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Abstract

Pretrained language models can be effectively
stimulated by textual prompts or demonstra-
tions, especially in low-data scenarios. Recent
works have focused on automatically searching
discrete or continuous prompts or optimized
verbalizers, yet studies for the demonstration
are still limited. Concretely, the demonstra-
tion examples are crucial for an excellent final
performance of prompt-tuning. In this paper,
we propose a novel pluggable, extensible, and
efficient approach named contrastive demon-
stration tuning, which is free of demonstration
sampling. Furthermore, the proposed approach
can be: (i) Plugged into any previous prompt-
tuning approaches; (ii) Extended to widespread
classification tasks with a large number of cat-
egories. Experimental results on 16 datasets
illustrate that our method integrated with pre-
vious approaches LM-BFF and P-tuning can
yield better performance1.

1 Introduction

Pre-trained language models (PLMs) have been
applied to widespread natural language understand-
ing and generation tasks, which are proven to ob-
tain significant gains across benchmarks (Devlin
et al., 2019; Liu et al., 2019; Lewis et al., 2020a;
Dong et al., 2019; Bao et al., 2020; Zhang et al.,
2022c; Xie et al., 2022a; Zhang et al., 2022a).
One paradigm of PLMs is the pre-train—fine-tune,
which has become the de facto standard for natural
language processing (NLP), where task-specific ob-
jectives and additional parameters are leveraged in
the tuning procedure. Recently, the paradigm of the
adaptation of PLMs has been shifting. A new fine-
tuning methodology named prompt-tuning with a
natural language prompt and a few demonstra-
tions has made waves in the NLP community by

∗ Corresponding author
1Code is available in https://github.com/zjunlp/

PromptKG/tree/main/research/Demo-Tuning.

demonstrations
input 

virtual demo 

Random Similarity-based Demo-Tuning (ours)

Figure 1: Comparison among current sampling strate-
gies on demonstration-based learning. Compared to
random and similarity-based sampling, demo-tuning
can obtain better demonstration distributions.

proving astounding few-shot capabilities on myr-
iad language understanding tasks. Further studies
try to mitigate the labour-intensive prompt engi-
neering with discrete prompt searching (Shin et al.,
2020) or continuous prompt optimization (Liu et al.,
2021d; Li and Liang, 2021; Hambardzumyan et al.,
2021a; Zhong et al., 2021). However, few stud-
ies have focused on the demonstration, which is
an indispensable component in prompt-oriented
methodologies.

In previous studies, demonstrations are sampled
examples in the training set. GPT-3’s naive “in-
context learning” paradigm picks up to 32 ran-
domly sampled instances as demonstrations and
directly concatenates them with the input sequence
(Liu et al., 2021a; Min et al., 2022). Since infor-
mative demonstrations are crucial for model perfor-
mance, Gao et al. (2021a) develop a refined strat-
egy via sampling input pairs with similar examples,
thereby providing the model with more discrimi-
native comparisons. However, it is still not guar-
anteed to prioritize the most informative demon-
strations as (1) the similarity-based sampling may
obtain degraded demonstrations in different classes
but have similar distances to the input; (2) the num-
ber of usable demonstrations is still bounded by
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the model’s maximum input length. For exam-
ple, as shown in Figure 1, the purple lines refer to
the random sampling while the blue lines indicate
similarity-based sampling. Note that similarity-
based sampling may obtain examples very similar
to the input sequence. However, those sampled
examples with different labels may tend to have a
similar representation and thus confuse the discrim-
inability of the model. Moreover, for datasets with
many classes, it is still non-trivial to concatenate all
sampled demonstrations. Those above-mentioned
challenges hinder the applicability of demonstra-
tion in prompt-tuning.

To address those issues, in this paper, we pro-
pose contrastive DEMOnstration Tuning (Demo-
tuning) for pre-trained language models. Specif-
ically, we leverage learnable continuous embed-
dings (e.g., one or two learnable tokens) as virtual
demonstrations to relax the maximum number of
categories. We concatenate those virtual demon-
strations to the input sequence; thus, our approach
can be extended to a wide variety of classification
tasks with many categories. To optimize those
continuous embeddings, we explore a simple con-
trastive framework without negative pairs (Grill
et al., 2020) since it is difficult to find an appropri-
ate negative pair in semantic space for NLP. In each
training batch, we randomly sample a real example
and regard the virtual and real examples as positive
pairs. With contrastive learning, we can obtain in-
formative, optimized virtual demonstrations with
more discriminative comparisons.

