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Abstract
Comparative opinion is a common linguistic
phenomenon. The opinion is expressed by com-
paring multiple targets on a shared aspect, e.g.,
“camera A is better than camera B in picture
quality”. Among the various subtasks in opin-
ion mining, comparative opinion classification
is relatively less studied. Current solutions use
rules or classifiers to identify opinions, i.e., bet-
ter, worse, or same, through feature engineer-
ing. Because the features are directly derived
from the input sentence, these solutions are sen-
sitive to the order of the targets mentioned in
the sentence. For example, “camera A is better
than camera B” means the same as “camera B
is worse than camera A”; but the features of
these two sentences are completely different.
In this paper, we approach comparative opin-
ion classification through prompt learning, tak-
ing the advantage of embedded knowledge in
pre-trained language model. We design a twin
framework with dual prompts, named CORT.
This extremely simple model delivers state-of-
the-art and robust performance on all bench-
mark datasets for comparative opinion classifi-
cation. We believe CORT well serves as a new
baseline for comparative opinion classification.

1 Introduction

Comparative opinion classification (Liu, 2012)
aims to find the relative opinion preference on a
specific aspect towards two or more compared tar-
gets. Sentences containing comparative opinions
may not express a direct positive or negative opin-
ion, but a comparison. In this example sentence,
“BMW’s handling is better than that of Mercedes-
Benz.”, there are two targets: BMW and Mercedes-
Benz. The aspect in comparison is handling, and
the opinion is target t1 (BMW) is better than tar-
get t2 (Mercedes-Benz). Note that, the comparison
does not imply that the opinion towards Mercedes-
Benz is negative. Hence, performing typical senti-
ment classification as a whole is less applicable to
comparative text.

Comparative opinion plays a vital role in con-
sumers’ purchasing decisions. It is common that a
consumer identifies a few candidate products and
makes a comparison on all aspects of his/her in-
terest. Comparative sentences are also widely ob-
served in product reviews and online forums.

The Research Problem. In comparative opinion
mining, there are a predefined set of opinions O =
{o1, o2, . . . , on}. Given a comparative sentence,
denoted by S = [w1, w2, . . . , wn], the task is to
predict a four-tuple (t1, t2, a, o). Here, t1 and t2
are the targets to be compared, a denotes the aspect,
and o is the opinion.

This task can be decomposed into two subtasks:
(i) comparative elements extraction to extract tar-
gets t1, t2 in comparison and aspect a, and (ii)
comparative opinion classification to predict opin-
ion o with the assumption that targets t1, t2 and the
aspect a are given. In this paper, we focus on the
second subtask. That is, we assume that targets and
aspects are pre-extracted. Generally, the opinion
set includes better, worse, same and incompara-
ble. However, incomparable can be filtered in the
element extraction stage, so we only consider the
remaining three opinions.

Existing studies for comparative opinion are
mainly rule-based or machine-learning methods.
In general, comparative elements extraction is first
performed, to identify comparative sentences and
to extract compared targets and aspects. Jindal and
Liu (2006a) first identify comparative sentences
from review. Hu and Liu (2006); Ding et al. (2009);
Xu et al. (2009) extract comparative elements from
the identified comparative texts. With comparative
text and its comparative elements, Ganapathibhotla
and Liu (2008) design six rules based on context
and pre-defined pros and cons in review to classify
comparative opinion. Panchenko et al. (2019) eval-
uate a few classifiers with features for comparative
opinion classification. Despite that deep learning
based solutions have significantly advanced the
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area of sentiment analysis in recent years, to the
best of our knowledge, no dedicated deep learn-
ing models have been proposed for comparative
opinion classification.

A major challenge in comparative opinion clas-
sification is that, opinion o depends on the order
of targets t1, t2 (i.e., t1 is better than t2 means that
t2 is worse than t1) except when o is same. For
this reason, sentiment analysis models that directly
predict positive or negative, cannot well handle
comparative opinion classification. To overcome
this problem, we design a novel twin framework to
detect comparative opinion. In this framework, a
primary channel and a mirror channel are designed
to capture both the original (i.e., for the order t1, t2)
and the reversal (for order t2, t1) comparative opin-
ions. Both channels are realized by prompt-based
learning in our framework.

