
Findings of the Association for Computational Linguistics: EMNLP 2022, pages 1189–1201
December 7-11, 2022 ©2022 Association for Computational Linguistics

Extracting Trigger-sharing Events via an Event Matrix

Jun Xu∗, Weidi Xu∗, Mengshu Sun†, Taifeng Wang and Wei Chu
Ant Group, Hangzhou, China

{xj169860, weidi.xwd, mengshu.sms, taifeng.wang, weichu.cw}@antgroup.com

Abstract

A growing interest emerges in event extraction
which aims to extract multiple events with trig-
gers and arguments. Previous methods mitigate
the problem of multiple events extraction by
predicting the arguments conditioned on the
event trigger and event type, assuming that
these arguments belong to a single event. How-
ever, the assumption is invalid in general as
there may be multiple events. Therefore, we
present a unified framework called MatEE for
trigger-sharing events extraction. It resolves
the kernel bottleneck by effectively modeling
the relations between arguments by an event
matrix, where trigger-sharing events are rep-
resented by multiple cliques. We verify the
proposed method on 3 widely-used benchmark
datasets of event extraction. The experimen-
tal results show that it beats all the advanced
competitors, significantly improving the state-
of-the-art performances in event extraction.

1 Introduction

Event Extraction (EE) is a structured prediction
task that aims to recognize and extract the events
in the text. An event of a particular event type typi-
cally contains an event trigger and several relevant
arguments. The EE task has long been challenging
in the information extraction field as it involves var-
ious sub-tasks, e.g., named entity recognition (Li
et al., 2021b,a), relation extraction (Ahmad et al.,
2021). The primary studies (Sha et al., 2018; Chen
et al., 2015; Du and Cardie, 2020; Xu and Sun,
2022; Wang et al., 2019) of EE focus on extract-
ing single event by simply detecting and labeling
the spans. Then several improved methods were
proposed for extracting multiple events (Li et al.,
2020a; Chen et al., 2020; Du et al., 2021; Sheng
et al., 2021; Nguyen et al., 2021; Lin et al., 2020;

*These authors contributed equally to this work.
†Corresponding author.

Wang et al., 2019). These models typically formu-
late the extraction process as a sequence of con-
ditional predictions, i.e., first recognize the event
trigger, categorize the event type, and then extract
the corresponding arguments in the events condi-
tioned on the event trigger and event type. However,
they still cannot extract multiple events jointly and
mitigate the problem of multiple events extraction
by multiple fine-grained conditional predictions.
They make an implicit assumption that with a fine-
grained condition (trigger and event type) there can
be only one event, but such an assumption is gener-
ally invalid. Even with the specified event trigger
and event type, there can be multiple events. In fact,
there are around 16% samples in the FewFC (Zhou
et al., 2021) dataset violating this assumption. An
example of such multiple events is illustrated in
Figure 1. There is a common trigger “increased”
for four events where two events have the same
event type. Therefore, the capability of joint extrac-
tion of such multiple events with the same trigger
is indispensable.

!"#$%&'()*+,-.1000/012345300/06
Hillhouse increased its holdings of Sofia by 10 million shares and Smart
Energy by 3 million shares in Q2.

Event-1 Event-2 Event-3 Event-4

event type Equity
Investment

Equity
Investment

Equity
Transfer

Equity
Transfer

trigger increased increased increased increased

subject Hillhouse Hillhouse

sub-org
object Smart Energy Sofia

obj-org Hillhouse Hillhouse

company Sofia Smart Energy

date Q2 Q2 Q2 Q2

number 10 million 3 million

collateral shares shares

argum
ents

x

Figure 1: An example of multiple events (best viewed
in color). In this case, even when the trigger and event
type are given, i.e., “increased” and “equity investment”,
there still are two different events.

1189

To this end, we propose a unified framework,
MatEE, to predict trigger-sharing events in a sin-
gle stage by using a novel predication formalism.
Instead of predicting the argument spans indepen-
dently, we turn to model the co-event relationship
between the arguments as the token-token classi-
fication so that trigger-sharing events can be rep-
resented by a single event matrix. An example of
an event matrix is illustrated in Figure 2. The grid
in blue is used to indicate the argument boundary.
The grid in other colors except white expresses
two kinds of information: (1) two arguments co-
exist in the same event, and (2) the argument role
of the entity is denoted by the color in the grid.
By this definition, trigger-sharing events can be
represented by several cliques in the event matrix.
Therefore, we can recover the events by extracting
the maximal cliques and identify the arguments by
retrieving the value of grids.

CL
S

Tia
n

Yin

has

bou
ght

We
i

Ke

20
%

!

Tia
n

Lo
ng

30%

CL
S
Tia
n
Yin ha

s bou
ght

We
i Ke 20% ! Tia

n
Lo
ng
30%

span
sub

obj
stk

argum
ents

Figure 2: An example of event matrix of two events
(best viewed in color), i.e., {sub: “Tian Yin”, obj: “Wei
Ke”, stk: “20%”} and {sub: “Tian Yin”, obj: “Tian
Long”, stk: “30%”}. The sentence is the translation
of a Chinese example “天音收购唯科20%,天珑30%”.
The blue color indicates the argument spans, i.e., an
grid (i, j) in blue denotes there is an argument with
span (j, i). The grid (i, j) in other colors except white
contains two meanings: (1) the two arguments co-exist
in the same event where the former ends with i-th token
and the latter starts with j-th token, (2) the role of the
former argument is denoted by the color. The dashed
lines indicate the cliques of the two events.

With the novel formalism, we present a neu-
ral framework for extracting those trigger-sharing
events jointly (cf. the overview in Figure 3). First,
the BERT (Devlin et al., 2019) is used to pro-
vide contextualized word representations, based
on which we construct a trigger extractor for trig-
ger extraction. Then an argument extractor is used
to derive the event matrix by capturing the interac-
tions between argument spans and the co-event rela-

tionships. Both the trigger extractor and argument
extractor are trained to maximize the likelihood
of labeled data, along with a particular contrastive
learning objective for the trigger extractor.

Overall, our main contributions are two-fold:

• We present MatEE as a unified framework that
represents the events by an event matrix for
multiple trigger-sharing events extraction.

• Experimental results on three widely-used
datasets reveal that our model achieves signifi-
cant improvements over competitive methods.

2 Trigger-sharing Events Representation

Previous methods for multiple events extraction
typically predict the arguments conditioned on the
trigger and event type which are predicted ahead of
arguments. For instance, MQAEE (Li et al., 2020a)
predicts the arguments by constructing the ques-
tions with the trigger and event type. CasEE (Sheng
et al., 2021) similarly predicts the spans of argu-
ments with the conditional inputs. Although the
predicted arguments may belong to multiple events,
these methods are unable to distinguish various
events from these arguments. Therefore, the capa-
bility of extracting multiple trigger-sharing events
jointly is critical.

