_encoding = true

. enc_layers = 6

. dec_layers = 6

. heads = 8

. hidden_size = 512

. word_vec_size = 512

. transformer_ff = 2048

. dropout_steps = [0]

dropout = 0.1

. attention_dropout = 0.1

. share_vocab = true

. share_embeddings = true

. share_decoder_embembeddings = true

. seed = 1234
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Source

Reference

Unidirectional baseline
Bidirectional bilingual baseline
Trilingual

Trilingual + <4src> tagging
Trilingual + joint denoising training
Previous model + MT finetuning
Trilingual + joint MASS training
Trilingual, 8K training steps
Trilingual, 12K training steps

Cabécar — Spanish
(Bikd matsil{ ta Tur{ ra?
(A qué distancia queda Turrialba?
Vendi la carga para Turrialba.
(Qué hora es?
(Usted conoce la casa de Turrialba?
(Cudnto es para Turrialba?
(La cafa agria tiene hueba?
(Juta tiene usted?
rd?
(Cele con Turrialba.
(Qué tiene mucha saliva .

Source

Reference

Unidirectional baseline
Bidirectional bilingual baseline
Trilingual

Trilingual + <4src> tagging
Trilingual + joint denoising training
Previous model 4+ MT finetuning
Trilingual + joint MASS training
Trilingual, 8K training steps
Trilingual, 12K training steps

Spanish — Cabécar
Llegé un hombre con mucho tamafio.
Ekla jiyi déju wakéi ta téi.
1 jdyi bitsé kate.
Ekla jiyf déju ju ska.
Jayi dékdjund tai.
Ekla jiyi dé&ju ju ska di ykla.

jdyi jina kono wa.

Mulitd jéndka tdi.
I kjuatkd damijia.
Jdy{ butsana tai.
Jdyi butsana tdi.

Bribri — Spanish

E’ kuéki e’ mekeattke se’ ia, to nai’ 1o se’ kuta, ké ro katanok.

Por eso él nos dejd eso, que la danta es nuestra hermana, no es para comer.

eso ya iba a dejar eso establecido para nosotros, que la danta es nuestra hermana,
no es para comer.

Por eso ya iba a dejar eso establecido para nosotros, que la danta es nuestra
hermana, no es para comer.

Cuando el biho suena a los bejucos , para que se transformé en lengua ;

Al principio , por eso se debe decir que en la nariz , vea.

A la hermana se les duelen las vi, las plantas.

por eso ahora , a partir de una persona , no eran para comer ,

Por que majarse usa el cuerpo para bafiar , y eso se usa la hermana ,

(Cuéndo se apagan los bribris de monte?

por eso las deidades siguen haciendo a la sefiora con un pedazo de piedra , porque
era aprovechado

Source
Reference
Unidirectional baseline

Bidirectional bilingual baseline

Trilingual

Trilingual + <4src> tagging
Trilingual + joint denoising training
Previous model + MT finetuning
Trilingual + joint MASS training
Trilingual, 8K training steps
Trilingual, 12K training steps

Spanish — Bribri
En la actualidad los jévenes no conocen los taparrabos
ifie ta se’ dulddulapa k& wa kipadawo siine ia.
ifi e alarala i cheke. ema e’ kuéki.
Skdmokol ké yo r ia dinamu surule.
Nafiéwe ta ifie ké ye’ wa kése se se se lo que ".
K4 batd ké wa ya ké wa kapa tai tdwa.
S diéi yékla ra, ka sd kdwita kochi chéli bu
K41 ki ké a” wa jévenes Ok..
Chaki ye’ chka’ awé ta .
Kawo wéle ta akéképa bdk alambre y&uk.
Skdmokol ké yor ktom se’ tabela wa.

Source

Reference

Unidirectional baseline
Bidirectional bilingual baseline
Trilingual

Trilingual + <4src> tagging
Trilingual + joint denoising training
Previous model 4+ MT finetuning
Trilingual + joint MASS training
Trilingual, 8K training steps
Trilingual, 12K training steps

Table 3: Example model outputs. Green words are those that appear in the reference.

24. valid_steps = 1000

25. accum_count = 3

26. accum_steps = 0

These hyperparameters were passed to the
translate.py function in OpenNMT-py*.

4https ://opennmt.net/OpenNMT-py/options/
translate.html
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Abstract

The Manchu language, with its roots in the his-
torical Manchurian region of Northeast China,
is now facing a critical threat of extinction, as
there are very few speakers left. In our efforts to
safeguard the Manchu language, we introduce
Mergen, the first-ever attempt at a Manchu-
Korean Machine Translation (MT) model. To
develop this model, we utilize valuable re-
sources such as the Manwén Laodang(a his-
torical book) and a Manchu-Korean dictionary.
Due to the scarcity of a Manchu-Korean par-
allel dataset, we expand our data by employ-
ing word replacement guided by GloVe em-
beddings, trained on both monolingual and
parallel texts. Our approach is built around
an encoder-decoder neural machine translation
model, incorporating a bi-directional Gated Re-
current Unit (GRU) layer. The experiments
have yielded promising results, showcasing
a significant enhancement in Manchu-Korean
translation, with a remarkable 20-30 point in-
crease in the BLEU score.

1 Introduction

Efforts to conserve and revive endangered lan-
guages have surged, with modern advancements
in Natural Language Processing (NLP) playing a
pivotal role. Zhang et al. (2020) introduce ChrEn,
a Cherokee-English parallel dataset, and examine
methodologies like Statistical Machine Translation
(SMT) and Neural Machine Translation (NMT).
Zhang et al. (2020) aid the conservation of Chero-
kee, a critically endangered Native American di-
alect. On a similar note, Luo et al. (2020) present
a decipherment model for lost languages that ad-
dresses challenges posed by non-segmented scripts
and undetermined proximate languages, leveraging
linguistic constraints and the International Phonetic
Alphabet (IPA) for phonological patterns.

Manchu language, originated from the historical
Manchurian region in Northeast China, stands as a
highly endangered Tungusic language of East Asia

(Tsunoda, 2006). There are merely few Manchu
speakers left nowadays, leading Manchu to be la-
beled ‘nearly extinct’ by UNESCO (Kim et al.,
2008). The Manchu spell checker (You, 2014) and
the Manchu corpus with morphological annotations
(Choi et al., 2023a,b) are the only prior approaches
to embrace Manchu in the field of NLP. We intro-
duce Mergen, the first Manchu-Korean machine
translation model, which marks the pioneering ef-
fort to apply MT to the Manchu language.

We employ two sets of parallel corpora for ma-
chine translation from Manchu to Korean, as de-
tailed in Kim et al. (2019). Initially, we train an
adapted version of the NMT model (Bahdanau
et al., 2016). Assuming the unexpectedly low per-
formance is due to the scarcity of Manchu-Korean
data, we augment the size of parallel data sev-
eral fold utilizing GloVe (Pennington et al., 2014).
Our findings suggest that this data augmentation
methodology substantially enhances translation
quality.

Despite the constrained availability of resources,
our goal is to enhance Manchu-Korean machine
translation performance. To symbolize our commit-
ment to the field of Manchu NLP, we christen our
model Mergen, denoting a sage or a wise individual
in the Manchu lexicon. Our translation approach,
which employs a data augmentation technique, not
only seeks to improve Manchu-Korean translation
performance but also aims to eventually serve as
a potential model for addressing NLP challenges
in other extremely low-resource scenarios as ad-
dressed in King (2015).

2 Related Work

2.1 Low-Resource Machine Translation

MT necessitates parallel data of source and tar-
get languages to be trained effectively. However,
the majority of language pairs face a scarcity of re-
sources. As aresult, there has been various research
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Stepl. Train GloVe embeddings Step3. Augment data

Version( (1) bucere jakade juse akv seme efulehe ‘

Step2. Select top 1 similar word

Figure 1: Our data augmentation methodology. First, we
train ten versions of GloVe embedding models, varying
in the minimum token length of source data and window
size. Then, the presumable synonym for the target word
is selected via comparing the frequency of outputs from
each model. Finally, we augment data through replacing
original words with synonyms if possible. The pair of
original and substituted words are in the same color.

endeavors aimed at developing translation models
in low-resource scenarios. Extended language mod-
els such as XLM-RoBERTa (Conneau et al., 2019),
mBART (Tang et al., 2021), multilingual BERT
(mBERT) (Pires et al., 2019), and mT5 (Xue et al.,
2021) are trained on diverse languages. Yet, most
of these multilingual language models tend not to
incorporate endangered languages. This leads to
an increasing disparity in NLP resources, where
less-resourced languages are further marginalized.
Numerous strategies have been attempted in low-
resource machine translation. Gibadullin et al.
(2019) and Siddhant et al. (2020) employ monolin-
gual data in low-resource NMT. Additionally, uti-
lization of pre-trained word embeddings (Qi et al.,
2018) and application of transfer learning with pre-
trained language models like XLM (Lample and
Conneau, 2019) and mBART (Liu et al., 2020) have
been employed. Furthermore, Lakew et al. (2018)
enhance the zero-shot translation capability of low-
resource languages.