Specifically, our proposed CORT (Comparative
Opinion Representations from Twin network)
model contains two opinion channels (i.e., pri-
mary channel and mirror channel), and a compar-
ative module. Each channel includes three cells:
prompter, encoder, and classifier. Given an input
in the form of (text, target t1, target t2, aspect),
the prompter generates a template like “[target t1]
is [MASK] than [target t2] in [aspect]”. Then the
encoder encodes the original input text and the tem-
plate to get a global representation (i.e., encoding at
the [CLS] position) and the opinion representation
(i.e., encoding at the [MASK] position). Lastly,
the comparative opinion is predicted by a classifier.
Mirror channel shares the same configurations as
the primary channel. The only difference is that the
two targets are swapped in the generated template.

To the best of our knowledge, this is the first at-
tempt to design a prompt-based learning framework
for comparative opinion classification. We demon-
strate that CORT achieves state-of-the-art perfor-
mance against all existing baselines on three pub-
lic datasets, namely CameraReview, CompSent-19,
and CompSent-08. More importantly, our CORT
model is robust and is insensitive to the order of
targets in comparison.

2 Related Work

Comparative opinion expresses opinions by com-
paring similar targets, which is different from di-
rectly expressing an opinion about targets and their
aspects (Liu, 2012). Simply put, comparative opin-
ion mining is the analysis of the contrast between

multiple targets/objects (Ganapathibhotla and Liu,
2008). Generally, there are two main subtasks: (i)
elements extraction, to extract comparative sen-
tences, targets, aspects, and (ii) comparative opin-
ion classification. This paper focuses on the latter.
Very few studies consider both subtasks (Liu et al.,
2013, 2021b). As our model is built on top of
prompt-based learning, we also briefly review pre-
trained language models for sentiment analysis.

2.1 Comparative Opinion Classification

The task of comparative opinion mining was for-
mulated between 2006 to 2008 (Jindal and Liu,
2006b; Ganapathibhotla and Liu, 2008). Early ap-
proaches are mostly based on feature engineering
and manually defined rules.

Rule-based Methods. Ganapathibhotla and Liu
(2008) design six rules to identify which target is
more preferred. After that, Tkachenko and Lauw
(2014) propose a generative model for comparative
sentences from online reviews, to define compara-
tive directions of targets. Again, rules are used to
predict the preference between multiple targets. In
general, rule-based method is expensive to main-
tain and is heavily domain-dependent.

Traditional Machine Learning. Feature engineer-
ing with classifier (i.e., Logistic Regression, Ran-
dom Forest, Support Vector Machine et al.) was the
mainstream approach in the past. Panchenko et al.
(2019) build a corpus of comparative sentences,
then evaluate multiple supervised models. In their
evaluation, comparative sentences are divided into
three categories including none, better, and worse.
They do not take into account the instances with
same opinion.

2.2 Pre-trained Language Model

Pre-trained language models (PLMs) including
BERT (Devlin et al., 2019), RoBERTa (Liu et al.,
2019), XLNet (Yang et al., 2019) et al., have been
widely used in natural language processing tasks,
including sentiment analysis. Fine-tuning (Ding
et al., 2021; Han et al., 2021) is a popular method
for downstream tasks e.g., classification (Xu et al.,
2019), generation (Liu et al., 2019) et al.. How-
ever, fine-tuning methods typically require a large
amount of annotated data (Chen et al., 2021). Then,
prompt learning is proposed to solve this problem
by filling the gap of objective forms between pre-
training and fine-tuning (Brown et al., 2020; Han
et al., 2021; Liu et al., 2021a; Ben-David et al.,
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PLM

(b)  PLM w. Prompt

(c) The CORT Model

Classifier
ℎ!"# PLM

[ℎ$%#&; ℎ!"#]
Classifier

[CLS] The balance on my D200 to be far superior to the D1X. [SEP] my D200 is [MASK] than D1X in balance [SEP]
Prompter

Mirror
Channel

Primary
Channel

[CLS] The balance on my D200 to be far superior to the D1X. [SEP] D1X is [MASK] than my D200 in balance [SEP]
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Figure 1: The architectures of (a) PLM Fine-Tuning, (b) PLM w. Prompt, and (c) CORT. The prompter of CORT is
the same as PLM w. Prompt. For each opinion channel, rs and ro denote the global representation ([CLS] position)
and opinion representation ([MASK] position), respectively. The classifier of each channel takes the concatenated
representation r = rs ⊕ ro as input, and predicts opinion distribution P .