We conduct extensive experiments on 16 NLP
datasets. Our contrastive demonstration tuning can
yield better performance when integrated with pre-
vious prompt-based methods (e.g., LM-BFF (Gao
et al., 2021a), P-tuning (Liu et al., 2021d)). More-
over, our approach can be applied to datasets with
many categories and outperform baselines. Note
that our approach is model-agnostic and can be
plugged into lots of prompt-based methods without
the effort to select suitable demonstrations. The
main contributions of this study are as follows:

• We propose a pluggable, extensible, and effi-
cient approach to contrastive demonstration
tuning for pre-trained language models. To
the best of our knowledge, optimizing demon-
stration is also a new branch of research that
has not been explored in language model
prompting.

• We propose virtual demonstration and lever-

age contrastive learning to obtain informative
demonstrations and also relax the maximum
number of categories in classification tasks.

• A systematic evaluation of 16 NLP datasets
shows that the proposed simple-yet-effective
approach contributes towards improvements
across all these tasks.

2 Related Work

2.1 Prompt-tuning
With the prevalence of GPT-3 (Brown et al., 2020),
prompting PLMs for few-shot learning has become
a new, popular learning paradigm in natural lan-
guage processing (Schick and Schütze, 2021; Tam
et al., 2021; Liu et al., 2021b) and appealed to
researchers. Recently, prompt-tuning has been ap-
plied to various NLP tasks, such as named entity
recognition (Cui et al., 2021; Chen et al., 2021b;
Zhou et al., 2021; Ma et al., 2022), entity typing
(Ding et al., 2021), relation extraction (Han et al.,
2021), event extraction (Hsu et al., 2021; Ye et al.,
2021), sentiment analysis (Li et al., 2021), machine
translation (Tan et al., 2021), and knowledge graph
completion (Xie et al., 2022b). Schick and Schütze
(2021, 2020) propose the PET, which reformulates
the NLP tasks as cloze-style questions and yields
satisfactory performance. Tam et al. (2021) fur-
ther propose a denser supervision object during
fine-tuning to improve the PET.

Note that handcrafting a best-performing prompt
is like finding a needle in a haystack, which fa-
cilitates the labor-intensive prompt engineering,
Thus, recent studies (Qin and Eisner, 2021; Ham-
bardzumyan et al., 2021b; Ye et al., 2022; Chen
et al., 2021c) conducted in this field have been
focused on automatically searching the prompts.
Shin et al. (2020) propose AUTOPROMPT, which
is a gradient-based method to acquire templates
and label words for prompt-tuning. Wang et al.
(2021) propose EFL, which reformulates the NLP
task as an entailment one and turns small LMs
into better few-shot learners. Additionally, Gao
et al. (2020) propose LM-BFF—better few-shot
fine-tuning of language models, which utilizes a
generation model to obtain templates and a refined
strategy for dynamically and selectively incorpo-
rating demonstrations into each context. However,
it is sub-optimal for the discrete prompt searching
due to the continuous nature of neural networks.

To overcome these limitations, Liu et al.
(2021d,c) propose P-tuning to to automatically
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search prompts in the continuous space. Li and
Liang (2021) propose prefix-tuning, which opti-
mizes a sequence of continuous task-specific vec-
tors and keeps language model parameters frozen.
Lester et al. (2021a) leverage a mechanism to learn
“soft prompts” to condition frozen language models.
Zhang et al. (2021) propose a differentiable prompt
learning method for few-shot NLP with optimized
prompt templates as well as labels. Vu et al. (2021)
propose SPoT, which learns a prompt on one or
more source tasks and then uses it to initialize the
prompt for a target task to boost the performance
across many tasks. More related works including
WARP (Hambardzumyan et al., 2021a) and OP-
TIPROMPT (Zhong et al., 2021) also propose to
leverage continuous templates, which is more ef-
fective than discrete prompt search. To conclude,
most of the existing works try to obtain optimized
prompts for widespread NLP tasks; however, few
studies have focused on the demonstration, which
is an indispensable component in prompt-oriented
learning.

Our work is orthogonal to previous prompt-
tuning approaches, which are aimed at optimizing
prompts. The major differences between virtual
demonstration and continuous prompts are that: 1)
they have a wholly different training strategy since
continuous prompts are optimized via backpropaga-
tion with a training set, while our approach utilizes
contrastive learning. 2) our approach requires no
external architecture (e.g., LSTM in P-tuning), thus,
making it efficient and pluggable to any prompt-
tuning approaches. To date, Lee et al. (2021) is
the only approach that studies the demonstration
and presents a simple demonstration-based learning
method for named entity recognition. Apart from
Lee et al. (2021), our approach focus on general
NLP classification tasks. Moreover, we propose
virtual demonstrations with contrastive learning
strategies, which can obtain better demonstrations
and also relax the maximum number of categories
in datasets.