2.2 Typological Similarities between Manchu
and Korean

There are several typological motivations for trans-
lating Manchu to Korean using a Machine Transla-
tion model. The genetic affinity between Manchu
and Korean is not proven, but it is well-known that
Manchu has a similar structure to that of Korean.
The word order of Manchu and Korean mostly
coincide, including the order of ‘noun-particle,
‘modifier-modified,” and ‘object-verb,” etc. (Park,

2018). Substitutes in Korean, kes, and Manchu,
-ngge, have analogous grammatical functions and
positions (Choi, 2009). The two languages both
show factivity alternation by using the attitude verb
‘to know’ (Lee, 2019) and have parallel subordi-
nated clause structures (Malchukov and Czerwin-
ski, 2020). These typological similarities between
Manchu and Korean arouse interest in understand-
ing and linguistically translating each other. In fact,
studies of the Manchu language are active in Korea
(Ko, 2023).

3 Data
3.1 Materials

The Manchu corpora used in this study comprise
all of the digitized textual data available and can be
categorized as either parallel or monolingual. The
parallel corpora are Mdnwén Ldodang (1774-1778)
and the Manchu-Korean dictionary. These corpora
consist of Manchu texts and their corresponding
translations in Korean. We only utilize a section of
the Mdnwén Ldodang and its translations from Kim
et al. (2019), which details the history of Nurhaci,
the Emperor Taizu of Qing dynasty. Additionally,
we refer to the dictionary from Lee (2017) and
select sentences with a minimum of three words.

The monolingual texts of Manchu include the
remaining part of Mdnwén Ldodang, Manchu-
Manchu dictionaries, and several pieces of liter-
ature. The part of Mdnwén Ldodang left over is
the chronicle of Hong Taiji, the Emperor Taizong
of Qing. The Manchu-Manchu dictionaries we use
are Yuzhi Qingwénjian (1708) and Yuzhi Zengding
Qingwénjian (c.1771).

The other data is composed of novels, llan gu-
run i bithe (c.1723-1735) and Gin ping mei bithe
(1708). Ilan gurun i bithe is the translated version
of The Romance of the Three Kingdoms. Gin ping
mei bithe is translated from the Chinese naturalis-
tic novel, The Plum in the Golden Vase. The size

Monolingual data Number of sentences

Minwén Laodang-Taizong 2,220
Ilan gurun i bithe 41,904
Gin ping mei bithe 21,376
Yuzhi Qingwénjian 11,954
Yuzhi Zéngding Qingwénjian 18,420
Parallel data (Man-Kor)
Minwén Laodang-Taizu 22,578
Manchu-Korean Dictionary 40,583

Table 1: The size of each material
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description of each data can be found in Table 1.

3.2 Romanization of Manchu script and
Hangul

To create a more sufficient translation model, the
script of each language should be unified in one
writing system. That is, both the source and tar-
get language should undergo transliteration to the
Latin alphabet, so-called ‘romanization’. For the
romanization of Manchu, we apply Abkai Latin
transliteration. The Abkai romanization suggested
by An (1993) is a Pinyin-based writing system. We
also use the system of Seong (1977) for the special
characters in the Manchu script. Transliteration of
Manchu to the Latin alphabet is reversible except
for a couple of letters. For the Latin translitera-
tion of Korean, we employ Yale romanization sys-
tem (Martin, 1992) and develop the corresponding
Python library'. See Appendix A for examples.

3.3 Data Augmentation

The lack of available Manchu linguistic data
poses challenges not only for the pre-training of
transformer-based models but also for the training
of simpler and more lightweight models, such as
encoder-decoder models. Inspired by TinyBERT
(Jiao et al., 2020), we adopt a novel data aug-
mentation approach. While the data augmentation
method in TinyBERT (Jiao et al., 2020) combines
both BERT (Devlin et al., 2019) and GloVe (Pen-
nington et al., 2014), we exclusively employ GloVe
embeddings. This decision stems from the absence
of a pre-trained BERT model tailored to Manchu
and the significant difficulty of pre-training a BERT
model from scratch due to the limited amount of
available textual data.

Our methodology involves training GloVe em-
bedding models with two different versions of the
dataset: (1) a dataset comprising sentences with
at least 3 words, and (2) a dataset comprising sen-
tences with at least 5 words. The dataset includes
both monolingual and parallel text data. Various
window sizes, specifically 1, 3, 5, 7, and 10, are
used during the training process, resulting in a total
of 10 distinct variations of GloVe embeddings.

For each word in the training dataset, we gather
the most similar word predicted by each individual
GloVe embedding. Amongst the list of 10 words
generated from these separate models, the word
with the highest frequency is considered the most

'anonymous author github

suitable synonym for the target word. Following
this, we substitute a single word in each sentence
from parallel text data with the identified synonym.
The augmentation steps are described in Figure
1. This procedure leads to the creation of two
augmented versions of the original dataset: full
augmentation and half augmentation. The first ver-
sion involves replacing every word possible in each
sentence with its corresponding synonym, signif-
icantly expanding the dataset size relative to the
average sentence length. The second version is
generated by replacing half of the words in each
sentence with their respective synonyms, resulting
in a dataset expansion about half the size of the first
method. Additional details regarding the original
and augmented dataset are available in Table 2.

Minwén Laodang Man-Kor Dict
—Taizu (train)

augmentation

Before augmentation 20,320 40,583
Full augmentation 179,843 154,404
Half augmentation 99,506 100,694

Table 2: The number of sentences of parallel text data
before and after augmentation

4 Experiments

4.1 Task Details

In the experiment, we merge Mdnwén Ldodang
with Manchu-Korean dictionary and shuffle them
together. The combined dataset is then divided into
training, validation, and testing subsets. These sub-
sets are split in an 8:1:1 ratio. In the augmentation
process, we first shuffle and then augment the data
to even out the word distributions, finally splitting
into subsets.

4.2 Model

We adopt the sequence-to-sequence (seq2seq)
framework, a deep learning approach designed to
transform one sequence into another. Our model
is based on the encoder-decoder structure of the
NMT (Bahdanau et al., 2016), implemented with bi-
directional Gated Recurrent Unit (GRU) layer (Cho
et al., 2014). We incorporate two techniques to en-
hance the performance: packed padded sequences
and masking. Packed padded sequences ensure
that the RNN processes only the genuine elements
of the input sentence, excluding the padded ones.
Masking directs the model to deliberately over-
look specific components, like attention weights
assigned to padded sections.
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Train Test BLEU PPL
Before augmentation (No augmentation)
Minwén Laodang Manwén Liodang 0.0 72.50
Man-Kor Dict Man-Kor Dict 0.0 59.34
Manwén Laodang 0.0 61.83
Combined Man-Kor Dict 0.0 61.16
Combined 0.0 69.62
Half augmentation
Minwén Ldodang Manwén Liaodang 3838  147.07
Man-Kor Dict Man-Kor Dict 0.0 174.94
Minwén Laodang  36.05  192.95
Combined Man-Kor Dict 2.37 36.14
Combined 27.59 29.22
Full augmentation
Miénwén Laodang Manwén Laodang  38.95  1549.40
Man-Kor Dict Man-Kor Dict 0.0 158.25
Manwén Laodang  37.17  447.59
Combined Man-Kor Dict 2.26 46.54
Combined 28.00 41.97

Table 3: Manchu-Korean Translation Performance

4.3 Results and Discussions

We perform machine translation and evaluate the
performance on all the available combinations
of parallel corpora: Mdnwén Ldodang, Manchu-
Korean dictionary, and the combined dataset. In
particular, we augment the training sets of each cor-
pus to alleviate the data scarcity problem. Table 3
shows the performance of our Manchu-Korean
translation models, with BLEU score (Papineni
et al., 2002) and Perplexity (PPL) as the metrices.
We train each model for 5 epochs and report the
one with the best performance.

The first block of Table 3 shows the translation
performance based on the original Manchu-Korean
parallel corpora. All the experiments here show
BLEU scores of 0.0, which represent that none of
the test sentences are accurately translated. Most
of the predicted translations include the special
symbol ‘<UNK>’ instead of proper Korean tokens,
possibly due to the small dataset and vocabulary
size.

The second block shows the experiment results
from the augmented version of the parallel corpora,
where up to 50% of the tokens in each sentence are
replaced for data augmentation. The third block
displays experiments on another augmented ver-
sion where all tokens with substitutes are replaced.
The augmentation procedure increases the size of
the training set, resulting in a significant rise in the
translation performance. BLEU scores exceed 38
on the Mdnwén Ldodang test set, and around 28
on the combined test set. The two versions of the
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augmented dataset show comparable performance,
but replacing all the possible words in the corpus
resulted in slightly higher BLEU scores.

Due to data augmentation, the vocabulary for
each model is expanded; for example, the origi-
nal Mdnwén Ldodang vocabulary includes 4,335
words, while the full-augmented dataset constructs
an expanded vocabulary with 11,089 words. A
larger vocabulary and training set may have helped
the language model’s representation and result in
better translation performance. Additionally, most
newly induced words are from the augmentation
sources which include monolingual Manchu texts,
different from our parallel corpora. This expansion
of word diversity may have also affected the mod-
els’ perplexity to increase when they predicted the
next words in each sentence.

On the other hand, results on the Manchu-
Korean dictionary are consistently very low, and
this may have influenced the lower performance
of the combined test set. We suppose that it is be-
cause the corpus is a dictionary, where each line
is a unique word or phrase. The training set and
the test set would have much fewer overlaps in
their vocabularies, and this could cause a number
of ‘<UNK>’ generations in the model prediction.