2022). To the best of our knowledge, neither dedi-
cated PLM nor prompt learning has been applied
to comparative opinion classification.

3 CORT Model

The Comparative Opinion Representations from
Twin network (CORT) has its root in prompt learn-
ing. We first brief Pre-trained Language Model
with Prompt (PLM w. Prompt) for comparative
opinion classification. Then we detail the design of
CORT model and its optimization method.

3.1 PLM w. Prompt

How to effectively use target information is vital,
when classifying the opinion in a comparative sen-
tence with two targets. The straightforward ap-
proach is to use the fine-tuning method for predic-
tion, by using the global representation obtained at
the [CLS] position, shown in Figure 1 (a). Here, the
targets and the corresponding aspect are appended
to the comparative sentence. As the opinion is sen-
sitive to the order of targets, it is more reasonable to
adopt prompt learning, by including more contex-
tual information about the targets through prompts,
see Figure 1 (b).

Preliminary: Prompt Learning. Prompt learning
relies on a pre-defined set of label words V ∗ and
a template T . Given an input text x, T modifies
the original text into a prompt input, by adding

some words including [MASK] to the original in-
put. Conventionally, the representation at the lo-
cation of [MASK] is used to predict the masked
word w. For each label y in Y , a label word set
Vy = {v1, v2, . . . , vn} is defined, which is a subset
of vocabulary in PLM. With each label maps to
a set, all sets together form a set of label words
V ∗. Thus, in prompt learning, a classification prob-
lem is transferred into a mask learning problem, or
formally as follows:

p(y|x) = p ([MASK] = w|T (x)) (1)

The architecture of the proposed PLM w. Prompt
is shown in Figure 1 (b). Given a comparative sen-
tence as input, we generate the input of PLM with a
template: “[CLS] text [SEP] [target t1] is [MASK]
than [target t2] in [aspect] [SEP]”. Because the
comparative opinion is nuanced, we use the global
representation to enhance the representation of the
masked location. Hence, we do not use the vocab-
ulary table to predict the opinion. Instead, we use
a softmax classifier to classify the opinion based
on the concatenated representation of [CLS] and
that of [MASK] position. Cross entropy objective
is used to optimize this model.

3.2 The CORT Model
Figure 1 (c) depicts the architecture of CORT.
Based on the twin framework, CORT has two
opinion channels (i.e., primary channel and mirror
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channel), and a comparative module. Each chan-
nel consists of three cells: prompter, encoder, and
classifier. As the name suggests, prompter assigns
template for input text; Encoder encodes the input
with template, to produce the text representation
rs at [CLS] position and the opinion representation
ro at [MASK] position; Classifier then predicts the
opinion of the channel. Parameters for encoders
and classifiers are shared across two channels.

Last, comparative module is used to contrast dif-
ferences between opposite opinions, which could
improve the robustness of the model from the
stance of contrastive representations.

3.2.1 Twin Opinion Channels
The difference between primary channel and mir-
ror channel is the order of the two targets in com-
parison. In the example shown in Figure 1, the tem-
plate for primary channel is “my D200 is [MASK]
than D1X in balance”, while the template for mir-
ror channel is “D1X is [MASK] than my D200 in
balance”. Correspondingly, the ground truth la-
bels for the two templates are opposite in training,
e.g., better and worse respectively in this example.
Due to their similar structure, we only describe the
primary channel.

Prompter Cell. The prompter cell in CORT has
the same structure as PLM w. Prompt. Given a
sentence S, targets t1, t2, aspect a, the prompter
cell generates input with template Sp for primary
channel: “[CLS] S [SEP] t1 is [MASK] than t2
in a [SEP]”. Similarly, the generated text with
template Sm for mirror channel is:“[CLS] S [SEP]
t2 is [MASK] than t1 in a [SEP]”.