2.2 Contrastive Learning

Contrastive learning has been long considered ef-
fective in learning meaningful representations. In
the early stage, Mikolov et al. (2013) propose to
learn word embeddings by regarding words nearby
a target word as a positive instance while others
as negative. Logeswaran and Lee (2018); Chen
et al. (2021a) further generalize this approach to

learn sentence representations. Recently, Kim et al.
(2021) propose a contrastive learning method that
makes use of a self-guidance mechanism. Yan et al.
(2021) propose ConSERT, a contrastive framework
for self-supervised sentence representation transfer.
Giorgi et al. (2021) propose DeCLUTR: Deep Con-
trastive Learning for Unsupervised Textual Rep-
resentations. Gao et al. (2021b) leverage dropout
as mimimal data augmentation and propose Sim-
CSE, a simple contrastive learning framework that
greatly advances the state-of-the-art sentence em-
beddings.

On the other hand, contrastive learning has been
also appealed to the computer vision community
(Jaiswal et al., 2020; Liu et al., 2020). Chen et al.
(2020) propose SimCLR: a simple framework for
contrastive learning of visual representations with-
out requiring specialized architectures or a mem-
ory bank. Chen and He (2021) observe that simple
siamese networks can learn meaningful representa-
tions even using none of the negative sample pairs,
large batches, and momentum encoders.

Our work is related to Grill et al. (2020), a
non-contrastive self-supervised learning approach,
which relies on two neural networks, referred to as
online and target networks, that interact and learn
from each other. However, as opposed to this ap-
proach, we utilize the encoder in the same state
while Grill et al. (2020) leverage two networks in
the different states. Moreover, we focus on demon-
stration optimization in prompt-tuning for NLP,
including learning informative demonstrations and
acquiring prompt temples and label tokens.

3 Preliminaries

In this work, we focus on classification tasks
in the few-shot setting, including text classifica-
tion and natural language understanding, where
the input xin is either a sentence xin = x1 or a
pair of sentences xin = (x1, x2). Here, we let
Dtrain = {(xi, yi)}K×|Y|

i denote the training set
of a downstream task composed of only K train-
ing examples per class, where Y is label space
of the task. Given a pre-trained language model
comprised of two stages: an encoder f(·) and a
classifier g(·) 2, we encode the input xin to a se-
quence of hidden vectors {hk ∈ Rd} and take

2In standard fine-tuning, the classifier is a set of randomly
initialized parameters Wo ∈ R|Y|×d with softmax function.
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   terrible (label: negative) 
   great (label: postive)    Encoder

Label word 

[CLS] The movie has lots of fabulous music. It is  [MASK] . [SEP] The story is uninteresting. It is terrible. [SEP] Funny and ultimately sobering film. It is great. [SEP]

Input Template Demonstration for label: terrible Demonstration for label: great 

(a) Prompt-tuning with demonstrations

[CLS] A playful comedy. It is  [MASK] . [SEP] [ ] [ ] ... [ ] [ ] [ ] ... [ ]

[CLS] A playful comedy. It is  [MASK] . [SEP] The story is uninteresting. It is terrible. [ ] [ ] ... [ ]

Demonstration for label: terrible Virtual Demo 

Virtual Demo Virtual Demo 

MLM head     (label: negative) 
    (label: postive) 

Gold label 

Supervised loss

Training contrastive instance

Encoder

    (label: negative) 
    (label: postive) 

Gold label 

MLM head

(b) Demonstration-tuning (ours)

Contrastive loss Supervised loss

   terrible (label: negative) 
   great (label: postive)    

Label word 

Training final loss

Figure 2: An illustration of (a) prompt-tuning with demonstrations, and (b) our proposed contrastive demonstration
tuning (demo-tuning). Note that we regard the input with virtual demonstration and a random sampled real
demonstrations as positive pairs for contrastive learning.

the hidden vector h[CLS] = f(xin) of [CLS] 3

through classifier to obtain the probability distribu-
tion p (y | x) = g (h[CLS]) over y ∈ Y .

Prompt-based Fine-tuning Prompt-based fine-
tuning (Schick and Schütze, 2021; Gao et al.,
2021a) is an efficient work by designing cloze-style
template T and verbalizer M : Y → V mapping
task labels to individual words from vocabulary
V of pre-trained language model to fill the gap
between masked LM objective of pre-trained lan-
guage model and downstream fine-tuning objec-
tive.