Event Matrix. To this end, we propose a novel
prediction formalism to represent multiple trigger-
sharing events in a single event matrix, motivated
by recent advances in the pair representation (Li
et al., 2021b; Wang et al., 2020). The event matrix
effectively represents the co-event relationship be-
tween the arguments. Specifically, for a text with
L tokens x = {w1, w2, ..., wL}, the event matrix
M = {mi,j} is of size RL×L. With Na types of
arguments roles, the grid mi,j can take the value in
{0, 1, ..., Na + 1} where 0 denotes the blank tag, 1
denotes the span tag and {2, ..., Na+1} correspond
to the Na argument roles such as “sub”, “obj” and
“stk”. The span tag is used to identify the argument
spans in the events. mi,j is 1 if and only if there
is an argument that starts with j-th token and ends
with i-th token. mi,j in {2, ..., Na + 1} is used
to indicate the co-event relationship of arguments.
First, it means that there are two arguments (a1, a2)
co-exist in the same event, a1 ends with j-th token
and a2 starts with i-th token. We assume that every
argument has a unique boundary so that the spans
of a1 and a2 can be directly inferred by (i, j). Sec-
ond, its value indicates the argument role of a1 so

1190

that we can align the spans with the argument roles.
By this definition, the co-existence of argument
pairs can determine all the arguments of a single
event. It is because if the arguments are in the same
event, every two arguments are connected and the
arguments form a clique in the graph. Therefore,
we can use a maximal clique algorithm to recover
the events from the event matrix.

Figure 2 shows an event matrix where the value
of mi,j is denoted by various colors. Let purple
denote the argument role of “sub”. The color of
the grid (“Yin’, “Wei”) is purple since the argu-
ment ending with “Yin” and the argument starting
with “Wei” are in the same event, and the former
argument is a “sub”. To derive the correspond-
ing arguments “Tian Yin” and “Wei Ke” by “Yin”
and “Wei”, we can refer to the blue grids (“Yin”,
“Tian”) and (“Ke”, “Wei”) which denote the spans
of the arguments. Taking the whole event matrix
into consideration, we can know the “Tian Yin”,
“Wei Ke” and “20%” are in the same event and their
argument roles are “sub”, “obj” and “stk” by the
color of grids. Consequently, the two events {sub:
“Tian Yin”, obj: “Wei Ke”, stk: “20%”} and {sub:
“Tian Yin”, obj: “Tian Long”, stk: “30%”} can be
represented by this single event matrix.

Representing Single Argument. There is a
special case for such formalism. When the event
has only one argument, we can not construct an
argument pair to indicate the role of this argument.
To mitigate this problem, we leverage the CLS
token as a proxy to pair the individual argument.
Therefore, for convenience, we let the first token
w1 in the text be the CLS token.

3 The MatEE Framework

The architecture of our framework is illustrated in
Figure 3, which mainly consists of three compo-
nents. First, the widely-used pre-trained language
model BERT is used as the encoder to yield word
representations. Then a trigger extractor is used
to extract the triggers based on sequence labeling.
Afterward, an argument extractor that contains a
multi-head biaffine network is used to predict the
event matrix by the maximal clique decoding.

3.1 Encoder Layer

We leverage BERT (Devlin et al., 2019) to pro-
cess the text for our model due to its effective-
ness in the event extraction (Sheng et al., 2021;
Yang et al., 2021). The text with L tokens is en-

coded by BERT to derive the vector representations
H = {h1,h2, ...,hL} ∈ RL×D, where D is the di-
mension of the embedding.

3.2 Trigger Extraction

We formalize the trigger extraction as a sequence
labeling task. Since previous studies (Li et al.,
2020b, 2021a) have demonstrated that the span-
based sequence labeling can solve the problem of
overlapping in the entity recognition, we apply it
to extract the trigger.

Triggers Extractor. First, we extract the trigger
spans for each event type from the text under the
span-based framework. This module is mainly di-
vided into two parts, i.e., start index prediction, and
end index prediction. In the start index prediction,
with the text representation H from the BERT en-
coder the module predicts the probability of each
token being a start index of k-th event type:

Tk
s = sigmoid(MLPk

s(H)) , (1)

where Tk
s ∈ RL is the start index probability distri-

bution of the k-th event type and MLP denotes a
linear transformation layer. With the start index, in
the end index prediction, this module concatenates
the text representation H with the start index pre-
diction Ts and calculates the probability of each
token being an end index by:

Tk
e = sigmoid(MLPk

e([H;Tk
s])) , (2)

where [·; ·] denotes the concatenation operation
(i.e., [H;Tk

s] ∈ RL×(D+1)), Tk
e ∈ RL is the end

index probability distribution of the k-th event type.
When selecting the trigger spans during the pre-
diction, for each event type and a trigger start in-
dex, we pick all end positions within the maximum
length of triggers to obtain the candidate triggers
for following argument extraction. In this way, our
model can extract multiple triggers. The objective
of trigger extraction is to maximize the likelihood:

Lt =
Ne∑

k=1

1

2
[CE(Tk

s ,T
k∗
s) + CE(Tk

e ,T
k∗
e)] ,

(3)
where Ne denotes the number of event types and
Tk∗

s ,Tk∗
e ∈ RL are the target start and end labels

of k-th event type. CE is the cross-entropy loss.
Discounted Contrastive Learning. In practice,

we found that there is a lot of confusion about event
types, especially “收购", “股权股份转让" and “投

1191

Encoder Trigger Extraction

BERT

CLS

Tian

Yin

has

bought

Wei

Ke

20%

、

Tian

Long

30%

D
iscounted

C
ontrastive

Learning

S

0

0

0

1

0

0

0

0

0

0

0

E

0

0

0

1

0

0

0

0

0

0

0

Trigger R
PE

C
LN

Event Type Em
b

C
onditional R

epresentation

Biaffine Network

Argument Span Extractor

Argument Relation Extractor
Multiple Heads

WeiKe 20%

TianYin

TianLong 30%

Event 1:
event type: Equity acquisition
trigger: bought
arguments:{sub:TianYin, obj:WeiKe, stk:20%}

Event 2:
event type: Equity acquisition,
trigger: bought
arguments:{sub:TianYin, obj:TianLong, stk:30%}

R
epresentations

Argument Extraction

CL
S

Tia
n

Yin

has

bou
ght

We
i

Ke

20
%

!

Tia
n

Lo
ng

30%

CL
S
Tia
n
Yin ha

s bou
ght

We
i Ke 20% ! Tia

n
Lo
ng
30%

span
sub

obj
stk

argum
ents

EventType
Prototype

Em
b

Figure 3: The overview of MatEE framework (best viewed in color). It contains a BERT encoder, a trigger extractor,
and an arguments extractor. CLN and Trigger RPE represent conditional layer normalization and trigger relative
position encoding, respectively.

资" in FewFC. Therefore, we design a discounted
contrastive learning for the confusing event type.

Lc = − log

∑
j∈{T +} exp(f(T,Ej

e)/τ)
∑

j∈{T +,T −} exp(f(T,Ej
e)/τ)

,

(4)
where Ee ∈ RNe×Ne is the prototype embedding
of event types and Ej

e represents the prototype em-
bedding of event type j. T ∈ RL×Ne is the start or
end index prediction. τ is a temperature hyperpa-
rameter, T + (T −) is the set of positive (negative)
event types. The score function f is expressed as
follows:

f(T,Ej
e) =

cosine_similarity(T,Ej
e)

log2(rankj + 1)
, (5)

where cosine_similarity is the cosine similarity
measures. rankj ∈ [1, Ne] represents the similarity
ranking of the j-th event type with T.