Encoder Cell. The generated text is encoded by
PLM. Taking the input Sp in primary channel, we
obtain rs and ro, denoting the representations of en-
tire context (i.e., hidden representation at [CLS] po-
sition) and the opinion representation (i.e., hidden
representation at [MASK] location), respectively.

rs, ro = PLM(Sp). (2)

The final representation is the concatenation of the
two: r = rs ⊕ ro. In our experiments, we evaluate
three popular PLMs, namely, RoBERTa, BERT,
and XLNet.

Classifier Cell. The opinion distribution P is com-
puted by a softmax classifier based on the learned
representation r:

P = softmax(Wpr + bp), (3)

where Wp and bp are the learnable parameters.
The twin framework is designed to reflect seman-

tic meaning of comparative opinion. For instance,
“my D200 is better than the D1X in auto white
balance” and “the D1X is worse than my D200 in
auto white balance” mean the same, despite the
order change in targets. Hence, mirror channel is
computed in a similar manner:

r′s, r
′
o = PLM(Sm) (4)

P ′
= softmax(Wpr

′ + bp) (5)

Here, r′s and r′o are the global representation and
the mask representation of the mirror channel. The
opinion distribution P ′ is computed in the same
manner using the final representation r′ = r′s ⊕ r′o.
Note that the ground truth labels of P and P ′ are
opposite when the opinion is not same.

During testing, CORT generates two probability
distributions P and P ′. We use the maximum value
from them to assign the comparative opinion.

3.2.2 Comparative Module
Again, due to the order change in targets, when
the opinion in the primary channel is better, the
corresponding opinion in mirror channel is worse,
and vice versa. Hence, the comparative module
aims to maximize the distance between two opinion
representations when the opinion is better or worse.
Simultaneously, the module minimizes the distance
of two opinion representations when the opinion is
same. To be detailed next, we design our training
objective by considering the distance computed by
comparative module:

d = 1− cos(Woro + bo,Wor
′
o + bo), (6)

where d is the distance by cos similarity; Wo and
bo are learnable parameters.

3.3 Training Objective

CORT model has two learning objectives: opin-
ion objective and comparative objective. Opinion
objective is to minimize the cross-entropy of the
opinion probability distributions for both channels.
Comparative objective is to maximize the distance
of [MASK] representations if the opinion is better
or worse, and minimize the distance for same.

Opinion Objective. From the two channels, we
have two opinion probability distributions P and
P ′ for an instance i. Inspired by Wang et al. (2016,
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2019); Liu et al. (2022); Lin et al. (2022), the opin-
ion probability objective J(θ) adopts cross-entropy
losses on both channels:

Φ =
∑

i

cross-entropy(yi,Pi) (7)

Φ
′
=
∑

i

cross-entropy(y′i,P ′
i) (8)

J(θ) = λΦ+ µΦ
′

(9)

Here, Φ and Φ
′

are losses of the two channels; yi
and y′i are the annotated opinions of the two chan-
nels for instance i; λ and µ are hyperparameters.

Comparative Objective. We use hinge loss for
comparative objective U(θ):

U(θ) =
∑

i

{
di, if oi = same
max(0, 1− di), if oi ̸= same

(10)
Considering both objectives, the final objective

L is the sum of J and U :

Loss(θ) = J(θ) + ξU(θ), (11)

where ξ is a hyperparameter.

4 Experiment

We now evaluate the proposed base model
PLM w. Prompt and CORT for comparative opin-
ion classification, against baselines.

4.1 Dataset

CameraReview. Created by Kessler and Kuhn
(2014), this dataset1 contains comparative sen-
tences about camera reviews in English. Each in-
stance is annotated with labels (target t1, target
t2, aspect, opinion). The set of opinion is {better,
worse, same}. We select the sentences with clear
direction in two targets from this dataset, and split
the instances with the ratio of 7:1:2 for training,
validation, and testing. Table 1 reports statistics of
this dataset.