Template In prompt-based fine-tuning paradigm,
template T is mainly comprised of inputs xin and
a prompt P = [Pi]

m
i , where the prompt could be a

series of discrete tokens (Schick and Schütze, 2021)
or continual pseudo tokens (Liu et al., 2021d). For
instance, in the sentiment analysis task (see Fig-
ure 2), a template with handcraft prompt may be:
T (x) = [CLS]x1, It was[MASK].[SEP] where "It
was ... ." is prompt and [MASK] is target which cast
classification task as a language modeling task.

Verbalizer A verbalizer M defines a mapping
of label tokens from label space of a specific
task. In Figure 2a, the verbalizer maps "nega-
tive/postive" to "terrible/great". In this way, we
could re-use the output weight Wv ∈ Rd×|V| ref-
ered MLM head used in pre-training and model
the probability of predicting token M (y) ∈ V as

3For simplicity we will denote the hidden vector h[CLS] of
certain input xi through encoder using hi.

p (y | x) = g (h[MASK]) on hidden vector h[MASK].

Demonstration Let Dc
train be the subset of all ex-

amples of class c. We sample demonstrations dc =
(x

(c)
in , y(c)) ∈ Dc

train and convert it to T (x
(c)
in , y(c))

in which [MASK] is replaced by M(y(c)). We then
combine the original template T with templates
above in all classes to form T ∗(xin), which will be
used as a template during prompt-based tuning and
inference (See Figure 2).

4 Contrastive Demonstration Tuning

In this work, we focus on how to learn a com-
pact and differentiable virtual demonstration to
serve as prompt augmentation instead of design-
ing specific sampling strategies for demonstration-
based learning. We propose a learning framework
based on a contrastive learning approach that can
be compatible with the current prompt-based learn-
ing paradigm. This section introduces the concepts
of contrastive demonstration tuning (Demo-tuning)
and provides details of this approach.

Virtual Demonstration Let [D(c)
i ]ni refer to the

virtual demonstration of the cth class where n is a
hyper-parameter to set the length of virtual demon-
stration, which is far less than the length of real
demonstration. For instance, given a template of
binary classification task (see Figure 2) as:

T̃ (x) = T (x)⊕ [D(1)]⊕ [D(2)] (1)

where ⊕ denotes concatenation of input sequences.
[D(1)] and [D(2)] respectively denote the virtual
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demonstrations of two classes. Virtual demonstra-
tions could be so flexible that can be integrated to
wide variety of prompt learning approaches (Liu
et al., 2021d; Lester et al., 2021b).

Next, we study how to obtain the optimal virtual
demonstrations, which are initialized as a series of
pseudo tokens at the start of fine-tuning. To ad-
dress this challenging problem, we propose to use
contrastive learning, which aims to obtain effec-
tive representation by pulling semantically close
neighbors together. Intuitively, we believe the opti-
mal virtual demonstrations may be analogous with
“prototype” (Snell et al., 2017), the representative
for corresponding class, and we will discuss in §6.

Positive Instances A key element of contrastive
learning is how to construct reasonable

(
xin, x

+
in

)

pairs. Here, we design a new template T̃ +(x)
based on template T̃ (x) by randomly replacing one
of virtual demonstrations [D(c)] with real demon-
stration dc as shown in the Figure 2b:

T̃ +(x) = T (x)⊕ T (x
(1)
in , y(1))⊕ [D(2)] (2)

where [D(1)] is replaced with a demonstration d1 of
class “terrible”. Using this template, we could con-
vert input xin to corresponding positive example
x+in , i.e.,

(
T̃ (xin), T̃ +(xin)

)
is a positive training

instance. In this way, aligning virtual demonstra-
tion [D(c)] with dc, the only difference between
xin and x+in , and pulling representations (hin,h

+
in)

closer in semantic space could effectively alleviate
the problem that the existing of terrible or irrelevant
demonstration by previous sampling strategies.

Optimization Similar to Chen et al. (2020),
we can randomly sample a minibatch of N ex-
amples from Dtrain to construct positive pairs
{(xi, x+i )}Ni=1 and take a cross-entropy objective
with in-batch negatives for (xi, x+i ):

ℓi = − log
exp(sim(hi,h

+
i )/τ)∑N

j=1 exp(sim(hi,h
+
j )/τ)

(3)

where τ denotes a temperature parameter and
sim(hi,hj) is the cosine similarity hT

i hj

∥hi∥·∥hj∥ . The
negative pairs are composed of two different exam-
ples with the same demonstration in a minibatch.