5 Conclusion

In our exploration of the critically endangered
Manchu language, we have made significant strides
towards development of low-resource NLP through
the development of the Manchu-Korean MT sys-
tem, "Mergen." Our endeavor to train this model,
despite the challenges posed by the scarcity of a
Manchu-Korean parallel dataset, demonstrates the
potential of an innovative data augmentation strat-
egy. This attempt is also significant in that we have
collected all the digitized Manchu text data. By
leveraging resources such as "Manwén Laodang"
and a Manchu-Korean dictionary, and by adopting
a word substitution techniqus guided by GloVe em-
beddings, we have not only built a functional MT
system but have also considerably enhanced its ac-
curacy, as evidenced by the increase in the BLEU
score. Our encoder-decoder NMT model, equipped
with a bi-directional GRU layer, has shown promis-
ing results, offering hope for the preservation and
accessibility of the Manchu language to future gen-
erations. We anticipate that this research will serve
as a foundation for further innovations in the realm
of endangered language preservation.



Limitations

The main limitation of this study is the scarcity
of resources. Numerous Manchu literatures exist
in East Asia (Vovin, 2023), including China (EI-
liott, 2001), Korea (Ko and You, 2012), and Mon-
golia (Choi, 2014). However, most of them lack
an electronic version. The only publicly available
Manchu language database is the Manchu Dictio-
nary and Literature DB, created by Seoul National
University and supported by the National Research
Foundation of Korea.? Furthermore, the majority
of these resources have not been translated into
Korean. To address this gap, we intend to pro-
vide supplementary parallel texts translated into
Korean for further study. In addition, we plan to
implement a cutting-edge method of Transformer-
based language model including Manchu language.
Knowledge Distillation could be a way for model-
ing endangered languages, training a small student
model based on those languages and improving it
with a teacher model based on high-resource lan-
guages (Heffernan et al., 2022).

Ethics Statement

The Manchu language, classified as critically en-
dangered, remains underrepresented due to its
scarce resources. As such, it has yet to be in-
corporated into any multilingual language models.
This study pioneers Manchu translation efforts, an
endeavor previously uncharted. Our primary re-
search objective as NLP practitioners is to prevent
the extinction of Manchu language and ensure its
preservation. We have no intention of commercial-
izing the translation model. Instead, by making the
model publicly available, we aim to facilitate and
encourage as many individuals as possible to learn
Manchu using our translator. We are committed
to continuous collaboration with Manchu language
researchers. We endeavor to enhance the perfor-
mance of our translator and regularly update it with
new Manchu data to ensure its accuracy.
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A Example Appendix

<Manchu sentence >
°'6’\-)vonwn F" o’é\‘wc A os\)

cooha be waki seme tumen cooha be unggifi tosoho,

<Translated sentence >
FAE Fole3 P4 QA B w2 Het

kwunsalul cwukilyeko kwunsa ilman myengul ponayse kilul makassta

Figure 2: Example of Romanizations of Manchu text
and Korean text
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Abstract

Open Information Extraction (OpenlE) struc-
tures information from natural language text in
the form of (subject, predicate, object) triples.
Supervised OpenlE is, in principle, only pos-
sible for English, for which plenty of labeled
data exists. Recent research efforts tackled mul-
tilingual OpenlE by means of zero-shot transfer
from English, with massively multilingual lan-
guage models as vehicles of transfer. Given that
OpenlE is a highly syntactic task, such transfer
tends to fail for languages that are syntactically
more complex and distant from English. In
this work, we propose two Linguistic Feature
Projection strategies to alleviate the situation,
having observed the failure of transferring from
English to German, Arabic, and Japanese. The
strategies, namely (i) reordering of words in
source-language utterances to match the target
language word order and (ii) code-switching,
lead to training data that contains features of
both the source (English) and target language.
Experiments render both strategies effective
and mutually complementary on German, Ara-
bic, and Japanese. Additionally, we propose
a third strategy tailored for English-Japanese
transfer by (iii) inserting Japanese case markers
into English utterances, which leads to further

performance gains'.

1 Introduction

Open Information Extraction (OpenlE) is the task
of structuring relational information from natu-
ral language text into (subject, predicate, object)
triples (Banko et al., 2007). The task distinguishes
itself from other Information Extraction tasks by
being schema-free, i.e., requiring no pre-defined on-
tologies for entities and relations (Mausam, 2016).

Recently, neural OpenlE models — effectively
supervised OpenlE models based on pretrained lan-
guage models (LMs) — have attracted much atten-
tion from the community (Stanovsky et al., 2018;

'The source code and benchmark are publicly available at
https://github.com/nec-research/OpenIE_LFP

Language | Family Word Order ~ Script
German IE: Germanic SOV Latin
Arabic Afro-Asiatic VSO Arabic
Japanese | Japonic Ne)Y Kanji/Kana
English IE: English SVO Latin

Table 1: Target languages and their properties. IE is
short for Indo-European.

Cui et al., 2018; Kolluru et al., 2020). These mod-
els yield reasonable OpenlE performance for En-
glish, the only language for which labeled Ope-
nlE data is plentiful. The lack of labeled data pre-
vents training similarly performant OpenlE models
for most other languages. The issue of limited re-
sources for non-English languages has also been
observed in other structured prediction tasks due
to their complexity to annotate (Yu et al., 2022).
As a result, approaches that aim to support multi-
lingual OpenlE, e.g., Multi2OIE (Ro et al., 2020)
and MILIE (Kotnis et al., 2022), resort to (zero-
shot) cross-lingual transfer of the model trained on
English OpenlE data, exploiting massively multi-
lingual LMs such as mBERT (Devlin et al., 2019)
or XLLM-R (Conneau et al., 2020) as the vehicle of
transfer. Cross-lingual transfer with multilingual
LMs, especially for lower-level syntactic tasks, has
been shown ineffective for target languages that
are linguistically distant from English as the source
language (Pires et al., 2019; Lauscher et al., 2020).
Kotnis et al. (2022) also show that cross-lingual
transfer for OpenlE based on mBERT is also far
from robust: massive performance drops have been
witnessed for target languages that exhibit syntac-
tical dissimilarities with respect to English, i.e.,
German and Arabic.

In this work, we set out to improve the cross-
lingual transferability of neural OpenlE from En-
glish (EN) to syntactically dissimilar languages, us-
ing German (DE), Arabic (AR), and Japanese (JA)
as representatives. Table 1 summarizes the property
of each language of interest. In addition to German
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1oy W& A & TrF AT HFL KBS
1 2 3 4 5 6 7 8
6 7
Ivan w1ll "I ve a book to Anna

™ | oS

Figure 1: Dependency parsing trees (SpaCy, Honnibal
and Montani (2017)) of an EN-JA parallel sentence pair.
Gray lines in between represent alignment results from
a token-level aligner (Dou and Neubig, 2021). As a
visual aid, we highlight content words with the same
semantic meaning using the same color.

atlve

and Arabic where low cross-lingual transferability
from English has been witnessed, Japanese, as one
of the most distant languages from English in lin-
gustics (Chiswick and Miller, 2004), is also one of
our focuses. As showcased in Figure 1, differences
in word order and syntactic structure are evident
for an English and Japanese parallel sentence pair.

We thus propose to bridge the gap between the
source (English) and target language (L") to pro-
mote the cross-lingual transfer, by employing sev-
eral linguistic feature projection (LFP) strategies.
The LFP strategies we employ facilitate the trans-
fer by constructing an intermediate language (to
which we refer as pseudo-English), which effec-
tively interpolates between the English and L'’
Concretely, we investigate two LFP strategies:

(1) reordering (RO): reorder words in the En-
glish sentences to match the word order of the trans-
lation in L' (see Figure 2); (2) code-switching
(CS): replace some of the English tokens with their
aligned counterparts in L'’ (see Figure 3). While
code-switching has no effect on syntactical align-
ment, we expect it to push pseudo-English closer to
L'8" lexically. In addition to the language-agnostic
strategies RO and CS, we propose a language-
specific LFP strategy tailored for Japanese: (3) case
marker insertion (CM). CM pushes pseudo-English
closer to Japanese by inserting case markers, i.e.,
special Japanese linguistic units that give important
hints about the grammatical roles of noun phrases,
into the English sentence (see Figure 4).

To verify the effectiveness of proposed LFP
strategies, we train the state-of-the-art neural Ope-
nlE system on the generated pseudo-English train-
ing data. Evaluation on BenchlE (Gashteovski

et al., 2022) renders all strategies effective and mu-
tually complementary, significantly improving the
F; scores of German, Arabic, and Japanese over
existing methods.

2 Preliminaries

2.1 OpenlE: Task Definition

OpenlE is the task of collecting structured facts in
the form of (s, p, o) from natural language texts,
where s, p, and o stand for subject, predicate, and
object, respectively. Here, we define all compo-
nents of structured facts as text spans extracted
from the original text. Given a natural language
sentence S = wi, wa, ..., Wy, the goal is to ex-
tract all structured facts in S as a set of triples
T = {(s1,p1,01), (52,p2,02), - - -, (Sk, Pk, Ok) }-

In this work, we choose BenchlE (Gashteovski
et al., 2022) as the benchmark. BenchlE is a mul-
tilingual benchmark that estimates OpenlE per-
formance more reliably than measures based on
token overlaps leveraged by prior benchmarks
like OIE2016 (Stanovsky and Dagan, 2016) and
CaRB (Bhardwaj et al., 2019). BenchlE defines
fact synsets that group all (s, p, o) valid extractions
that describe the same fact (Table 2). If the ex-
traction perfectly matches any one of the gold ex-
tractions of a synset, then the corresponding fact
is regarded as correctly extracted. Being complete,
BenchlE rewards only exact matches against some
gold extractions and avoids excessive rewarding
of systems that produce highly overlapping extrac-
tions that describe the same fact.