3.3 Argument Extraction
The argument extractor is responsible for extract-
ing multiple events jointly conditioned on the event
trigger and event type. As mentioned above, previ-
ous methods simply extract the arguments w.r.t. the
trigger and event type, and cannot distinguish the
events for the extracted arguments. In contrast, we
leverage the event matrix to represent the multiple
trigger-sharing events in a single stage. The right
side of Figure 3 illustrates the framework of the

argument extractor. It receives the trigger and event
type from the trigger extractor, performs a series of
computations to aggregate the information between
the tokens, and then predicts an event matrix.

Conditional Representation. To integrate the
trigger and event type, we adopt three compo-
nents, i.e., the conditional layer normalization,
event type embedding, and trigger relative posi-
tion embedding. Conditional Layer Normalization
(CLN) (Yu et al., 2021) is a mechanism to effec-
tively fuse the identified trigger and the textual
representation h ∈ RD. The textual representa-
tion Ĉ = {ĉ1, ..., ĉL} ∈ RL×D used to extract the
arguments is calculated as follows:

Ĉ = CLN(t,H) , (6)

where t ∈ RD is the vector representing the trigger
by performing the average pooling over the trigger
tokens. Refer to Yu et al. (2021) for more details
of CLN.

To encode the event type, we vectorize the event
type as e ∈ RD by retrieving an embedding ma-
trix. Besides, since the relative position is shown to

764 52 3101234

Tian
Yin has

bought

Wei
Ke 20%

! Tian
Long

30%
CLS

trigger (Equity acquisition)

Figure 4: The trigger relative position is based on the
trigger position and relative distance.

1192

be significant in relevant tasks (Yang et al., 2016),
we also use a relative position vector as shown in
Figure 4 to indicate the position of the trigger. De-
noting Pt ∈ RL×D as the trigger relative position
embedding of trigger t, the fused representation is
obtained as follows:

C = MLPc([Ĉ;E;Pt]) , (7)

where E ∈ RL×D repeats event type embedding e
L times so that we can directly concatenate these
representations. The output of MLP is C ∈ RL×D.

Multi-Heads Biaffine Network. The represen-
tation C integrates the text with the information
from the event trigger and the event type. Then we
can use it to predict the event matrix. To fully ag-
gregate the information of arguments and their rela-
tionships, inspired by Li et al. (2021b), we propose
two feature extractors, i.e., a span extractor and a
relation extractor, to extract argument span and the
relationship between arguments respectively.

Specifically, the span extractor obtains the repre-
sentations of spans Ŝ ∈ RL×D as follows:

Ae = softmax(MLP(C)) ,

Ŝ = MLP([C;Ae]) ,
(8)

where Ae ∈ RL×2 is used to identify the end index
of arguments. The two MLPs denote two different
dense layers but we omit the subscripts for clarity.

To capture the relationships between the argu-
ments, the relation extractor derives the vector rep-
resentations for the tokens as:

Ar = σ(CWrC
T) ,

R̂ = MLP([C;Ar]) ,
(9)

where Wr ∈ RD×D is a learnable matrix for
the bilinear transformation, Ar ∈ RL×L is used
to represent the relationship between arguments,
[C;Ar] ∈ RL×(D+L) is the input of the argument
relation extractor and R̂ ∈ RL×D is the output.

To jointly extract the argument span and rela-
tion, we apply a biaffine network Yu et al. (2020)
to fuse the outputs of the span extractor and the
relation extractor. However, the biaffine model is
insensitive to the entity length and the boundaries,
often rendering the predictions of entity boundaries
incorrect. To mitigate this problem, we add the
relative distance between the tokens (cf. Appendix
A) as the input and vectorize them by an embed-
ding matrix. With the relative position embedding

of the arguments Pa ∈ RL×L, we concatenate it
with the argument span representation Ŝ and the
argument relation representation R̂ to gather the
position information. To maintain the dimension,
we use an MLP to map the concatenated vectors
to the D-dimensional vectors. Then, the biaffine
network is used to fuse the representations of two
extractors:

S = MLP([Ŝ;Pa]) ,

R = MLP([R̂;Pa]) ,

vi,j = sTi Urj +Wb[si; rj] + b ,

(10)

where U ∈ RD×F×D and Wb ∈ RF×2D are the
trainable parameters (F is the dimension of vi,j),
b ∈ RF is the bias, si and rj denote the i-th and
j-th element of S and R respectively. Motivated
by Transformer (Vaswani et al., 2017), we use mul-
tiple biaffine heads to capture the interactions be-
tween argument spans and argument relations from
different perspectives. Finally, the output of the
multi-head biaffine layer is:

M = softmax(MLP([V1; ...;VNh])) , (11)

where Nh is the number of heads, Vk = {vk
i,j}

denotes the output of k-th biaffine head. M ∈
RL×L×(Na+2) is the predicted probability of the
event matrix after aggregating multiple biaffine
heads, where Na + 2 is the number of categories
in the event matrix (Na argument roles and two
extra categories, i.e., span and blank). The overall
objective of argument extraction of a data sample
is as follows:

La =
∑

k,t∈Tk
CE(M,M∗) , (12)

where Tk is the set of triggers of k-th event type,
M∗ ∈ RL×L is the target event matrix.

Maximal Clique Decoding. As shown in Algo-
rithm 1, to decode multi-events from the prediction
M, we construct an argument role matrix O to iden-
tify the argument role in each event, and an undi-
rected relation graph G to represent the co-event
relationship between arguments. The algorithm of
graph construction is shown in Algorithm 1, which
aims to find all argument spans and relations to
reconstruct the events.

An example of constructed graphs is shown in
Figure 5. With the graph G, we can decode all
maximal cliques based on the Bron-Kerbosch algo-
rithm (cf. Appendix B) to find the corresponding

1193

Algorithm 1: Graph Construction
Input :The predicted event matrix M, the

maximal number of arguments Q,
the size of M L.

Output :The undirected graph G and
argument role matrix O.

1 M ← argmaxM;
2 A← ∅;
3 O,G← int[Q][Q] = 0;
4 for col← 0 to L do
5 for row ← 0 to L do
6 if M [row][col] = 1 and |A| < Q

then
7 A← A ∪ set((col, row))

8 for i, ai in A do
9 for j, aj in A do

10 row_i, col_j = ai[1], aj [0];
11 if M [row_i][col_j] ̸∈ [0, 1] then
12 O[i][j]←M [row_i][col_j] ;
13 G[i][j]← 1 ; G[j][i]← 1;

14 return G,O

arguments in various events. As shown in Section 2,
the nodes in a maximal clique correspond to the
arguments in an event.

TianYin
WeiKe
20%

30%
TianLong

Ti
an
Y
in

W
ei
K
e

20
%

Ti
an
Lo
ng

30
%

TianYin
WeiKe
20%

30%
TianLong

Ti
an
Y
in

W
ei
K
e

20
%

Ti
an
Lo
ng

30
%

Figure 5: Left: the argument matrix O is used to identify
the argument role in each event. Right: the undirected
relation graph G is used to represent the co-event rela-
tionship between arguments.