In this work, we also explore a simple contrastive
framework without negative pairs4 similar to re-
cent non-contrastive self-supervised learning (Grill

4This is the default contrastive learning method in all ex-
periments.

et al., 2020). Regarding the difficulty to find a ap-
propriate negative pair in semantic space for NLP,
specially in few-shot setting, we only construct pos-
itive pairs and define the following mean squared
error between hi and h+

i with ℓ2-normalization,

ℓi = ∥hi − h+
i ∥

2

2 = 2− 2 · hT
i h

+
i

∥hi∥2 · ∥h+
i ∥2

(4)

where hi and h+
i are obtained through encoder f(·)

in the same state different from Grill et al. (2020)
which encodes xi and x+i through two networks
in the different states (online network and target
network).

When supervised examples Dtrain are available,
the pre-trained language model could be fine-tuned
to minimize the joint objective comprised of cross-
entropy and contrastive objective of Eq. (4). In
this way, during inference, we can concatenate the
input xin with trained virtual demonstrations in
template T̃ (x), which does not need to sample real
demonstrations. Besides, we provide empirical
analysis of negative sampling in §5.4.

5 Experiments

5.1 Datasets
To evaluate Demo-tuning, we conduct experiments
on 6 tasks from GLUE leaderboard (Wang et al.,
2019) and 10 other popular classification tasks, in-
cluding natural language inference (SNLI, MNLI,
QNLI, RTE), sentiment classification (SST-2, SST-
5, MR, CR, MPQA), paraphrase and similarity
(MRPC, QQP) and sentence classification (DBpe-
dia, Subj, TREC, Yahoo! Answers). The detailed
statistics are in Appendix A.

5.2 Settings
Evaluation During training, we follow the eval-
uation protocol adopted in Gao et al. (2021a) and
assume a development set Ddev for model selection
and hyper-parameter tuning, where the size is same
with Dtrain, i.e., |Ddev| = |Dtrain|. For every exper-
iment, we measure average performance across 5
different randomly sampled Dtrain and Ddev splits
using a fixed set of seeds.

Hyperparameter Selection We implement our
framework and reproduce P-tuning by ourselves
using PyTorch (Paszke et al., 2019) and Hugging-
Face (Wolf et al., 2020). The main results of LM-
BFF in Table 1 are from Gao et al. (2021a). We use
RoBERTaLARGE (Liu et al., 2019) as pretrained
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SST-2 SST-5 MR CR MPQA Subj TREC
(acc) (acc) (acc) (acc) (acc) (acc) (acc)

“GPT-3” in-context learning 84.8 (1.3) 30.6 (0.9) 80.5 (1.7) 87.4 (0.8) 63.8 (2.1) 53.6 (1.0) 26.2 (2.4)
Fine-tuning 81.4 (3.8) 43.9 (2.0) 76.9 (5.9) 75.8 (3.2) 72.0 (3.8) 90.8 (1.8) 88.8 (2.1)
LM-BFF (w/ Demo) 92.6 (0.5) 50.6 (1.4) 86.6 (2.2) 90.2 (1.2) 87.0 (1.1) 92.3 (0.8) 87.5 (3.2)
P-tuning (w/ Demo) 92.7 (1.4) 47.7 (3.3) 87.5 (1.3) 90.6 (1.4) 84.3 (0.8) 91.4 (1.7) 88.1 (2.7)

Demo-tuning (LM-BFF) 93.2 (0.4) 50.1 (0.4) 87.9 (0.6) 91.5 (0.6) 85.9 (1.5) 92.3 (0.6) 90.1 (2.7)
Demo-tuning (P-tuning) 92.7 (0.6) 48.7 (2.0) 86.4 (1.1) 91.4 (0.8) 86.0 (1.6) 92.0 (0.6) 90.7 (4.5)

MNLI MNLI-mm SNLI QNLI RTE MRPC QQP
(acc) (acc) (acc) (acc) (acc) (F1) (F1)

“GPT-3” in-context learning 52.0 (0.7) 53.4 (0.6) 47.1 (0.6) 53.8 (0.4) 60.4 (1.4) 45.7 (6.0) 36.1 (5.2)
Fine-tuning 45.8 (6.4) 47.8 (6.8) 48.4 (4.8) 60.2 (6.5) 54.4 (3.9) 76.6 (2.5) 60.7 (4.3)
LM-BFF (w/ Demo) 70.7 (1.3) 72.0 (1.2) 79.7 (1.5) 69.2 (1.9) 68.7 (2.3) 77.8 (2.0) 69.8 (1.8)
P-tuning (w/ Demo) 71.0 (2.2) 70.8 (1.7) 78.7 (1.5) 68.2 (2.1) 70.8 (3.0) 75.0 (13.8) 66.6 (2.9)