2.2 Preprocessing

Throughout this paper, we adopt English as the
source language for cross-lingual transfer and de-
note the target language as L'$’. Similar to existing
techniques (Fei et al., 2020; Kolluru et al., 2022),
we adopt two off-the-shelf systems to assist the
transfer: a machine translator (MT) and a token
aligner. Here we introduce the overall process of
machine translation and token alignment, leaving
details of selected systems to §4.

Machine Translation. We first generate texts in
L' parallel to English texts to serve as points of
reference for linguistic features of L'8'. Specif-
ically, for each sentence S°" = ¢{", 5", ton
with n tokens, we obtain its translatlon in L'

tgt tat tgt .
Stet = ¢ B 8 ,tre’ with m tokens.
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Sentence: A large gravestone was erected in 1866, over 100 years after his death.

id subject predicate object
1 [A] [large] gravestone was erected in 1866
[A] [large] gravestone was erected in 1866
[A] [large] gravestone was erected in 1866
2 [A] [large] gravestone was erected [over 100 years] after his death

[
[A] [large] gravestone

was erected [over 100 years] after his death

Table 2: An example sentence in English BenchlE (Gashteovski et al., 2022) with 2 fact synsets. A fact synset
contains one or more gold extractions. Tokens in brackets ([]) are optional and can be omitted in extractions.

Token Alignment. Next, we perform token align-
ment between S and S*" with the help of a pre-
trained aligner. This way, we effectively split En-
glish tokens into two disjoint groups: (1) 7°nt8t:
English tokens with one (or more) L'’ tokens
aligned to them, and (2) T°"7**€": English tokens
not aligned to any L'’ tokens.

2.3 Baseline OpenlE Transfer Methods

We first evaluate the performance of MILIE (Kotnis
etal., 2022) — a state-of-the-art OpenlE system — on
BenchlE, after subjecting it to two standard transfer
techniques for token level tasks: (i) zero-shot cross-
lingual transfer and (ii) annotation projection. We
show the performance for these standard transfer
approaches in the first part of Table 3 (see §4).

Zero-Shot Transfer. We evaluate MILIE trained
on English OpenlE data directly on L'’ portion of
BenchlE. Our setting differs from that of Kotnis
et al. (2022) in that we adopt XLM-R instead of
mBERT as the vehicle of transfer, hence higher
cross-lingual transferability could be expected. Un-
fortunately, the model still scores low on German
(5.9% F,), Arabic (2.8% F,), and Japanese (1.5%
F1). Given that the model scores 28.6% F, on En-
glish BenchlE (see Appendix C.1), we confirm our
suspicion that zero-shot OpenlE transfer between
syntactically dissimilar languages fails. Further, we
observe that the difficulty of cross-lingual transfer
varies among languages, with Japanese being the
most challenging, followed by Arabic and German.

Annotation Projection. We carry out a sec-
ond pilot experiment, facilitating the transfer by
means of annotation projection (AP, Yarowsky
et al. (2001); Akbik et al. (2015); Aminian et al.
(2019)). Here, we utilize the token alignments
to transfer the token-level labels (which belong
to the standard BIO scheme for sequence label-
ing) to the automatically translated sentence in
L'8'. For example, consider the subject span (la-
beled in the original English sentence) s =

(t§", £, 5% ) with the induced EN-TGT token

alignment (¢5", t;gt), (t5,, t;.gil); note that ¢51 | is
not aligned with any token in L' in this case.
The corresponding subject span in L'$' is then
st = (t;gil, t;gt). The obtained L' triple is
then considered to be a “gold” extraction from the
automatically-translated sentence in L¢'. We then
use this label-projected noisy OpenlE corpus in L8
to train MILIE. While better than zero-shot transfer,
AP still yields moderate performance on German
(9.6% Fi) and Arabic (8.7% F;). On Japanese,
AP yields even lower than zero-shot transfer (0.7%
F1). Looking closely at the projected Japanese
corpus, we identified many triples with discontin-
uous spans, resulting in bad labels that violate the
assumption of the BIO tagging scheme. The dis-
continuity comes from the syntactic dissimilarity
between English and Japanese, where spans in En-
glish are likely to be projected into multiple discon-

tinuous segments in Japanese.

3 Linguistic Feature Projection

Based on insights of previous works (K et al., 2020;
Gashteovski et al., 2022; Kotnis et al., 2022), as
well as our own observation in §2.3, it is reasonable
to conclude that transfer failure is due to systematic
syntactic discrepancies between English and LS’
We propose to remedy this with Linguistic Feature
Projection (LFP), that is, by converting labeled En-
glish sentences into pseudo-English that reflects the
syntactic properties of L'¢’. This way, we aim to (i)
emulate syntax of L8’ in our training data while,
unlike with annotation projection, and (ii) retaining
clean token-level OpenlE labels. Concretely, we
propose two LFP strategies: reordering (RO) and
code-switching (CS). RO is meant to bridge the dif-
ference in word order between the languages, while
CS brings additional lexico-semantic alignment.
Additionally, having witnessed the challenges in
EN-JA cross-lingual transfer (§ 2.3), we introduce
another strategy specifically designed for Japanese,
case marker insertion (CM), which caters for both
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177y & X & TUF AT s 7ZAD
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7
Ivan will give a book to Anna
1reorder
1 5 7 6 3 2
Ivan book Anna to give will
1insert
1 5 7 6 3 4 2
Ivan book Anna to give a will

Figure 2: The reordering strategy.

syntactic and lexical differences.

Throughout this section, we use the following
English sentence as a running example: “Ivan will
give a book to Anna”, with its Japanese transla-
tion shown in Figure 1. The example contains a
knowledge fact that can be structured as a triple
(Ivan, give a book to, Anna). Note that although
we introduce the strategies with EN-JA examples,
RO and CS are language-agnostic and can be ap-
plied to any language pair.

3.1 Reordering

Sentences. For each English sentence S, our
goal is to reorder the words to form a new sentence

ko that reflects the word order of the translation
S8t We first reorder English tokens based on the
order of their aligned L' counterparts. We repo-
sition each aligned English token ¢ € T°n—t8t
according to the index of its alignment t;gt in St&t,
If t¢" is aligned with multiple tokens in S*8*, we
choose the token for which the alignment model
yielded the highest confidence. This treatment
holds for all proposed LFP strategies. As shown
in the example in Figure 2, ‘give’ is placed after
‘book” because ‘give’ is aligned to ‘@ |+ %’ and
‘book’ is aligned to ‘ZA%’, and ‘4> comes after &
\7' %" in the Japanese translation. In the second
step, we insert English tokens without alignment
" e Te"7*%8t into the reordered sentence: for
each such token, we place it directly after the clos-
est preceding aligned token S € T°" '8¢ In the
example from Figure 2, we place ‘a’ after ‘give’ as
its closest preceding token.

Triples. Tokens within each triple element (i.e.,
subject, predicate, and object) are then reordered
to match the token ordering of the new, re-
ordered pseudo-English sentence. In the ex-
ample, the triple (Ivan, give a book to, Anna) be-
comes (Ivan, book to give a, Anna).

A7y E K & TUF T HFL EAHD
1 2 3 4 5 6 7 8
1 3 4 5 6 7
Ivan will give a book to  Anna
1c0de-switch
1 2 3 4 5 6 7
A7 7Y will give a A 1T  Anna

Figure 3: The code-switching strategy.

3.2 Code-Switching

Code-switching, or code-mixing, is a common phe-
nomenon in multilingual communities, with speak-
ers seamlessly switching between two or more lan-
guages, even within sentences. Inspired by Krish-
nan et al. (2021), we adopt code-switching to pro-
duce sentences comprising tokens in both English
and L8, Training on the code-switched sentences,
we expect the MILIE (and its underlying LM) to
establish better and task-specific lexico-semantic
alignments between the two languages. Training
on code-switched data is thus expected to improve
target language performance, compared to training
on English (or pseudo-English) sentences alone.

Sentences. For each English sentence S", we
replace words with their alignments in S8 to
form a code-switched sentence S¢g. For each En-
glish token t** € T8¢ aligned to a token t;gt,
we replace it by t;gt with probability p, a hyper-
parameter controlling the percentage of aligned
English tokens to be replaced with their alignments
in S*'. As shown in Figure 3, if we set p = 0.5,
half of the aligned English tokens will be replaced
by their alignments in S%!. In this specific ex-
ample, we have ‘Ivan’ replaced by ‘1 7' 7 >°,
‘to’ replaced by ‘IZ°, and ‘book’ replaced by ‘A&’,
while ‘will’, ‘give’, and ‘Anna’ stay unchanged.

Triples. We switch tokens according to their re-
placements (or lack thereof) in S¢g. In this ex-
ample, the triple (Ivan, give a book to, Anna) be-
comes (1 7' 7 >, give a & {2, Anna).