For example, in the right of Figure 5, we can
decode two sets of event arguments {“Tian Yin”,
“Wei Ke”, “20%”} and {“Tian Yin”, “Tian Long”,
“30%”}. Then, by the values in (“Tian Yin”, “Wei
Ke”) of the left subgraph, it can be inferred that the
argument role of “Tian Yin” in the event is “sub”.
Similarly, the argument role of “Wei Ke” is “obj".
The role of the tail argument is inferred from tail
“20%” to head “Tian Yin”, so the role of “20%”
is “stk”. Therefore, we can extract two sets of

arguments ({sub: “Tian Yin”, obj: “Wei Ke”, stk:
“20%”} and {sub: “Tian Yin”, obj: “Tian Long”,
stk: “30%”}) for the trigger “bought”.

3.4 Model Training
The overall training objective to be minimized is:

L =
∑

D
(λ1Lt + λ2La + λ3Lc) , (13)

where λ1, λ2, λ3 are hyper-parameters to weight
the components in the overall training objective, D
denotes the training samples. The three losses are
jointly trained in an end-to-end fashion.

4 Experimental Settings

Dataset. Our experiments are conducted on 3
widely-used datasets (cf. Table 1), including
FewFC (Zhou et al., 2021), DuEE (Li et al., 2020c),
and iFLYTEK*. For a fair comparison, we split the
same training, validation, and test sets as in previ-
ous studies (Sheng et al., 2021; Zhou et al., 2021;
Li et al., 2020a,c).

#sample #event #ele-shr #tri-shr
FewFC 8,982 12,890 5,345 848
DuEE 13,400 15,643 2,658 118

iFLYTEK 5,758 7,999 2,403 151

Table 1: Dataset Statistics. “#" denotes the amount.
“ele-shr" means the number of events sharing elements,
either argument or trigger. “tri-shr" represents the num-
ber of events sharing trigger.

Evaluation Metric. The evaluation metric is sim-
ilar to previous studies (Sheng et al., 2021; Yang
et al., 2021). TI, TC, AI, and AC denote trigger
identification, trigger classification, argument iden-
tification, and argument classification, respectively.
For more details, please refer to Appendix C.
Implementation Details. The number of heads
of the biaffine layer is 3 with the dimension of
head F = 20. We set the maximum length of trig-
gers to 12 and the maximum length of arguments
to 25. The worst-case time complexity of maxi-
mal clique decoding is exponential. Therefore, we
set the maximum number of identified arguments
Q in Algorithm 1 to 30. The weights of loss is
λ1 = 1.0, λ2 = 5.0, λ3 = 0.5 and the tempera-
ture τ in the trigger contrastive learning is 0.1. For
other hyper-parameters and details, please refer to
Appendix D.

*http://challenge.xfyun.cn/topic/info?option=phb

1194

5 Experimental Results

5.1 Comparison Methods

BERT (Kruengkrai et al., 2020), which assigns a
tag to each word with joint labels, such as B/I/O-
type-trigger and B/I/O-type-role. PLMEE (Yang
et al., 2019) solves overlapped argument problem
by extracting role-specific arguments according to
the trigger. MQAEE (Li et al., 2020a), which splits
the event extraction task into two sub-tasks: trig-
ger classification and argument extraction. The
problem is solved as multi-turn QA in a pipeline.
CasEE (Sheng et al., 2021) proposes a cascade
decoding for overlapping event extraction, which
sequentially performs type detection, trigger ex-
traction, and argument extraction. For more im-
plementation details and hyper-parameters of the
compared methods, please refer to Appendix E.

5.2 Overall Results

We evaluate our framework on three widely-used
event extraction datasets. Table 2 presents the
comparisons between our model and other base-
lines. As seen, our model outperforms the previous
best model CasEE by 1.80%, 2.13%, and 3.65%
in AC F1 score in the FewFC, DuEE, and iFLY-
TEK datasets, respectively. The main reason is that
our event matrix can extract trigger-sharing events.
Besides, in trigger classification, our model outper-

Model
TC (%) AC (%)

P R F1 P R F1

Fe
w

FC

BERT 82.55 65.38 72.97 75.27 62.44 68.26
PLMEE 76.82 75.51 76.16 73.59 65.51 69.32
MQAEE 81.87 70.42 75.71 74.25 63.46 68.43
CasEE 77.87 78.25 78.06 71.19 71.33 71.26
MatEE 80.40 78.88 79.64 74.56 70.46 72.45

D
uE

E

BERT 78.94 72.37 75.51 73.65 68.69 71.08
PLMEE 78.89 76.95 77.91 74.78 73.41 74.09
MQAEE 79.27 73.42 76.23 76.78 72.22 74.43
CasEE 81.74 79.45 80.58 77.32 74.98 76.13
MatEE 83.34 80.22 81.75 79.22 76.34 77.75

iF
LY

T
E

K

BERT 83.77 69.83 76.17 74.72 62.10 67.83
PLMEE 79.92 76.31 78.07 71.94 69.79 70.85
MQAEE 80.32 74.70 77.41 75.60 67.96 71.58
CasEE 80.81 79.54 80.17 74.38 72.56 73.46
MatEE 82.25 81.47 81.86 78.01 74.35 76.14

Table 2: Overall results of event extraction on FewFC,
DuEE, and iFLYTEK.

forms the best baseline by 2.06% on FewFC, 1.45%
on DuEE, and 2.10% on iFLYTEK. There are two
key points to the significant improvement of our

model. Firstly, the previous work CasEE produces
event types with multi-label classification, and then
performs trigger identification according to event
types, while the two-stage model suffers from cu-
mulative error. Secondly, we apply the contrastive
learning to learn an effective representation of sen-
tences and triggers, thus reducing false positives.

5.3 Results For Trigger-sharing Events

We divide test data into three parts: 1) Trigger-
sharing multiple events share a trigger; 2)
Element-sharing multiple events share an argu-
ment or a trigger; 3) Normal elements are not
shared between events. Take the FewFC dataset as
an example, as shown in Table 3, BERT performs
significantly worse in element-sharing events, the
key reason is that they cannot extract element-
sharing events. While PLMEE, MQAEE and
CasEE can extract element-sharing events partially,
but they cannot deal with multiple events sharing
a trigger in the same event type. As can be seen
from the table, the AC F1 score of our model in
trigger-sharing events has improved by 11.84%. In
element-sharing events, the AC F1 score of our
model is greater than the AI F1 score. The major
contribution is that our event matrix assigns the
same argument to multiple events.

TI(%) TC(%) AI(%) AC(%)

Tr
i-

sh
ar

in
g BERT 82.62 67.14 39.41 37.08

PLMEE 81.52 70.96 49.74 38.18
MQAEE 82.42 71.21 49.56 46.95
CasEE 85.82 73.14 55.18 54.73
MatEE 86.21 75.22 62.34 61.21

E
le

-s
ha

ri
ng

BERT 83.34 68.61 63.42 62.31
PLMEE 84.41 72.65 69.22 64.78
MQAEE 85.33 73.47 69.32 65.80
CasEE 86.73 76.25 72.16 70.54
MatEE 87.42 77.14 75.59 73.98

N
or

m
al

BERT 84.66 75.85 74.53 72.19
PLMEE 86.91 78.48 79.01 72.31
MQAEE 88.08 77.20 78.83 70.17
CasEE 89.55 79.26 73.91 71.74
MatEE 89.65 81.47 75.12 71.33

Table 3: Results of trigger-sharing, element-sharing and
normal in FewFC test set. F1 scores are reported for
each evaluation metric.