Demo-tuning (LM-BFF) 71.0 (2.0) 72.8 (1.5) 78.7 (1.9) 73.1 (1.8) 70.0 (3.4) 78.4 (2.3) 70.2 (1.7)
Demo-tuning (P-tuning) 71.3 (1.3) 73.1 (1.9) 76.4 (1.7) 71.6 (3.0) 69.8 (4.6) 78.4 (4.4) 68.9 (2.9)

Table 1: Comparison of performance of our approach with several baselines across 14 text classification tasks in
few-shot setting. We report mean (and standard deviation) results of 5 random seeds. LM-BFF (w/ Demo) and
P-tuning (w/ Demo): prompt-tuning methods (LM-BFF and P-tuning) using demonstration in context with manual
template used in Gao et al. (2021a). Demo-tuning (LM-BFF) and Demo-tuning (P-tuning): Our proposed approach
respectively based on LM-BFF and P-tuning.

language model and set K = 16. For the length
n of virtual demonstration per class, we select it
from candidate set {1, 2, 3, 5}.

5.3 Main Results

We apply our method to two popular prompt-based
tuning techniques, LM-BFF and P-tuning, and com-
pare them to a number of baselines, namely: (1)
standard fine-tuning in the few-shot setting; (2)
"GPT-3" in-context learning: zero-shot prediction,
which concatenates prompt (e.g., randomly sam-
pled demonstrations); (3) LM-BFF using demon-
stration in context with a manual template. (4) P-
tuning using demonstration in context with a man-
ual template, where we do not specifically search
the optimal length of continual prompt and fixed
the length m to 4 in all tasks.

In Table 1, we report the performance of the
baseline approaches and our two variants. First,
in-context learning could achieve comparable or
even higher performance to the standard fine-tuning
method and prompt-tuning methods (LM-BFF and
P-tuning); using demonstration in context bring
consistent improvement in a majority of tasks,
which means that demonstration is worth being
exploited.

Second, our approach based on two prompt-
based tuning techniques could consistently outper-
form the vanilla methods. In detail, Demo-tuning

DBpedia Yahoo!

Fine-tuning 98.2 (0.1) 66.4 (1.0)
LM-BFF 98.1 (0.2) 66.2 (1.0)
LM-BFF (w/ Demo) - -
P-tuning 98.2 (0.2) 67.0 (0.8)

Demo-tuning (LM-BFF) 98.3 (0.1) 67.9 (0.8)
Demo-tuning (P-tuning) 98.3 (0.1) 68.4 (1.1)

Table 2: Performance on multi-class sentence classifi-
cation, DBpedia and Yahoo!. The size of label space
|Y| are respectively 14 and 10. Due to sequence length
limitation in pretrained language model, LM-BFF with
demonstration-based learning can not be applied here.

based LM-BFF improves the average score by 0.75,
compared with LM-BFF with the demonstration in
an input context. More importantly, Demo-tuning
is flexible and orthogonal to most fine-tuning meth-
ods. Here, for evaluating the compatibility, we
combine Demo-tuning with P-tuning (Liu et al.,
2021d), which could lead to a 1.0 average score
improvement in total. In this work, we do not
specially design template for P-tuning5. Although
templates for P-tuning and prompt length are sub-
optimal, we find that Demo-tuning with P-tuning

5We simply construct template T (x) for P-tuning as
[CLS]x1[PROMPT][MASK][SEP] in single-sentence tasks and
[CLS]x1,[MASK]? x2[PROMPT][SEP] in sentence pair tasks,
where [PROMPT] denotes continual prompt.
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SST-2 TREC SNLI MRPC

LM-BFF 92.7 84.8 77.2 74.5

Random 92.3 85.6 78.8 70.9
Filter-based (RoBERTa) 92.7 83.4 79.5 76.6
Filter-based (SBERT) 92.6 87.5 79.7 77.8

Virtual Demo (w/ Mean) 90.9 85.9 75.3 66.4
Virtual Demo (w/ CL) 93.2 90.7 78.7 78.4

Table 3: Impact of demonstration sampling strategies.
Random: uniform sampling from each class. Filter-
based: filtered sampling strategy proposed in Gao et al.
(2021a) respectively based on RoBERTa and SBERT
(Reimers and Gurevych, 2019). Virtual Demo (w/
mean): averaing the representations of instances with
the same label as virtual demonstration.

leads to consistent gains in a majority of tasks.
Third, an advantage of our proposed virtual

demonstration is that it could be well applied for
multi-class sentence classification tasks. Table 2
gives the results of Demo-tuning compared to stan-
dard fine-tuning and prompt-based tuning. Due
to the limitation of the model’s input length, in-
context learning and LM-BFF with demonstration
could not be applied in this scenario. We notice
that while the performance of LM-BFF is worse
than fine-tuning, Demo-tuning based on LM-BFF
improves the score by 1.7 in Yahoo and achieves a
better score compared to fine-tuning.