3.3 Inserting Case Markers

Our last LFP strategy is specifically tailored for
Japanese, and focuses on case markers, a special
class of functional tokens in Japanese.

Case Markers in Japanese. Case markers (kaku-
Jjoshi) are special functional tokens that immedi-
ately follow noun phrases (NP) they refer to. Case
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17y & K & TvF L HIL EAED
1 2 3 4 5 6 7 8
1 2 3 5 6 7
Ivan will give a book to  Anna
1insertcase1narker
1 2 3 4 5 6 7 8 9 10
Ivan (X will give a book % to (2 Anna

Figure 4: The case marker insertion strategy.

markers indicate the grammatical role of their re-
spective NPs, and thus provide important signals
for syntactic tasks like OpenlE. In the example
from Figure 1, the 4th Japanese token, ‘% (wo)’ is a
case marker that commonly accompanies the object
of an action. In this example, ‘% (wo) indicates
that “ZK(book)’ is the object of ‘@ |F % (give)’.
Case markers thus reveal a lot about the syntactic
structure of Japanese sentences: e.g., the Universal
Dependency (UD) annotations for Japanese have
rules that determine dependency labels based on
case markers (Tanaka et al., 2016; Asahara et al.,
2018; Omura and Asahara, 2018). Under UD, the
case marker and the NP it modifies are connected
by a dependency arc labeled case, as in Figure 1.

Sentences. For each English sentence S, our
goal is to insert Japanese case markers at the ad-
equate position, resulting in a new sentence S¢;.
For each English token ¢ € 7" that is aligned

to a Japanese token tjja, we check whether ti»a_H, fol-

lowing £, is a case marker or not. If so, we insert
2
Jj+1
ure 4, given the word alignment pairs (Ivan, -

7 7 V), (book, &) and (Anna, 7 > ), we insert
case markers ‘13, ‘%’ and ‘12’ after ‘Ivan’, ‘book’
and ‘Anna’, respectively, into the English sentence.

directly after t*". In the example from Fig-

Triples. To preserve the contiguity of each span,
we also insert case markers in the triples. In this
example, the triple corresponding to sentence S
is (Ivan |, give a book %, Anna (2).

4 Experiments

We have introduced the LFP strategies to bridge the
gap between English and syntactically-dissimilar
languages, both structurally and lexically. In this
section, we describe the experiments conducted to
verify the effectiveness of the proposed strategies.

4.1 Settings

Dependent Systems. As mentioned in §2.3, we
need two off-the-shelf systems to perform cross-
lingual transfer: a machine translator and a to-
ken aligner. For the machine translator, we adopt
NLLB (No-Language-Left-Behind, Costa-jussa
et al. (2022))?, a neural machine translation Sys-
tem eligible for translating between any pair of
200 languages. For the token aligner, we adopt
AWESOME (Dou and Neubig, 2021)?, the state-of-
the-art multilingual token aligner.

Multilingual LMs (mLMs). We by default base
our experiments on mBERT (Devlin et al., 2019),
arguably the most widely used massively multilin-
gual LM. XLM-Roberta (XLM-R, Conneau et al.
(2020)), another multilingual LM believed to trans-
fer better than mBERT, is also included for com-
parison. We employ XLM-R base whose model
architecture is the same as mBERT.

Training. We obtain training data by applying
the proposed LFP strategies on English OpenlE4
training set (Zhan and Zhao, 2020), commonly
used in prior work (Ro et al., 2020; Kotnis et al.,
2022). For each target language, we create a
proxy dataset for every possible combination of
the proposed LFP strategies. This results in 3
proxy datasets for German and Arabic and 7 proxy
datasets for Japanese. We train a MILIE model
on each of the proxy datasets, with the batch size,
learning rate, and number of epochs set to 128,
3e-5, and 2.0, respectively, following Kotnis et al.
(2022). For code-switching, we decide the replace-
ment rate for each target language by searching
over the grid {0.2,0.5,1.0}. More details, includ-
ing dataset statistics, model parameters, and com-
putational budgets, are described in Appendix B.

Evaluation. We evaluate MILIE trained on each
proxy dataset on German, Arabic, and Japanese
BenchlIE. All reported scores are averages over
three runs corresponding to initializations with
different random seeds. Notably, while previ-
ous works have collected German and Arabic
BenchlE (Gashteovski et al., 2022; Kotnis et al.,
2022), a Japanese version was absent. We thus
create Japanese BenchlE, which will be made pub-
licly available, following the same data-collecting

2https: //github.com/facebookresearch/fairseq/
tree/nllb/examples/nllb
3https: //github.com/neulab/awesome-align
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German (DE) Arabic (AR) Japanese (JA)
mLM P R Fy P R Fy P R Fy
Baselines
sero-shot mBERT 12.70 3.84 5.89 10.71 1.51 2.64 0.00 0.00 0.00
XLM-R 1226 3.90 591 1235 1.57 2.79 9.66 0.83 1.53
AP mBERT 2247 6.69 1031 24.89 527 870 18.61 0.33 0.65
XLM-R 18.52 4.36 7.06 2795 6.84 11.00 29.25 0.36 0.71
LFP Strategies

RO + CS (+ CM)

Table 3: Precision (P), Recall (R), and F; scores (%) of MILIE on BenchIE. mLLM is short for multilingual Language
Model and AP is short for annotation projection. RO, CS, CM refer to reordering, code-switching, and case marker

insertion (only for JA), respectively.

process as other non-English versions, with details
described in Appendix A.

4.2 Main Results

We summarize the experiment results of all target
languages in Table 3. In addition to the results of
MILIE trained on the proxy dataset combining all
LFP strategies, two ablations are also provided: re-
ordering (RO) only and code-switching (CS) only.

LFP strategies improve cross-lingual transfer
for OpenlE. We observe the same tendency for
all target languages: training MILIE on data cre-
ated by combining all LFP strategies yields the best
performance. Specifically, when using mBERT as
the mLLM, a combination of RO and CS improves
MILIE over zero-shot performance by 5.6% F; for
DE, 10.8% F; for AR, and 10.6 % F; for JA. These
are improvements over the current state-of-the-art,
as MILIE is a state-of-the-art system on BenchlE.
The superiority is still evident even compared to the
zero-shot performance of MILIE on top of XLM-
R, especially for languages distant from English,
i.e., AR and JA. Interestingly, with MILIE as the
OpenlE model, AP exhibits high precision and low
recall, yielding few but decent predictions. Systems
trained under AP are thus unavailing for practical
OpenlE applications, e.g., knowledge base popula-
tion (Gashteovski et al., 2020).

LFP strategies benefit cross-lingual transfer the
most on distant language pairs. Under zero-
shot setting, XLM-R exhibits higher cross-lingual
transferability than mBERT. Notably, for EN-JA,
while transferring with mBERT totally fails (0.0%
F), XLM-R brings the performance up to 1.5%
F;. However, the performance still lags far behind
that of other language pairs. The low transferability

from EN to JA of both mLMs is backed by existing
works (Pires et al., 2019; Lauscher et al., 2020),
where mLMs are found less effective on distant lan-
guage pairs. Proxy datasets, consisting of pseudo-
English sentences with features of both EN and the
target language, can thus act as an intermediary
between the language pair. By fine-tuning on the
proxy dataset, mL.Ms no longer need to transfer
from English to an extremely distant language but
can “land” halfway on the pseudo-English, reduc-
ing the burden of cross-lingual transfer. As shown
in Table 3, when adopting the LFP strategies, we
observe more performance gains on languages dis-
tant from English, i.e., AR and JA, than languages
closer to English, i.e., DE.

Bridging syntactic differences matters the most.
We observe that RO is the key to promoting cross-
lingual transfer, especially for distant target lan-
guages like AR and JA. RO alone improves the
performance by 5.7% F; for AR and 1.9% F, for JA
over the zero-shot baselines. While CS helps less
independently, it brings substantial further gains
when combined with RO. The above observation
confirms that neural OpenlE models heavily rely on
word order signals. This explains why transferring
to DE, AR, and JA, whose word order differs from
English, is harder than transferring to, e.g., Chi-
nese.* We thus conclude that bridging syntactical
differences plays a more essential role in cross-
lingual transfer for OpenlE than lexical alignment.

4.3 Effect of Dependent Systems

Similar to existing translation-based cross-lingual
transfer techniques (Faruqui and Kumar, 2015; Fei

“Chinese obtains 16.3% F;, whereas our best scores for
German, Arabic, and Japanese are 11.5%, 13.5%, and 10.6%,
respectively.
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MT IWSLT17 Transfer BenchlE
(BLEU) Technique (F1)

German (DE)

AP 10.16
NLLB 32.34 RO +CS 11.45

AP 9.59
WMTI19 30.95 RO+ CS 11.54
Japanese (JA)

AP 0.65
NLLB 1260 Roics+cM 10.61

AP 1.08
JParaCrawl 11.18 RO + CS + CM 348

Table 4: F, scores (%) on BenchlIE when applying cross-
lingual transfer based on different MT systems.

et al., 2020; Kolluru et al., 2022), our proposed
method depends on a machine translator (MT).
Here, we investigate how using different MTs will
influence the performance of the OpenlE model,
namely MILIE, on BenchlE.