5.4 Model Ablation Studies

We ablate each part of our model on the FewFC, as
shown in Table 4. First, without discounted con-
trastive learning (DCL), we observe performance

1195

drops of 2.29% on TC and 3.08% on AC, which ver-
ifies the usefulness of trigger contrastive learning.
By removing CLN, event type embedding, and trig-
ger relative position embedding, the performance
drops slightly. Furthermore, after removing argu-
ment relative position encoding, the performance
decrease is most significant. The main reason is
that the argument span extractor and argument re-
lation extractor are not position-sensitive, result-
ing in boundary errors. Instead of using biaffine,
stack two extractors directly, the performance also
drops obviously. This shows that the biaffine mod-
ule increases the interaction of the two extractors,
thereby increasing the effect of AC. At last, when
head numbers are replaced by 1 or 2, we observe
slight performance drops on this dataset.

TI(%) TC(%) AI(%) AC(%)
MatEE 88.71 79.64 75.32 72.45
w/o DCL 86.49 77.82 74.73 70.22
w/o CLN 86.78 78.25 75.01 71.47
w/o Event Type Emb. 87.01 78.88 74.19 71.60
w/o Trigger RPE 86.58 77.02 73.92 70.39
w/o Relative PE 84.29 76.43 73.26 70.10
w/o Biaffine 85.72 77.82 74.53 71.12
repl. Multi-Heads=1 86.98 78.34 74.39 71.89

Multi-Heads=2 87.12 78.91 74.57 72.20

Table 4: Model ablation studies (F1 score).

5.5 Case Study

In addition to the quantitative results, we visualize
several event matrices for better comprehension
of the behavior of the model. Figure 6 shows an
example of predicted event matrix (left) with the
target event matrix (right). We use the black color
to denote the blank tag and the white color to de-
note the span tag to make the contrast clear. We
can see that the predicted matrix can correctly rep-
resent two events by two cliques and the argument
roles are also correct. This example qualitatively
verifies the ability of the model to handle trigger-
sharing events. We also show an incorrect case
where the model fails to aggregate the arguments
in a single event in Figure 7. Several co-event rela-
tionships between the arguments are missed so that
the resulting events are incomplete. Compared to
previous models, our model not only predicts the
arguments and their corresponding roles but also
predicts whether they exist in the same event. The
additional prediction task may make the learning
objective more difficult but the experimental re-

0

10

20

30

40

50

60

Prediction
0

10

20

30

40

50

60

Target

Figure 6: A prediction with two correct events. The
input text is “2017年4月,公司开始筹划重大事项,计
划收购辣妹子食品100%的股权,意在扩充公司产品
线,2017年10月,因双方诉求未达一致,终止。”.

0

20

40

60

80

Prediction
0

20

40

60

80

Target

Figure 7: A prediction with two incorrect events. The in-
put text is “10月31日*ST凯瑞公告称,公司10月30日
收到法院关于德棉集团起诉公司名誉权侵权的通
知后,当日下午向法院对德棉集团提起诉讼,要求其
归还公司会计资料并赔偿3000万元。”.

sults show that the including of such information is
quite helpful for representing the events, and thus
benefits the extraction process. We attach more
visualization examples in Appendix H.

6 Related Work

Single Event Extraction. The primary studies typ-
ically considered the task as a sequence labeling
problem, to assign each token a tag from a pre-
defined scheme (e.g., BIO). Mainstream studies
combine the CRF (Chen et al., 2015) with neu-
ral architecture, such as CNN (Chen et al., 2015),
bi-directional LSTM (Sha et al., 2018), and Trans-
former (Du and Cardie, 2020). However, these
methods fail to address the problem of multiple
events. Multiple Events Extraction. There have
been several studies (Li et al., 2020a; Chen et al.,
2020; Ahmad et al., 2021; Liu et al., 2018; Hsu
et al., 2022; Ma et al., 2022; Hwang et al., 2022;
Feng et al., 2022) that cast multiple events extrac-
tion as a sequence of conditional predictions, i.e.,
recognizing trigger with event type first, and then
extracting the corresponding arguments. Condi-
tions are used in a variety of ways, such as Graph

1196

Aggregation (Liu et al., 2018), Graph Representa-
tion (Xu et al., 2018), Seq2Seq (Du et al., 2021),
MRC (Zhou et al., 2021), and Cascade Decoding
(Sheng et al., 2021). However, the above meth-
ods make an implicit assumption that with a fine-
grained condition (trigger and event type) there
can be only one event. Inspired by extracting over-
lapped NER (Li et al., 2021b) and SPO (Wang
et al., 2020), we propose an event matrix to deal
with trigger-sharing events.

7 Conclusion

We have presented a unified framework MatEE
based on the event matrix which is a novel for-
malism to represent multiple events jointly. Our
framework is useful for various events extraction,
especially trigger-sharing events. The empirical
comparison and the results of analytical experi-
ments verify its effectiveness. Beyond EE, our
work may shed light on other complicated struc-
tured prediction tasks where the components are
hard to predict sequentially. In the future, our work
will focus on generalizing the MatEE to the case
with multi-role arguments and the incorporation of
the inherent prior constraints.

8 Acknowledgements

We would like to thank the anonymous reviewers
for their constructive comments. This work was
supported by Ant Group through Ant Innovative
Research Program.

Limitations

Nonetheless, these results must be interpreted with
caution and several limitations should be borne in
mind. First of all, limited by the definition of the
event matrix, an argument in an event can play
at most one role as the grid can take one value.
Second, the event matrix is unable to represent
two events when an event is a subset of another
event, although we did not find such cases in the
datasets. Third, the worst-case time complexity of
the maximal clique decoding algorithm is O(3n

3)
for an n-vertex graph. Therefore, it is not suitable
for document-level event extraction. Finally, we
also notice that the predicted matrix may violate
the definition of the event matrix. For instance in
Figure 6, there is a dark yellow grid on the top-right
corner but there is no bright grid on the bottom-left
corner. Actually, the two grids form a pair and
they should both be either blank or some colors of

the argument roles. Taking such constraints into
consideration can improve the confidence of the
prediction and we leave it to further work.

References
Wasi Uddin Ahmad, Nanyun Peng, and Kai-Wei Chang.

2021. GATE: graph attention transformer encoder
for cross-lingual relation and event extraction. In
Thirty-Fifth AAAI Conference on Artificial Intelli-
gence, AAAI 2021, Thirty-Third Conference on In-
novative Applications of Artificial Intelligence, IAAI
2021, The Eleventh Symposium on Educational Ad-
vances in Artificial Intelligence, EAAI 2021, Vir-
tual Event, February 2-9, 2021, pages 12462–12470.
AAAI Press.

Coenraad Bron and Joep Kerbosch. 1973. Finding all
cliques of an undirected graph (algorithm 457). Com-
mun. ACM, 16(9):575–576.