CompSent-19. This dataset2 annotates compara-
tive sentences on computer science with compared
targets like programming languages (e.g., C++,
Python, Java), database products (e.g., MYSQL,
Oracle) and technology standards (e.g., Bluetooth

1https://wiltrud.hwro.de/research/
data/reviewcomparisons.html

2https://github.com/uhh-lt/
comparative/tree/master/Classification/
code/data

Table 1: The statistics of CameraReview, CompSent-19
and CompSent-08 datasets, marked as “C.R.”, “C.S.-19”
and “C.S.-08” in this table. Note that CompSent-08
is very small, so we only use it as a test set. Camer-
aReview and CompSent-19 are split with the ratio 7:1:2
for training, validation and testing.

Opinion Dataset C.R. C.S.-19 C.S.-08

Better
Train 809 746 –
Valid 124 113 –
Test 231 232 119

Worse
Train 220 348 –
Valid 25 44 –
Test 71 82 30

Same
Train 216 – –
Valid 27 – –
Test 55 – 37

Total 1,778 1,565 186

or Ethernet) (Panchenko et al., 2019). The annota-
tion format is (target t1, target t2, opinion), without
aspect. The set of opinion is {better, worse}.

CompSent-08. Despite its small size, this dataset3

by Jindal and Liu (2006a) contains comparative
sentences in various domains, ranging from dig-
ital cameras to soccer. The sentences are taken
from reviews, blog posts, and forum discussions.
The annotation format is similar to CameraReview,
including target t1, target t2, aspect, and opinion.
Due to the small size, we only use this dataset as a
test set, to evaluate the generalization performance
of our model.

4.2 Compared Methods

For completeness, we compare our models with
several baselines including rule-based methods,
traditional machine learning methods, and neural
models.

Rule. Ganapathibhotla and Liu (2008) develop
six rules to find which target is more preferred. It
does not consider the same opinion. Because the
codes are not released, and the same opinion is
missing, we implement the same six rules, and de-
velop additional rules for same in our experiments.
Specifically, our rules for same opinion are built
with opinion words (i.e., same, like, similar, equal)
reflecting the same opinion.

Traditional Machine Learning. We follow the
methods in Panchenko et al. (2019) to experiment
with traditional machine learning methods: Logis-

3https://www.cs.uic.edu/~liub/FBS/
sentiment-analysis.html#datasets
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Table 2: The accuracy, F1, and detailed F1 of methods on CameraReview and CompSent-19 datasets. The baseline
methods marked with ∗ are our own implementation, and the methods marked with † are implemented based on the
open codes (Panchenko et al., 2019). Best results are in bold face and second best underlined.

Method
CameraReview CompSent-19

Acc. F1 F1-B. F1-W. F1-S. Acc. F1 F1-B. F1-W.

Rule⋆ 0.609 0.467 0.753 0.263 0.384 – – – –
Majority Class† 0.647 0.262 0.786 0.000 0.000 0.739 0.425 0.850 0.000

Extra Trees† 0.647 0.285 0.784 0.000 0.070 0.764 0.574 0.859 0.289
Random Forest† 0.661 0.327 0.792 0.054 0.136 0.777 0.614 0.865 0.364
k-Neighbors† 0.636 0.373 0.782 0.083 0.254 0.736 0.604 0.832 0.376

SGD Classifier† 0.675 0.439 0.808 0.141 0.368 0.739 0.662 0.823 0.500
Decision Tree† 0.616 0.451 0.779 0.351 0.222 0.707 0.649 0.792 0.505

AdaBoost† 0.661 0.488 0.778 0.346 0.341 0.726 0.653 0.812 0.494
SVM† 0.726 0.552 0.838 0.460 0.359 0.758 0.684 0.837 0.531

XGBoost† 0.731 0.559 0.830 0.379 0.468 0.768 0.685 0.846 0.523
Logistic Regression† 0.720 0.583 0.821 0.441 0.488 0.761 0.673 0.843 0.503

CRF⋆ 0.777 0.649 0.850 0.394 0.703 – – – –
RNN-Capsule† 0.675 0.529 0.809 0.328 0.451 0.672 0.563 0.781 0.344