Settings. We focus on EN-DE and EN-JA as few
EN-AR MTs are publicly available. For EN-DE, we
employ the MT trained on WMT19 (Barrault et al.,
2019) provided by fairseq (Ng et al., 2019)°; for
EN-JA, we employ the MT trained on JParaCrawl
released by Morishita et al. (2020)°. The per-
formance of each MT system is evaluated on
IWSLT17 test set (Cettolo et al., 2017)”.

Effectiveness of LFP relates to the quality of
translations. As shown in Table 4, using better
MT systems for cross-lingual transfer results in
better OpenlE systems for Japanese. However, the
situation is not the same for German: NLLB scores
higher than WMT19, while LFP based on WMT19
yields slightly better performance on BenchlE. The
discrepancy possibly results from the divergent dif-
ficulty of EN-DE and EN-JA translations. While
EN-DE MTs are good enough to yield fair transla-
tions with BLEU scores over 30, the translations
of EN-JA MTs score below 15. Given that EN-JA
MTs struggle to generate good translations, the 1.4-
point improvement on BLEU (from 11.2 to 12.6)
becomes more crucial as some critical errors may
be eliminated. This is especially important for suc-
ceeding token-level alignment and projections. In
contrast, the difference in BLEU scores of EN-DE
MTs can be less important, as the translations are

Shttps://github.com/facebookresearch/fairseq/
blob/main/examples/translation/

*http: //www.kecl.ntt.co.jp/icl/lirg/
jparacrawl/

"https://huggingface.co/datasets/iws1t2017, we
use SacreBLEU (Post, 2018) to compute the scores.

already good enough and unlikely to contain many
critical errors.

4.4 Language-Specific Investigations

Here we focus on EN-JA transfer, with the follow-
ing purposes: (i) To analyze the effectiveness of
case-marker insertion (CM), the LFP strategy tai-
lored for Japanese; (ii) To compare our method
with even stronger baselines, namely the state-of-
the-art cross-lingual transfer technique for OpenlE
dubbed Alignment-Augmented Constrained Trans-
lation (AACTrans, Kolluru et al. (2022)). AAC-
Trans is a sequence-to-sequence model for trans-
ferring OpenlE training data from source to target
language, improving consistency between the trans-
ferred sentence and triples by ensuring that triples
consist of only tokens present in the sentence.

Settings. In addition to an MT system and a to-
ken aligner, a parallel corpus between the source
and target language is necessary to train AACTrans,
for which we employ The Kyoto Free Translation
Task dataset (KFTT, Neubig (2011)). We adopt the
MT system trained on JParaCrawl for translation
and AWESOME for token alignment. We train
three different neural OpenlE models — GenOIE,
Gen20IE, both proposed together with AACTrans,
and MILIE — on data generated by AACTrans via
Cross-Lingual Projection (CLP, Faruqui and Ku-
mar (2015)), a variant of annotation projection. It
is worth noting that transferring OpenlE training
data with AACTrans (via CLP) is time-consuming
as it requires multiple rounds of MT training.® The
evaluation results are shown in Table 5.

AACTrans+CLP fails on EN-JA transfer. Much
like zero-shot transfer and annotation projection,
AACTrans (with CLP) exhibits near-zero perfor-
mance on Japanese BenchlE, irrespective of the
underlying OpenlE model (GenOIE/Gen2OIE, or
MILIE). We believe this is because CLP, as a vari-
ant of AP, also fails between English and Japanese:
as noted in §2.3 and also Kolluru et al. (2022), CLP
implicitly and strongly assumes that contiguous
spans in the source language correspond to contigu-
ous spans in the target language, which is rarely the
case between English and Japanese. As depicted
in Figure 1, “give a book™ at indices (3,4,5) in the
English sentence is aligned to a discontiguous span
“AK & F 5 (indices 3,7) in the Japanese sentence.

81t took us ca. 10 GPU-days to carry out EN-JA data
transfer. We refer the reader to Kolluru et al. (2022) for more
details on AACTrans (with CLP).

131


https://github.com/facebookresearch/fairseq/blob/main/examples/translation/
https://github.com/facebookresearch/fairseq/blob/main/examples/translation/
http://www.kecl.ntt.co.jp/icl/lirg/ jparacrawl/
http://www.kecl.ntt.co.jp/icl/lirg/ jparacrawl/
https://huggingface.co/datasets/iwslt2017

Model P R Fq

Baselines
zero-shot MILIE 0.00 0.00 0.00
AP MILIE 21.57 055 1.08
AACTrans GenOIE 0.00 0.00 0.00
AACTrans Gen20IE 0.25 0.11 0.16
AACTrans MILIE 20.44 0.58 1.13
LFP Strategies
RO CS CM
v v v MILIE 1575 5.80 8.48
v v MILIE 19.27 481 7.69
v v MILIE 13.06 434 6.51
v MILIE 15.03 244 4.17
v v MILIE 1.50 044 0.68
v MILIE 274 0.11 0.21
v MILIE 0.07 0.03 0.04

Table 5: Precision (P), Recall (R) and F; scores (%) on
Japanese BenchIE. AACTrans is with CLP as described
in Kolluru et al. (2022).

This leads to incomplete extractions in the Japanese
dataset created by AACTrans.

CM promotes cross-lingual transfer when com-
bined with RO. Similar to CS, we observe that
CM improves the performance of MILIE when
combined with RO, while it does not help on its
own. However, CM is more effective than CS, as
RO + CM outperforms RO + CS for 1.2% F;. We
believe CM is more powerful than CS because CM
bridges EN and JA both structurally and lexically,
while CS merely brings lexical alignments.

5 Related Work

OpenlE. Although OpenlE has been a heated
topic since proposed by Banko et al. (2007), most
of the discussions are focused on English (Mausam
et al., 2012; Del Corro and Gemulla, 2013; Angeli
et al., 2015; Mausam, 2016; Stanovsky et al., 2018;
Kolluru et al., 2020). While some efforts have been
made on non-English languages, these methods
are rule-based, relying heavily on pre-defined syn-
tactic rules (Zhila and Gelbukh, 2014; Guarasci
etal., 2020; Wang et al., 2021). The rules, however,
are highly language-dependent and hard to transfer
between different languages. More recently, neu-
ral OpenlE systems trained with supervised data
exhibit reasonable performance (Stanovsky et al.,
2018; Kolluru et al., 2020). Similar to most neural
systems, these systems are free from hand-crafted
rules, while a large scale of training data guarantees
their performance. Developing multi- and cross-
lingual OpenlE systems has hence become increas-
ingly important, reducing the cost of collecting
human annotation in non-English languages.

Multilingual OpenlE. Faruqui and Kumar
(2015) proposed translating non-English sentences
into English, extracting relations with existing En-
glish systems, and projecting the extracted labels
back to the non-English language. However, Claro
et al. (2019) pointed out that cross-lingual transfer
depending solely on machine translation is unre-
liable. Ro et al. (2020) and Kotnis et al. (2022)
designed and trained OpenlE systems on top of
multilingual BERT (mBERT, Devlin et al. (2019))
with English data, relying on mBERT to cap-
ture language-agnostic representations. Although
these systems exhibited reasonable zero-shot per-
formance on some languages, the performance gap
between different languages is severe. Specifically,
the performance on German and Arabic is worse
than that on Chinese and Galician (Kotnis et al.,
2022). We postulated that the performance gap is
due to drastic syntactical differences, such as the
word order, between these languages and English.
This assumption has been confirmed in our experi-
ments, where the reordering of English sentences
proved to be especially effective in bridging the
gap between such languages and English. More
recently, Kolluru et al. (2022) proposed AACTrans
to automatically generate training data in the target
language by translating English sentences and their
extractions. However, we observed the approach
suffers from low recalls. In contrast, our pro-
posed LFP strategies promote cross-lingual trans-
fer vastly, outperforming this baseline by over 7 Fy
points on EN-JA cross-lingual transfer. It is also
notable that AACTrans is more time-consuming
than our proposed methods.

6 Conclusion

This work tackles the issue of transferring knowl-
edge about OpenlE from English to a syntactically-
different language, using German, Arabic, and
Japanese as representatives. We propose to pro-
mote cross-lingual transfer between each language
pair by combating their differences. Specifically,
we introduced three Linguistic Feature Projection
(LFP) strategies for generating a proxy dataset that
contains the linguistic features of both English and
the target language. Experiment results confirmed
that OpenlE systems trained on the generated proxy
dataset outperform all baselines and existing sys-
tems on German, Arabic, and Japanese. Ablation
studies showed that reordering English words to re-
semble the typical word order of the target language

132



was the most important ingredient for encouraging
cross-lingual transfer on OpenlE.

Future directions include building OpenlE sys-
tems that are less sensitive to word order and ex-
tending the strategies to syntax levels.

Limitations

Although this work improves cross-lingual trans-
fer between English and another distant language,
several limitations exist.

Firstly, the proposed linguistic feature projec-
tion (LFP) strategies presume the accessibility of
pre-trained machine translation systems and token
aligners. The cross-lingual transfer could be diffi-
cult for low-resource language pairs where these
pre-trained systems are unavailable.

Secondly, the issue of projected triples with dis-
continuous spans has not been completely resolved.
Although proposed LFP strategies can resolve dis-
continuity to some degree, they do not directly
tackle the issue. Some projected extractions in the
proxy dataset still contain discontinuous spans and
are thus excluded during training. To make full
use of the projected data, an explicit approach that
tackles discontinuous spans needs to be developed.