Pei Chen, Hang Yang, Kang Liu, Ruihong Huang, Yubo
Chen, Taifeng Wang, and Jun Zhao. 2020. Recon-
structing event regions for event extraction via graph
attention networks. In Proceedings of the 1st Con-
ference of the Asia-Pacific Chapter of the Associa-
tion for Computational Linguistics and the 10th In-
ternational Joint Conference on Natural Language
Processing, AACL/IJCNLP 2020, Suzhou, China, De-
cember 4-7, 2020, pages 811–820. Association for
Computational Linguistics.

Yubo Chen, Liheng Xu, Kang Liu, Daojian Zeng, and
Jun Zhao. 2015. Event extraction via dynamic multi-
pooling convolutional neural networks. In Proceed-
ings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Pro-
cessing of the Asian Federation of Natural Language
Processing, ACL 2015, July 26-31, 2015, Beijing,
China, Volume 1: Long Papers, pages 167–176. The
Association for Computer Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers),
pages 4171–4186. Association for Computational
Linguistics.

Xinya Du and Claire Cardie. 2020. Event extraction by
answering (almost) natural questions. In Proceedings
of the 2020 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2020, Online,
November 16-20, 2020, pages 671–683. Association
for Computational Linguistics.

Xinya Du, Alexander M. Rush, and Claire Cardie.
2021. GRIT: generative role-filler transformers for

1197

https://ojs.aaai.org/index.php/AAAI/article/view/17478
https://ojs.aaai.org/index.php/AAAI/article/view/17478
https://aclanthology.org/2020.aacl-main.81/
https://aclanthology.org/2020.aacl-main.81/
https://aclanthology.org/2020.aacl-main.81/
https://doi.org/10.3115/v1/p15-1017
https://doi.org/10.3115/v1/p15-1017
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/2020.emnlp-main.49
https://doi.org/10.18653/v1/2020.emnlp-main.49
https://doi.org/10.18653/v1/2021.eacl-main.52

document-level event entity extraction. In Proceed-
ings of the 16th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Main Volume, EACL 2021, Online, April 19 - 23,
2021, pages 634–644. Association for Computational
Linguistics.

Yi Feng, Chuanyi Li, and Vincent Ng. 2022. Legal judg-
ment prediction via event extraction with constraints.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), ACL 2022, Dublin, Ireland, May 22-27,
2022, pages 648–664. Association for Computational
Linguistics.

I-Hung Hsu, Kuan-Hao Huang, Elizabeth Boschee,
Scott Miller, Prem Natarajan, Kai-Wei Chang, and
Nanyun Peng. 2022. DEGREE: A data-efficient
generation-based event extraction model. In Proceed-
ings of the 2022 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, NAACL
2022, Seattle, WA, United States, July 10-15, 2022,
pages 1890–1908. Association for Computational
Linguistics.

EunJeong Hwang, Jay-Yoon Lee, Tianyi Yang, Dhru-
vesh Patel, Dongxu Zhang, and Andrew McCallum.
2022. Event-event relation extraction using proba-
bilistic box embedding. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), ACL 2022,
Dublin, Ireland, May 22-27, 2022, pages 235–244.
Association for Computational Linguistics.

Canasai Kruengkrai, Thien Hai Nguyen, Sharifah Alju-
nied Mahani, and Lidong Bing. 2020. Improving
low-resource named entity recognition using joint
sentence and token labeling. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, ACL 2020, Online, July 5-10,
2020, pages 5898–5905. Association for Computa-
tional Linguistics.

Fayuan Li, Weihua Peng, Yuguang Chen, Quan Wang,
Lu Pan, Yajuan Lyu, and Yong Zhu. 2020a. Event
extraction as multi-turn question answering. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2020, Online Event, 16-20 November 2020,
volume EMNLP 2020 of Findings of ACL, pages
829–838. Association for Computational Linguistics.

Fei Li, Zhichao Lin, Meishan Zhang, and Donghong Ji.
2021a. A span-based model for joint overlapped and
discontinuous named entity recognition. In Proceed-
ings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing,
ACL/IJCNLP 2021, (Volume 1: Long Papers), Virtual
Event, August 1-6, 2021, pages 4814–4828. Associa-
tion for Computational Linguistics.

Jingye Li, Hao Fei, Jiang Liu, Shengqiong Wu, Meis-
han Zhang, Chong Teng, Donghong Ji, and Fei Li.

2021b. Unified named entity recognition as word-
word relation classification. Proceedings of the AAAI
Conference on Artificial Intelligence, AAAI 2021.

Xiaoya Li, Jingrong Feng, Yuxian Meng, Qinghong
Han, Fei Wu, and Jiwei Li. 2020b. A unified MRC
framework for named entity recognition. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, ACL 2020, Online,
July 5-10, 2020, pages 5849–5859. Association for
Computational Linguistics.

Xinyu Li, Fayuan Li, Lu Pan, Yuguang Chen, Weihua
Peng, Quan Wang, Yajuan Lyu, and Yong Zhu. 2020c.
Duee: A large-scale dataset for chinese event extrac-
tion in real-world scenarios. In Natural Language
Processing and Chinese Computing - 9th CCF In-
ternational Conference, NLPCC 2020, Zhengzhou,
China, October 14-18, 2020, Proceedings, Part II,
volume 12431 of Lecture Notes in Computer Science,
pages 534–545. Springer.

Ying Lin, Heng Ji, Fei Huang, and Lingfei Wu. 2020.
A joint neural model for information extraction with
global features. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, ACL 2020, Online, July 5-10, 2020, pages
7999–8009. Association for Computational Linguis-
tics.

Xiao Liu, Zhunchen Luo, and Heyan Huang. 2018.
Jointly multiple events extraction via attention-based
graph information aggregation. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, Brussels, Belgium, October 31
- November 4, 2018, pages 1247–1256. Association
for Computational Linguistics.

Yubo Ma, Zehao Wang, Yixin Cao, Mukai Li, Meiqi
Chen, Kun Wang, and Jing Shao. 2022. Prompt for
extraction? PAIE: prompting argument interaction
for event argument extraction. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), ACL
2022, Dublin, Ireland, May 22-27, 2022, pages 6759–
6774. Association for Computational Linguistics.

Minh Van Nguyen, Viet Dac Lai, and Thien Huu
Nguyen. 2021. Cross-task instance representation
interactions and label dependencies for joint infor-
mation extraction with graph convolutional networks.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
NAACL-HLT 2021, Online, June 6-11, 2021, pages
27–38. Association for Computational Linguistics.