Multi-StageBERT
∗ 0.661 0.498 0.785 0.228 0.482 0.790 0.683 0.867 0.500

RoBERTa Fine-Tuning 0.857 0.802 0.916 0.677 0.814 0.844 0.797 0.895 0.699
+ data augmentation 0.852 0.822 0.897 0.711 0.857 0.908 0.881 0.937 0.824
RoBERTa w. Prompt 0.877 0.826 0.931 0.719 0.829 0.892 0.857 0.927 0.788
+ data augmentation 0.871 0.847 0.906 0.736 0.900 0.924 0.899 0.949 0.850

CORT 0.885 0.861 0.918 0.784 0.880 0.933 0.913 0.955 0.871

tic Regression, XGBoost, SVM, AdaBoost, Deci-
sion Tree, SGD classifier, k-Neighbors, Random
Forest, Extra Trees, and Majority Class.

CRF. Conditional Random Field (CRF) is used
for comparative elements extraction (Sutton et al.,
2007). We build five features to adopt CRF to com-
parative opinion classification. The five features
are word, position, entity, POS tag and word la-
bel. Here, word label indicates whether a word
is part of t1, t2, a, or opinion words. If yes, then
word label is a special tag, otherwise, word label is
“None” (See Appendix A.2 for more details about
the others).

RNN-Capsule. RNN-Capsule (Wang et al., 2018)
is a powerful model for sentiment classifica-
tion (e.g., positive, negative, and neutral). To adapt
to comparative opinion classification, we enrich
the original input by appending the comparative
elements (i.e., target t1, target t2, and aspect) to
the end of the original sentence, as input to RNN-
Capsule.

Multi-StageBERT. Multi-StageBERT (Liu et al.,
2021b) extracts comparative elements and detects
comparative opinion, in a pipeline setting. For a
fair comparison of the comparative opinion clas-
sification subtask, we use the ground truth targets
and the aspect as input, instead of the extracted ele-
ments by the model. Note that this model needs a

text span with an opinion as input, but the datasets
do not provide such annotations. So we only use
the remaining elements, including target t1, target
t2, and aspect.

PLM Fine-Tuning. Based on PLM (e.g., BERT,
RoBERTa, XLNet), fine-tuning method makes pre-
diction with an extra linear layer after PLM (Chen
et al., 2021). Similar to RNN-Capsule, we add the
comparative elements (i.e., target t1, target t2, and
aspect) to the end of the original text as the input to
PLM Fine-Tuning. Then the [CLS] representation
is used to predict the opinion.

For a fair comparison, we also experiment PLM
Fine-Tuning and PLM w. prompt with data aug-
mentation (by adding a copy of a training instance
with target order changed and opinion reversed, if
the opinion is Better or Worse). Data augmentation
benefits the model with additional training data and
naturally avoids data imbalance. Conceptually, this
setting is similar to training with dual channels.

4.3 Overall Performance Comparison

We use accuracy, macro-F1, and detailed F1 of
each opinion, to compare all methods. Results on
CameraReview and CompSent-19 datasets are re-
ported in Table 2.4 Because rule and CRF models

4Because CompSent-08 is very small, it is only used as
test data and evaluated in Section 4.6.
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Table 3: The accuracy, F1, and detailed F1 of neural models with swapping targets on CameraReview dataset. The
downwards/upwards arrow indicates the performance change compared to the setting without swapping targets in
test set.

Model Accuracy F1 F1-Better F1-Worse F1-Same

RNN-Capsule 0.249 0.284 0.235 0.199 0.418
↓ 0.43 ↓ 0.25 ↓ 0.57 ↓ 0.13 ↓ 0.03

Multi-StageBERT
0.300 0.334 0.287 0.253 0.463
↓0.36 ↓0.16 ↓0.50 ↑ 0.03 ↓ 0.02

RoBERTa Fine-Tuning 0.221 0.356 0.143 0.064 0.862
↓ 0.64 ↓ 0.45 ↓ 0.77 ↓ 0.61 ↑ 0.05

RoBERTa w. Prompt 0.252 0.354 0.134 0.162 0.767
↓0.63 ↓0.47 ↓0.80 ↓0.56 ↓0.06

CORT 0.885 0.861 0.784 0.918 0.880
↓ 0.00 ↓ 0.00 ↓ 0.13 ↑ 0.13 ↓ 0.00

need features that heavily depend on the specific
dataset, it is expensive to build domain-specific fea-
tures for CompSent-19. Their results are unavail-
able on CompSent-19, marked with “-” in Table 2.