Thirdly, how recent large language models
(LLMs) perform on OpenlE has not been measured
in this work. As LLMs are attracting increasing at-
tention from the community, a comparison between
the proposed method against LLMs is potentially
helpful.

Ethics Statement

Although we do not foresee a substantial ethical
concern in our proposed strategies, there may be a
side effect passed down from the pre-trained sys-
tems. It is thus important to choose nontoxic and
reliable machine translation and word alignment
systems during pre-processing.

Note that during data collection, we obey the
General Data Protection Regulation (GDPR) law?
that protects both the annotators and the data.
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A Japanese BenchlE

We create a Japanese portion of BenchlE following
the annotation process described in Gashteovski
et al. (2022). We ask a bilingual annotator native in
Japanese and fluent in English to (i) first translate
sentences from English BenchlIE to Japanese and
then (ii) label the fact synsets using an annotation
tool, AnnlE (Friedrich et al., 2022). Finally, fol-
lowing the annotation guidelines of BenchlE, we
detect and optionalize some tokens that do not af-
fect the meaning of clauses.'” To aid the annotation
process, we detect optional Japanese tokens auto-
matically based on their positions in dependency
trees: these are the dependent tokens linked to their
governors with the dependency relation aux from
the Japanese UD label set (Tanaka et al., 2016;
Asahara et al., 2018). We also make optional case
markers, a special type of functional token present
in Japanese (we provide more details in §3.3).

B Detailed Experiment Settings

B.1 Dataset Statistics

The basis of our training data is the OpenlE cor-
pus provided by Zhan and Zhao (2020).!! The
dataset contains 1,109,411 English sentences with
2,175,294 corresponding triples. For the zero-shot

'0This is important in order not to unnecessarily penalize
OpenlE systems. For more details, we refer the reader to
Gashteovski et al. (2022).

llhttps ://github.com/zhanjunlang/Span_OIE

#Sentences  #Fact Synsets  #Ext./#Syn.
EN 300 1,350 101.00
DE 300 1,086 75.27
AR 100 487 5,064.86
JA 298 1,207 45,693.83

Table 6: Statistics of multilingual BenchIE. Ext. is short
for gold extractions and Syn. is short for fact synsets.
We only include languages discussed in this paper.

baseline, we adopt the dataset as-it-is, while for
other approaches, we apply cross-lingual transfer
techniques on the dataset to create proxy data. Fi-
nal training data is collected after several steps of
pre-processing as described in Kotnis et al. (2022).

For evaluation, we test our systems on
BenchlE (Gashteovski et al., 2022). The statis-
tics of BenchlE are shown in Table 6. Notably,
Japanese BenchlE has more instances due to the
massive number of case markers being automati-
cally optionalized in the gold annotations. As a fu-
ture direction, it is meaningful to improve Japanese
BenchlE by revising the annotation guideline and
recruiting more human annotators.

B.2 Model Parameters

In this work, we adopt pre-trained machine trans-
lation systems (600M model for NLLB) and neu-
ral token aligners without finetuning, training only
OpenlE systems. Notably, we hide the dependency
label information from MILIE, further reducing the
number of trainable parameters. Hiding such infor-
mation also makes our experiment result slightly
different from those reported in the original pa-
per. As a result, the system has 177.9M trainable
parameters in total. We introduce one extra hyper-
parameter, i.e., the replacement rate p for code-
switching. The parameter is independently deter-
mined through a grid search over {0.2,0.5,1.0}. As
a result, we have p = 0.2 for German and Japanese
and p = 0.5 for Arabic.

B.3 Computational Budgets

Throughout this paper, we conduct experiments on
NVIDIA TITAN RTX GPUs (24GB RAM). As pre-
processing, we automatically translate sentences in
the English training data into the target language
using a machine translation system. The transla-
tion takes approximately 48 GPU hours. After that,
we perform token alignments between the original
sentence and the automatically translated sentence,
taking approximately 10 GPU hours. Note that
both the machine translation and the token align-
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Precision Recall F,
EN 38.93 1065 21954034 28.61 1047
ZH 22.82;]:027 12.64i0,62 16.26i0‘52
DE 17.084+022 8721023 11.541026
AR 22.214046 9.654054 13.454053
JA 197141 7264005 10.614020

Table 7: Precision, Recall, and F; scores (%) of BenchIE
on multiple languages. For EN and ZH, we report the
performance of MILIE trained on English data. For DE,
AR, and JA, we report the best performance of systems
trained on the proxy dataset generated from LFP. Values
after + show the standard derivation over 3 runs.

ment need to be performed only once for each lan-
guage pair. The automatically translated sentence
and the token alignments are reused for all exper-
iments regarding the language pair. The training
on each proxy dataset created using the proposed
strategies takes up to 20 hours on a single GPU.

C Additional Experiment Results
C.1 Difficulty of BenchlE

Here, we show the performance of MILIE on
BenchlE to show the difficulty of BenchIE quan-
titively. As in Table 7, MILIE, the current state-
of-the-art neural OpenlE system, scores no more
than 30 F; points on English BenchlE. Given that
the system is trained on the same language, i.e.,
English, as it is evaluated, we witness the diffi-
culty of BenchlE. Therefore, we emphasize the
success of our proposed LFP strategies in bringing
up the system’s performance on German, Arabic,
and Japanese BenchlE without using any human-
annotated data.

C.2 Descriptive Statistics

In this section, we visualize the experiment results
reported in Table 3 with the standard deviation, as
shown in Figure 5. The results are arranged in
descending order of F; scores.
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Figure 5: Evaluation results of MILIE on German, Arabic, and Japanese BenchlE. Error bars demonstrate the
standard derivations. M stands for using mBERT as the encoder.
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Abstract

Pretrained language models (PLMs) often
fail to fairly represent target users from cer-
tain world regions because of the under-
representation of those regions in training
datasets. With recent PLMs trained on enor-
mous data sources, quantifying their potential
biases is difficult, due to their black-box nature
and the sheer scale of the data sources. In this
work, we devise an approach to study the geo-
graphic bias (and knowledge) present in PLMs,
proposing a Geographic-Representation Prob-
ing Framework adopting a self-conditioning
method coupled with entity-country mappings.
Our findings suggest PLMs’ representations
map surprisingly well to the physical world in
terms of country-to-country associations, but
this knowledge is unequally shared across lan-
guages. Last, we explain how large PLMs de-
spite exhibiting notions of geographical prox-
imity, over-amplify geopolitical favouritism at
inference time.!

1 Introduction

Large pretrained language models (PLMs) are ca-
pable of generating meaningful texts beyond En-
glish and very likely, models like GPT-4, Llama
2 (Brown et al., 2020; Shliazhko et al., 2022;
Zhang et al., 2022; Workshop et al., 2023; OpenAl,
2023; Touvron et al., 2023) will form the go-to
base model for automating tasks like summarizing
texts, generating datasets given certain instructions
(Schick and Schiitze, 2021) or perhaps even evalu-
ating the generated texts (Yuan et al., 2021). While
these PLMs continue to expand their utility, it is
crucial that one also examines the potential biases
that these PLMs exhibit. Moreover, the utility of
these PLMs should be equitable to their target users
so that they perform evenly for all speakers of the
languages it is primarily trained on. Otherwise,
the disparity that lies in the model (if any) will

'Code and data are publicly available: https://github.
com/ffaisal93/geoloc_1m
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Figure 1: Example of a Geographic Representation net-
work and it’s corresponding location clusters (colored)
recovered from the top-50 country-"expert" neurons of
BLOOM. Notice that connected countries are either ge-
ographically or culturally close (e.g. south American
cluster in light blue, African countries in yellow, South-
East Asian countries in dark blue). Note: node size is
proportional to its degree in the graph.

propagate further. To better illustrate these dynam-
ics, consider a L; Spanish speaker from Peru, who
is using a prompt-based PLM (like that of Wang
et al. (2022, 2021)) to generate a localized synthetic
dataset for some downstream task. They may use
Spanish as used in the local context to form their
seed data/prefix/prompts. Now, if this language
model has already skewed preferences towards
geopolitically dominant countries, it is likely the
generated texts will reflect the skewness, thus not
appropriately reflecting the local, Peruvian context
that the practitioner is interested in. However, the
quantification of this presumed geographic dispar-
ity in PLMs is not yet explored. Though given the
well-documented western-country bias (or Global
North bias) exhibited in most NLP benchmarks and
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datasets (Faisal et al., 2022, inter alia), we hypoth-

esize that text generation models might also suffer

from the similar pitfall. On top of that, given a

multilingual model, how language variety impact

the encoded geographic knowledge is also under-
explored.

Herein, we perform an evidence-based study to
unfold the underlying geographic distribution of
multilingual PLMs. We propose a pipeline to probe
the Text-Generative PLMs using prompt-based in-
ference for Geographic-Knowledge as well as ex-
isting domain-variant disparity (geography in our
case). Our research questions and key findings are:
* RQ1: 7o what extent is geographic proximity

encoded in the PLMs? F: PLMs can infer geo-
graphic proximity surprisingly well in terms of
country-country association (see Figure 1). How-
ever, we observe an over-representation of certain
countries during text generation.

* RQ2: What is the influence of multilinguality
in PLM’s knowledge distribution of geographic
proximity? F: The shared multilingual represen-
tation space of PLMs has an uneven distribution
of knowledge across languages.