Lei Sha, Feng Qian, Baobao Chang, and Zhifang Sui.
2018. Jointly extracting event triggers and argu-
ments by dependency-bridge RNN and tensor-based
argument interaction. In Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence,
(AAAI-18), the 30th innovative Applications of Arti-
ficial Intelligence (IAAI-18), and the 8th AAAI Sym-
posium on Educational Advances in Artificial Intel-

1198

https://doi.org/10.18653/v1/2021.eacl-main.52
https://doi.org/10.18653/v1/2022.acl-long.48
https://doi.org/10.18653/v1/2022.acl-long.48
https://doi.org/10.18653/v1/2022.naacl-main.138
https://doi.org/10.18653/v1/2022.naacl-main.138
https://doi.org/10.18653/v1/2022.acl-short.26
https://doi.org/10.18653/v1/2022.acl-short.26
https://doi.org/10.18653/v1/2020.acl-main.523
https://doi.org/10.18653/v1/2020.acl-main.523
https://doi.org/10.18653/v1/2020.acl-main.523
https://doi.org/10.18653/v1/2020.findings-emnlp.73
https://doi.org/10.18653/v1/2020.findings-emnlp.73
https://doi.org/10.18653/v1/2021.acl-long.372
https://doi.org/10.18653/v1/2021.acl-long.372
https://arxiv.org/abs/2112.10070
https://arxiv.org/abs/2112.10070
https://doi.org/10.18653/v1/2020.acl-main.519
https://doi.org/10.18653/v1/2020.acl-main.519
https://doi.org/10.1007/978-3-030-60457-8_44
https://doi.org/10.1007/978-3-030-60457-8_44
https://doi.org/10.18653/v1/2020.acl-main.713
https://doi.org/10.18653/v1/2020.acl-main.713
https://doi.org/10.18653/v1/d18-1156
https://doi.org/10.18653/v1/d18-1156
https://doi.org/10.18653/v1/2022.acl-long.466
https://doi.org/10.18653/v1/2022.acl-long.466
https://doi.org/10.18653/v1/2022.acl-long.466
https://doi.org/10.18653/v1/2021.naacl-main.3
https://doi.org/10.18653/v1/2021.naacl-main.3
https://doi.org/10.18653/v1/2021.naacl-main.3
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16222
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16222
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16222

ligence (EAAI-18), New Orleans, Louisiana, USA,
February 2-7, 2018, pages 5916–5923. AAAI Press.

Jiawei Sheng, Shu Guo, Bowen Yu, Qian Li, Yiming
Hei, Lihong Wang, Tingwen Liu, and Hongbo Xu.
2021. Casee: A joint learning framework with cas-
cade decoding for overlapping event extraction. In
Findings of the Association for Computational Lin-
guistics: ACL/IJCNLP 2021, Online Event, August
1-6, 2021, volume ACL/IJCNLP 2021 of Findings of
ACL, pages 164–174. Association for Computational
Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pages 5998–6008.

Xiaozhi Wang, Ziqi Wang, Xu Han, Zhiyuan Liu, Juanzi
Li, Peng Li, Maosong Sun, Jie Zhou, and Xiang Ren.
2019. HMEAE: hierarchical modular event argument
extraction. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Nat-
ural Language Processing, EMNLP-IJCNLP 2019,
Hong Kong, China, November 3-7, 2019, pages 5776–
5782. Association for Computational Linguistics.

Yucheng Wang, Bowen Yu, Yueyang Zhang, Tingwen
Liu, Hongsong Zhu, and Limin Sun. 2020. Tplinker:
Single-stage joint extraction of entities and relations
through token pair linking. In Proceedings of the
28th International Conference on Computational Lin-
guistics, COLING 2020, Barcelona, Spain (Online),
December 8-13, 2020, pages 1572–1582. Interna-
tional Committee on Computational Linguistics.

Jun Xu, Siqi Shen, Dongsheng Li, and Yongquan Fu.
2018. A network-embedding based method for au-
thor disambiguation. In Proceedings of the 27th ACM
International Conference on Information and Knowl-
edge Management, CIKM 2018, Torino, Italy, Octo-
ber 22-26, 2018, pages 1735–1738. ACM.

Jun Xu and Mengshu Sun. 2022. DPNPED: dynamic
perception network for polysemous event trigger de-
tection. IEEE Access, 10:104801–104810.

Hang Yang, Dianbo Sui, Yubo Chen, Kang Liu, Jun
Zhao, and Taifeng Wang. 2021. Document-level
event extraction via parallel prediction networks. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing, ACL/IJCNLP 2021, (Volume 1: Long
Papers), Virtual Event, August 1-6, 2021, pages 6298–
6308. Association for Computational Linguistics.

Sen Yang, Dawei Feng, Linbo Qiao, Zhigang Kan, and
Dongsheng Li. 2019. Exploring pre-trained language
models for event extraction and generation. In Pro-
ceedings of the 57th Conference of the Association

for Computational Linguistics, ACL 2019, Florence,
Italy, July 28- August 2, 2019, Volume 1: Long Pa-
pers, pages 5284–5294. Association for Computa-
tional Linguistics.

Yunlun Yang, Yunhai Tong, Shulei Ma, and Zhi-Hong
Deng. 2016. A position encoding convolutional neu-
ral network based on dependency tree for relation
classification. In Proceedings of the 2016 Conference
on Empirical Methods in Natural Language Process-
ing, EMNLP 2016, Austin, Texas, USA, November
1-4, 2016, pages 65–74. The Association for Compu-
tational Linguistics.

Bowen Yu, Zhenyu Zhang, Jiawei Sheng, Tingwen Liu,
Yubin Wang, Yucheng Wang, and Bin Wang. 2021.
Semi-open information extraction. In WWW ’21:
The Web Conference 2021, Virtual Event / Ljubljana,
Slovenia, April 19-23, 2021, pages 1661–1672. ACM
/ IW3C2.

Juntao Yu, Bernd Bohnet, and Massimo Poesio. 2020.
Named entity recognition as dependency parsing. In
Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, ACL 2020,
Online, July 5-10, 2020, pages 6470–6476. Associa-
tion for Computational Linguistics.

Yang Zhou, Yubo Chen, Jun Zhao, Yin Wu, Jiexin Xu,
and JinLong Li. 2021. What the role is vs. what plays
the role: Semi-supervised event argument extraction
via dual question answering. In Thirty-Fifth AAAI
Conference on Artificial Intelligence, AAAI 2021,
Thirty-Third Conference on Innovative Applications
of Artificial Intelligence, IAAI 2021, The Eleventh
Symposium on Educational Advances in Artificial In-
telligence, EAAI 2021, Virtual Event, February 2-9,
2021, pages 14638–14646. AAAI Press.

A Argument Relative Position Encoding

The relative positions of the argument span extrac-
tor and argument relation extractor are shown in
Figure 8. The argument relative position encoding

0 1 2

...

...

...

...

0

...

L-3

L-2

L-1...

L-1

...

2

101

1 0

...

L-2 L-3

...

Figure 8: The argument relative position is based on all
words position and relative distance.

Pa ∈ RL×L is expressed as follows:

Pa(i, j) =

{
sin(ωvij · i), if vij = 2k

cos(ωvij · i), if vij = 2k + 1

where ωvij =
1

10000vij/L
, and vij is the value of the

i-th row and the j-th column in Figure 8.