Discussion. On both datasets, as expected, PLM-
based models outperform all other baselines, reveal-
ing the powerful ability of PLM models. Among
PLM-based models, CORT is the winner, followed
by RoBERTa w. Prompt with data augmentation.
The performance gap between them clearly indi-
cates the ability of our proposed twin framework.

Reported in the Table 2, the use of data augmen-
tation leads to 2.0 and 2.1 points increase in F1 on
CameraReview, compared to the models without
data augmentation, respectively. In addition to the
increase in F1, the models using data augmenta-
tion become stable on reversed data, and produce
similar F1 scores (see Table 4). On the other hand,
both models remain much poorer than CORT.

Compared to PLM Fine-Tuning or PLM w.
Prompt (using data augmentation or not), CORT
benefits from the following design to achieve the
best results: (1) The input to the classifier of
both channels is the concatenation of [CLS] and
[MASK] representations, because both of them pro-
vide important information for classification. (2)
The input to the comparative module considers the
[MASK] representations only, but not [CLS]. This
is because [CLS] representation denotes the whole
representation of the input text. By design, the or-
der of the targets (t1 and t2) in the two channels
are different, hence [CLS] representations are al-
ways different and there is no need to compare.
For [MASK] representations, comparative module
needs to distinguish the cases when the compari-
son is Same, and the cases when the comparison is

Better or Worse.
Traditional machine learning methods outper-

form rule-based method. CRF is the best perform-
ing traditional machine learning method, with F1
of 0.649 on CameraReview. RNN-Capsule does
not deliver good performance as it is not designed
for comparative sentence classification. Further,
RNN-Capsule is based on pre-trained word em-
beddings, not PLM. Surprisingly, Multi-StageBERT
is poorer than many traditional machine learning
models. One reason is that its softmax classifier
only takes the concatenation of representations of
compared targets and the aspect as input. That is,
even if PLM is used, an effective design is essential
for good performance. Methods like Extra Trees
and Majority Class are very sensitive to the data
distribution of labels. They tend to predict all in-
stances to the majority label i.e., better, resulting
in very low F1’s for worse and same.

4.4 Robustness of CORT on Reversal Data

As aforementioned, comparative opinion classifica-
tion requires semantic understanding in the sense
that, if a is better than b, then b is worse than a. In
this set of experiments, we evaluate model robust-
ness by swapping the targets in comparison. That
is, a well behaved model shall be able to predict
the opposite for better and worse in reversal data,
and same when the original opinion is same.

Accordingly, in this set of experiments, we keep
the training and validation set unchanged but swap
the targets t1 and t2 in testing, and their correspond-
ing ground truth label. Table 3 reports model per-
formance on CameraReview, and the performance
changes against their original performance (see Ta-
ble 2). In this set of experiments, RoBERTa is used
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Table 4: The accuracy and F1 of PLM based models on original and reversal test data of CameraReview.

PLM Module
Original Test Data Reversal Test Data

Accuracy F1 Accuracy F1

RoBERTa
w. Fine-Tuning 0.857 0.802 0.221 0.356

w. Prompt 0.877 0.826 0.252 0.354
w. CORT 0.885 0.861 0.885 0.861

BERT
w. Fine-Tuning 0.787 0.714 0.224 0.320

w. Prompt 0.807 0.733 0.238 0.335
w. CORT 0.818 0.775 0.818 0.775

XLNet
w. Fine-Tuning 0.793 0.731 0.246 0.362

w. Prompt 0.796 0.727 0.244 0.348
w. CORT 0.846 0.804 0.846 0.804

Table 5: Models are trained on CameraReview, then evaluated on CompSent-08 and CompSent-19 as two test sets.