5.4 Analysis of Virtual Demonstration

The selection of demonstration is crucial for
demonstration-based learning (e.g., in-context
learning and LM-BFF with demonstration). Next,
we compare and discuss our proposed virtual
demonstration with current approaches.

Demonstration Sampling Table 3 provides the
impact of demonstration sampling strategies. Dur-
ing inference, our proposed virtual demonstration
obtained by contrastive learning during training
could be an alternative to real demonstrations,
which could be viewed as an implicit sampling
strategy. We compare our method with previous
sampling strategies based on LM-BFF.

While the performance of uniform demonstra-
tion sampling from each class is better than the
vanilla LM-BFF in TREC and SNLI, we notice that
on the MRPC task, this method causes severe accu-
racy loss, which is up to 3.6. We think that random
sampling is prone to generate irrelevant informa-
tion in demonstrations. To address the above is-
sue, Gao et al. (2021a) utilize RoBERTa or SBERT
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Figure 3: Ablation study on virtual demonstration opti-
mization w/ Vs. w/o negative sampling. Demo-tuning
(w/ neg): using conventional contrastive learning with
negative samples to optimize virtual demonstration.
Demo-tuning (w/o neg): Demo-tuning using our simpli-
fied optimization method without negative samples.

(Reimers and Gurevych, 2019) to select relevant
demonstrations to examples. The filter-based sam-
pling strategy could achieve consistent gains in the
majority of tasks, which yields the highest improve-
ment with 3.6 on the TREC task. We consider that
this KNN-style method, which concatenates exam-
ples and demonstrations that are semantically close
to examples, could promote language models to
decipher meaningful patterns.

Virtual demonstration, an alternative to the real
demonstration during inference, i.e., avoiding com-
plex sampling steps, could achieve gains in most
tasks. Besides our proposed method, We design a
simple strategy to construct virtual demonstrations
via averaging the representations of instances with
the same label. We notice that constructing virtual
demonstration with simple averaging of instances
causes poor performance in most tasks. However,
our method with contrastive learning is more pre-
dominant than previous approaches. The only ex-
ception is SNLI, which score only is comparable
with random sampling. We hypothesize that this
is caused by some confusion issues, which may
exist in filter-based strategy regarding semantically
closeness among contrastive demonstrations.

Optimization w/ Vs. w/o Negative Samples Fig-
ure 3 gives the results of comparison between vir-
tual demonstration optimization with negative sam-
pling and without negative sampling. We conduct
experiments with different optimization strategies
on 3 tasks. We find that optimizing the objective
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Figure 4: Ablation study on length n of virtual demon-
stration per class. Demo-tuning (w/o CL): Demo-tuning
without contrastive learning (CL), i.e., virtual demon-
stration will degrade into continual prompt.

of Eq.3, i.e., conventional contrastive learning with
negative samples, causes dramatically performance
degradation, in which the average score is even
lower than LM-BFF’s. We think there are two
possible reasons: (1) In NLP tasks, finding a se-
mantically reasonable negative pair is difficult, es-
pecially in the few-shot setting; (2) Negative pairs
may become example-demonstrations pairs with-
out specific limitation, which will cause a certain
confusion to model. Moreover, our goal is to ob-
tain optimal virtual demonstrations for downstream
tasks. Using contrastive optimization without neg-
ative sampling may be a more suitable solution.

Demonstration Length Figure 4 shows the ab-
lation study on length n of virtual demonstration
per class. We compare Demo-tuning with its vari-
ant without contrastive learning in different set-
tings about length n. It is noteworthy that without
contrastive learning, a virtual demonstration will
degrade into a continual prompt. We find that a
relatively shorter length (e.g., 2 or 3) could gain
stable improvement of performance in QNLI and
MR. Oppositely, a larger length (e.g., 20) may de-
crease the performance. We consider that as the
length of virtual demonstration increases, it will
introduce more parameters into the model, mak-
ing it challenging to learn from a small amount of
annotated data. Demo-tuning could achieve con-
sistent improvement in different lengths compared
to its variant. Hence, we can conclude that virtual
demonstration optimized by simple contrastive
framework plays a different role from continu-
ous prompt.