1199

https://doi.org/10.18653/v1/2021.findings-acl.14
https://doi.org/10.18653/v1/2021.findings-acl.14
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.18653/v1/D19-1584
https://doi.org/10.18653/v1/D19-1584
https://doi.org/10.18653/v1/2020.coling-main.138
https://doi.org/10.18653/v1/2020.coling-main.138
https://doi.org/10.18653/v1/2020.coling-main.138
https://doi.org/10.1145/3269206.3269272
https://doi.org/10.1145/3269206.3269272
https://doi.org/10.1109/ACCESS.2022.3210697
https://doi.org/10.1109/ACCESS.2022.3210697
https://doi.org/10.1109/ACCESS.2022.3210697
https://doi.org/10.18653/v1/2021.acl-long.492
https://doi.org/10.18653/v1/2021.acl-long.492
https://doi.org/10.18653/v1/p19-1522
https://doi.org/10.18653/v1/p19-1522
https://doi.org/10.18653/v1/d16-1007
https://doi.org/10.18653/v1/d16-1007
https://doi.org/10.18653/v1/d16-1007
https://doi.org/10.1145/3442381.3450029
https://doi.org/10.18653/v1/2020.acl-main.577
https://ojs.aaai.org/index.php/AAAI/article/view/17720
https://ojs.aaai.org/index.php/AAAI/article/view/17720
https://ojs.aaai.org/index.php/AAAI/article/view/17720

B Bron-KerBosch Algorithm

The basic form of the Bron–Kerbosch algorithm
(Bron and Kerbosch, 1973) is a recursive backtrack-
ing algorithm that searches for all maximal cliques
in a given graph G. More generally, given three
disjoint sets of vertices R, C, and X , it finds the
maximal cliques that include all of the vertices in
R, some of the vertices in C, and none of the ver-
tices in X . In each call to the algorithm, C and
X are disjoint sets whose union consists of those
vertices that form cliques when added to R. In
other words, C ∪X is the set of vertices that are
joined to every element of R. When C and X are
both empty there are no further elements that can
be added to R, so R is a maximal clique.

Algorithm 2: Maximal Clique Decoding
Input :The undirected relation graph G.
Output :All argument sets P of multiple

events.

1 R,X,P ← ∅;
2 C ← the node set of G;
3 def BKerb(R,C,X):
4 if C = ∅ and X = ∅ then
5 add R to P

6 for v in C do
7 N(v)← the neighbor set of v;
8 BKerb

(R ∪ {v}, C ∩N(v), X ∩N(v));
9 C ← C \ {v};

10 X ← X ∪ {v};

11 BKerb(R,C,X);
12 return P

C Evaluation Metric

We use the following criteria to measure each pre-
dicted event: 1) Trigger Identification (TI): A trig-
ger is correctly identified if the predicted trigger
span matches with a golden span; 2) Trigger Classi-
fication (TC): A trigger is correctly classified if it is
correctly identified and assigned to the correct type;
3) Argument Identification (AI): An argument is
correctly identified if its event type is correctly rec-
ognized and the predicted argument span matches
with a golden span; 4) Argument Classification
(AC): an argument is correctly classified if it is
correctly identified and the predicted role matches
with a golden role. Finally, we use Precision (P),

Recall (R), and F measure (F1) as the evaluation
metrics.

D Implementation Details

We leverage the BERT-Base model as the textual
encoder, which has 12 layers, 768 hidden units,
and 12 attention heads. We train the model with an
Adam weight decay optimizer. The initial learning
rate is 2e−5 for BERT parameters and 1e−4 for
other parameters, and the dropout rate is 0.1. The
warming-up proportion for the learning rate is 0.1,
and the max training epoch is set to 40. The batch
size is set to 16. The max sequence length is 400.

E Comparision Methods Details

In this section, we provide more implementation
details of baselines. For a fair comparison, all
of these models are implemented using PyTorch
and tested using the NVIDIA TESLA V100 GPU.
BERT takes event extraction as a sequence labeling
problem. It uses the "B/I/O-type-trigger" schema
to identify triggers firstly and then uses the "B/I/O-
type-role" schema to identify arguments †. The
initial BERT learning rate is 2e−5 and the CRF
learning rate is 5e−4. The batch size, training
epoch, and sequence length are the same as MatEE.
PLMEE uses "BERT+softmax" in each token to
extract the event trigger and its event type. Based
on the identified trigger, arguments are extracted by
"BERT+span" ‡. The initial learning rate for BERT
is 2e−5 and 5e−4 for others. Other parameters take
default values. MQAEE is reimplemented by us.
The implemented framework is similar to PLMEE.
Firstly, MRC is used to extract triggers and their
event types. Based on the extracted triggers, a se-
ries of trigger templates are constructed (e.g., "股
权投资事件中增持的主体是？", the template
is "event type 事件中 trigger 的 argument role
是？") , and MRC is used again to extract their
arguments. CasEE implementation and parameters
are consistent with the author’s official code §.

F Multiple Events

The case of multiple events is illustrated in Figure 9,
which can be mainly divided into two parts. Firstly,
multiple events share a trigger with the same event
type. Secondly, multiple events in other situations.

†https://github.com/lonePatient/BERT-NER-Pytorch
‡https://github.com/boy56/PLMEE
§https://github.com/JiaweiSheng/CasEE

1200

C

CLS C

CLS

A

CLS A

CLS

B

B

A
A

CLS

B C

B

C

CLS

A C
A C

M
axim

al Clique

{sub:A,obj:C}

{sub:A,obj:C} {sub:A,stk:B}

Sort and D
ecode

D

D

B D

{sub:B,obj:D}
Event Type 1 Event Type 2

A

A

A B

Figure 9: Left: multiple events share a trigger with
the same event type. Right: multiple events in other
situations.

For the first case, we apply the Bron-Kerbosch al-
gorithm to split arguments into different maximal
cliques, and then sort and decode to generate mul-
tiple events. For the second case, in the trigger
extraction module, we extract triggers of different
event types, and then extract the arguments of these
triggers respectively.

G Argument-sharing Events

As can be seen from Figure 10, there are two types
of argument-sharing events. First, multiple events
share an argument with the same role. Then, an

A

CL
S A

CL
S

A

A

CL
S

B C

B
C

CL
S

A B

C
A CLS

M
axim

al C
lique

{sub:A, obj:B, stk:C}
{sub:A }

Sort and D
ecode

D E

D
E

D

E

{sub:A, obj:D, stk:E}

Figure 10: Left: multiple events share an argument with
the same role. Right: a special case uses for an event
with only one argument.

event has only one argument. For the left case, we
apply the Bron-Kerbosch algorithm to generate two
maximal cliques directly. For the right case, some
events have only one argument. In this case, we
use CLS as a proxy firstly, and then the rows and
columns of CLS are filled with the only argument
role. In practice, <CLS,A> is filled with “sub” and
<A,CLS> is filled with “sub”.

H More Visualizations

We also show several predicated event matrices
here. Figure 11 illustrates an example of an event
with only one argument pairing with the CLS to-
ken, which is a special case mentioned in Secion 2.

0

10

20

30

40

Prediction
0

10

20

30

40

Target

Figure 11: A correct prediction with only one argument.

0

10

20

30

40

50

60

Prediction
0

10

20

30

40

50

60

Target

Figure 12: A correct prediction with high confidence.

Figure 12 shows a case where the prediction is very

0

10

20

30

40

50

Prediction
0

10

20

30

40

50

Target

Figure 13: An incorrect prediction where an argument
is missed.

close to the target event matrix. Figure 13 is an
example of an incorrect event where an argument
is missed in the prediction.

1201