* RQ3: What is the effect of prompting using a
geographic identifier (eg. "In Colombia" <gen-
erate text>) on multilingual text generation? F:
Prompting with certain geographic identifiers can
even alter the language of free-form generated
text.

2 Background and Related Work

A substantial amount of work has investigated ex-
isting social bias (eg. gender, racial, ethnic, occupa-
tional) identification and mitigation approaches in
PLMs including, reducing token sensitivity during
text generation (Liang et al., 2021), investigating
model sensitivity (Immer et al., 2022), prompting
using natural sentences (Alnegheimish et al., 2022)
and probing via embedding lookup (Ahn and Oh,
2021). On the other hand, representing space and
time utilizing maps and language is a long-standing
domain of research (Louwerse and Benesh, 2012;
Gatti et al., 2022; Anceresi et al., 2023). More re-
cently, numerous studies are experimenting with
geoadaptation of PLMs (Hofmann et al., 2023),
what behavior these PLMs exhibit while probing
with geographic-context, cultural-commonsense as
well as temporal reasoning (Yin et al., 2022; Ghosh
et al., 2021; Thapliyal et al., 2022; Hlavnova and
Ruder, 2023; Shwartz, 2022; Tan et al., 2023) or

how large PLMs learn the representation of space
and time (Gurnee and Tegmark, 2023). However,
for our goal task, first, we need to identify spe-
cific model units sensitive to certain geographic
concepts. Then we would like to prioritize those
units to generate output text for evaluation. A self-
conditioning pre-trained model (Suau et al., 2022)
is one such approach enabling us to perform the
required experiments.

Self-conditioning Method Suau et al. (2022)
propose an approach that extracts PLM weights
having certain polarity and then prioritize those
weights during text generation. Based on the gener-
ated text, they can quantify gender and occupation
bias encoded by the PLM. As an example, consider
a binary sentence classification task where positive
class examples contain the mention of a concept
word (eg. doctor) and vice-versa. A PLM is able
to provide scores to these positive and negative ex-
amples. Looking at the average precision scores
and the scores given by different model weights
from each layer, we can identify the ones providing
higher scores towards the positive examples. Suau
et al. (2022) refer to these model weights as expert
units.

Now, we can prioritize these identified expert
units during text generation by artificially simu-
lating the presence of the concept word "doctor”
in the input. Basically, at every step of text gen-
eration, we replace the actual response of expert
units with the typical one where the concept word
is present in the input. As a result, the PLM now
generates texts relevant to the concept word. In the
work of Suau et al. (2022), by comparing the gen-
erated texts, they easily quantify the presence of
gender-specific words thus evaluating the presence
of gender bias in the PLM (for example, consider
the number of sentences where the context relates
to the word "doctor" and mentions male-gender
words compared to female-gender words). This
approach serves two main purposes: (1) Identi-
fying expert units: model parameters responsible
for generating text related to the target concept
(i.e. doctor). (2) Triggering specific behaviour in
text generation without explicit mentioning of the
target context, which inadvertently influences the
behaviour of the model.

3 Geographic Representation Probing

In our study, we use this Self Conditioning Method
to first extract expert units (i.e. model weights)
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Figure 2: Geographic Representation Probing Framework. First we construct the Country/Concept dataset. Then we
extract Expert Units from the base PLM and use similarity measurement to prepare our Geographic Representation
Network to perform Intrinsic Probing. In Parallel, we prompt the self-conditioned PLM with Geographic Identifiers
(i.e. Country/Prefix). Finally, we map the generated-text entities to countries to perform Extrinsic Probing.

which encode geographic knowledge. Then we use
those units to generate relevant texts given different
geographic identifier-based prompts. An example:
Using some sentences with the mention as well as
absence of the word "China" to extract expert units
and then, prioritize these units during text gener-
ation with the prompt "In USA ...". The aim here
is to simulate an environment where we evaluate
the model knowledge (Concept-Country-specific
Expert Units) by asking what it knows about other
countries (i.e Prefix-Country). This allows us to
quantify existing geographic bias towards certain
attributes present in a PLM. Our probing frame-
work contains five steps (see Figure 2): (1) Concept
Dataset Construction (2) Expert Unit Extraction (3)
Geographic-Representation Network Construction
(4) Prompt-based Text Generation (5) Entity Coun-
try Mapping.

Concept Dataset Construction First of all, we
prepare our concept dataset in a binary classi-
fication fashion using which, we later perform
self-conditioning a PLM on geographic concepts.
To make it quantifiable, we define country to be
our main unit of reference and construct concept
datasets where each "concept" is loosely centered
around a country. An additional requirement for
these datasets is that the data have not been used
as part of the pretraining data of the PLMs. Hence,
we turn to recent news articles (scrapped using
Google news api’): as we can control the date on
which these data became public, we can be sure

2https://github.com/ranahaani/GNews

that they were not used in any pre-training process
(so far). Such a dataset should also allow us to get
a reasonable representation of current geopolitical
affairs. Depending on the news-source country and
language, we build several such Concept-Country
datasets. A Concept-Country dataset {C}-{1} con-
tains news about several (cy, co, ..c;..c,) countries
in {1} language where the news-source is {C} coun-
try. Each Concept-Country c; has 100 positive
examples (mention of ¢;) sentences and 300 nega-
tive examples (no mention) sentences. For exam-
ple, USA-eng Concept-Country dataset (Figure 7)
contains data from US sources, in English, which
either mention other countries (there are 100 pos-
itive examples for each country c¢;) or are random
sentences not mentioning any countries (negative
examples). See App. C for the constructed dataset
details with examples.

Expert Unit Extraction Using the self-
conditioning method, we identify high performing
Expert Units for each Concept-Country. These
are the model weights that provide higher
scores for the presence of a specific concept (i.e.
country in our case). For example, Consider
the Concept-Country India from the dataset
USA-eng. Essentially, we have positive examples
(text mentioning India or relevant entities) and
negative examples (random other sentences not
mentioning India) which we can use to identify
the model’s Expert Units. These units are the
neurons that can be used as predictors to identify
the presence of a concept (i.e. positive examples
mentioning "India"). The self-conditioning
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lang | Template —> Prefix English Meaning

ara o4 <country> —> Lili) o4 In Spain

ben fGdIeT <country> G -> NoHleT CHF 4 Yesterday, in Spain

eng | However, in <country> -> However in Spain | However in Spain

fra | <country> est connu pour -> Espagne est
connu pour

Spain is known for

hin | <country> #, -> &7 &, In Spain

kor | <country>0fiA{ -> AEOI0fA

In Spain

rus Buepa <country> -> Buepa HUcnanus

zho | FEX <countrys> -> REXZFIHET

Yesterday Spain

Yesterday Spain

Figure 3: Prefix construction using Multilingual Prefix-
Templates. Here we replace the <country> position
with "Spain" in the given language. Complete list of
multilingual prefix templates in Appendix D.

framework computes these neurons and uses the
average-precision score to rank their predictive
expertise thus allowing us to select the top-k (eg.
10, 50) Expert Units from each layer. Observing
the average precision scores, we select the top-k
(eg. 10, 50) Expert Units from each PLM layer.
A comprehensive theoretical explanation of the
self-conditioning method and the Expert Unit
extraction process is presented in App. B.

Geographic-Representation Network Now uti-
lizing all these model Expert Units, we construct
our Geographic-Representation Networks. We use
jaccard similarity to measure the similarity between
any given Concept-Country pairs ¢; and c¢; and
their corresponding Expert Units. Then, utilizing
these similarity measurement scores as edges in
a graph (the countries being the nodes), we pre-
pare a PLM-specific Geographic Representation
network for each of our Expert Units set. This
network is a Minimum-Spanning Tree graph high-
lighting the internal country-country associations.
We further make it easier to digest by identifying
the community clusters of countries using the Lou-
vain Community Detection method (Blondel et al.,
2008). In Figure 1 we show the network obtained
with the USA-eng dataset from the BLOOM (Work-
shop et al., 2023) Expert Units. Effectively, we can
recover a very good geographical representation of
the countries straight from the network weights.

Prompt-based Text Generation With the
Concept-Country-specific Expert Units at hand,
we can now investigate what happens when
we use the PLM for text generation. The self-
conditioning method (Suau et al., 2022) uses
sequential decoding and prioritize the Expert
Units by approximating their scores from the
average precision values predicted for a certain

Concept-Country. This allows us to artificially
simulate the presence of a country name and
it’s related context during text generation. Now
we perform text generation with one more twist:
we provide one country-mention as part of the
prefix/prompt (i.e. Prefix-Country). The idea here
is to simulate an environment where we evaluate
the model knowledge (Concept-Country-specific
Expert Units) by asking what it knows about
other countries (i.e Prefix-Country). We generate
several template-based multilingual prompts (the
prefix construction process is depicted in Table 3)
where we replace the <country> tag with different
country names.

Entity Country Mapping Finally, to investigate
the existence of geopolitical favouritism, we quan-
tify the geographic biases of the generated texts
by mapping any entities appearing in the text to
corresponding countries. We use the Dataset Ge-
ography framework of Faisal et al. (2022), which
uses multilingual entity linking to map entities to
Wikidata entries and then to countries.

4 Experimental Settings

Terminologies Based on our Framework descrip-

tion, let us list some terminologies that we use for

the remainder of the paper, to describe the experi-
mental settings and results.

1. Concept-Country: These are the countries for
which we collect n