6 Discussion

We will discuss several favorable properties of con-
trastive demonstration tuning and present some
open problems:

Possible Supplement for Parameter-efficient
Fine-tuning. Previous studies (Liu et al., 2021d;
Li and Liang, 2021) have demonstrated the
effectiveness of prompt-tuning (e.g., P-tuning,
Prefix-tuning) as an parameter-efficient fine-tuning
methodology for huge PLMs. Our approach can
serve as a supplement or parameter-efficient fine-
tuning via only tuning demonstration with PLM
fixed. We leave this for future work.

Relation to Prototype Learning. In §4, we note
that the optimal virtual demonstrations may be anal-
ogous with “prototype” (Snell et al., 2017), repre-
sentative for corresponding class. Our approach
may have connections to prototype learning, and
further empirical and theoretical analysis should be
conducted.

Demonstration as External Knowledge. Recall
that those concatenated demonstrations are simi-
lar to previous studies such as RAG (Lewis et al.,
2020b), REALM (Guu et al., 2020) which retrieve
and concatenate relevant texts as external knowl-
edge (Zhang et al., 2022b). We think that it is also
interesting to investigate novel knowledge injection
approaches via demonstration.

We further discuss a few weaknesses of our
method in its current form and look into some pos-
sible avenues for future work. On the one hand,
our work still suffers from biased/long-tailed label
distribution. Note that we obtain optimized vir-
tual demonstration via contrastive learning; thus,
those virtual demonstrations of classes with many
samples may dominate the training stage. This lim-
itation might be ameliorated with weighted sam-
pling strategies. On the other hand, our approach
cannot directly handle structure prediction tasks.
Integrating demonstration with prefix-tuning-based
methods may help to mitigate such limitations.

7 Conclusion and Future Work

In this work, we propose contrastive demonstra-
tion tuning, a simple model-agnostic approach for
pre-trained language models, which improves state-
of-the-art prompt-tuning performance without the
necessity of demonstration selection. In the fu-
ture, we plan to explore the following directions:
1) studying the connection between virtual demon-
stration and prototypes and theoretically analyzing
the optimal solution of demonstration for prompt-
tuning. 2) applying our work to more NLP tasks
and trying to adapt to natural language generation.
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8 Limitations

Our contrastive demonstration tuning has limita-
tions. Firstly, our model leverages the pre-trained
language model; thus, it is necessary to cost GPU
resources. Besides, in few-shot settings, the perfor-
mance gains are still limited with virtual demon-
strations learned in only a few training instances. It
is worth studying retrieving relevant context from
the internet as “demonstrations” to help efficient
NLP.
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A Datasets

Table 4 provides the dataset evaluated in this work.

Dataset |Y| #Train #Test Type
SST-2 2 6,920 872 sentiment
SST-5 5 8,544 2,210 sentiment
MR 2 8,662 2,000 sentiment
CR 2 1,775 2,000 sentiment
MPQA 2 8,606 2,000 opinion polarity
Subj 2 8,000 2,000 subjectivity
TREC 6 5,452 500 question cls.
DBpedia 14 560,000 70,000 sentence cls.
Yahoo! Answers 10 1,400,000 60,000 sentence cls.

MNLI 3 392,702 9,815 NLI
SNLI 3 549,367 9,842 NLI
QNLI 2 104,743 5,463 NLI
RTE 2 2,490 277 NLI
MRPC 2 3,668 408 paraphrase
QQP 2 363,846 40,431 paraphrase

Table 4: The datasets evaluated in this work. |Y|: the
number of classes for classification tasks. Notes that we
only sample Dtrain and Ddev of K × |Y| examples from
the original training data set in our few-shot setting.

B Template settings

Table 5 and Table 6 provides manual templates and
verbalizer similar with Gao et al. (2021a). We set
the template of demonstration same with example.
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Template Tasks

[CLS]x1, It was[MASK].[SEP] SST-2, SST-5, MR, CR, MPQA,
DBpedia, Yahoo! Answers

[CLS]x1, This is[MASK].[SEP] Subj
[CLS][MASK]: x1[SEP] TREC

[CLS]x1?[MASK],x2[SEP] MNLI, SNLI, QNLI, RTE
[CLS]x1[MASK],x2[SEP] MRPC, QQP

Table 5: Templates for all tasks evaluated in our work.

Task Verbalizer

SST-2 incorrect/correct
SST-5 terrible/bad/okay/good/great
MR terrible/great
CR terrible/great

MPQA terrible/great
Subj subjective/objective

TREC Description/Entity/Expression/
Human/Location/Number

DBpedia company/institution/artist/athlete/
office/holder/transportation/building/
place/village/animal/plant/album/film/
written/work

Yahoo! society/science/health/education/
internet/sports/business/entertainment/
family/politics

Table 6: Verbalizer for all tasks evaluated in our work.
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