Test set Model Accuracy F1 F1-Better F1-Worse F1-Same

CompSent-08
RoBERTa Fine-Tuning 0.833 0.787 0.888 0.646 0.827
RoBERTa w. Prompt 0.855 0.798 0.900 0.561 0.933

CORT 0.828 0.781 0.879 0.635 0.829

CompSent-19
RoBERTa Fine-Tuning 0.778 0.702 0.855 0.550 –
RoBERTa w. Prompt 0.785 0.740 0.862 0.618 –

CORT 0.863 0.844 0.909 0.780 –

as the PLM encoder.
Our proposed CORT does not change in over-

all accuracy, F1 and detailed F1. In Table 3, the
shown changes of CORT are caused by the reversed
labeled opinion on Better and Worse of the orig-
inal labels. However, big drops are observed for
all other models including RNN-Capsule, Multi-
StageBERT, RoBERTa Fine-Tuning, and RoBERTa
w. Prompt. In particular, F1 scores for better and
worse opinions decrease sharply. Thanks to the
twin channel design in CORT, our model is trained
to handle comparison targets in either order, and
experiment results well support the robustness of
our design.

4.5 Choices of PLMs for CORT

PLMs have contributed to significant improve-
ments in various NLP tasks. We evaluate the main-
stream PLMs including RoBERTa, BERT, and XL-
Net, on CORT. Table 4 reports the performance
of the twin framework based on different PLMs
on both the original and the reversal test sets of
CameraReview.

The model based on RoBERTa performs the best,
followed by XLNet and BERT. The other two mod-
els i.e., PLM w. Prompt and Fine-Tuning, share
the same trend, mainly due to the much larger
training data used in RoBERTa. On the reversal
test set, our CORT is unaffected and delivers the

same performance as the original data for both mea-
sures. Significant performance drops happen to
PLM w. Prompt and Fine-Tuning, and BERT gives
slightly worse performance for these two models,
compared to other PLMs.

4.6 Cross Dataset Evaluation

To the best of our knowledge, CameraReview is
the largest public dataset that comes with compar-
ative opinion annotations. CompSent-08 dataset
has only 186 instances, and is insufficient to train a
model. As the annotation scheme of CompSent-08
is similar to that of CameraReview, it is interesting
to find out whether the CORT model trained on
CameraReview dataset could be used to identify
comparative opinion on CompSent-08. For com-
pleteness, we further evaluate the model trained on
CameraReview on the full CompSent-19 dataset as
a test set.

Reported in Table 5, all PLM-based models per-
form very well on CompSent-08, even though these
models are trained on a different dataset i.e., Cam-
eraReview. Interestingly, PLM w. Prompt performs
better than CORT on CompSent-08. Through man-
ual investigation, we note that a few incorrect pre-
dictions on CompSent-08 lead to big changes in
performance numbers due to its small size. When
using the full CompSent-19 as a test set, the pro-
posed CORT shows clear superiority over alterna-
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Table 6: Ablation study of CORT on CameraReview.

Model Accuracy F1

CORT 0.885 0.861
w.o. comparative module 0.863 0.830
w.o. mirror channel 0.885 0.841
w.o. [CLS] representations 0.868 0.828
w.o. [MASK] representations 0.874 0.845

tives. Note that, due to the differences in train and
test sets, the results in Table 5 cannot be directly
compared to the numbers in Table 2. Nevertheless,
the high accuracy and F1 numbers in Table 5 do
suggest that our CORT is generalized to similar
comparative opinion classification tasks.

4.7 Ablation Study

We conduct ablation study on CameraReview
dataset. Thanks to the simple design of the twin
framework, we could evaluate the effectiveness of
the comparative module and the mirror channel
easily. In addition, to study the effect of [CLS] and
[MASK] representations, we also conduct experi-
ment without these representations.

Table 6 reports the results of detailed compari-
son: (i) Removal of comparative module leads to
3.1 points decrease in F1. Further, F1 decreases
2.0 points after removal of the mirror channel.
These shows that both comparative module and the
twin opinion channels are effective. (ii) Removal
of [CLS] representations (rs and r′s) on both chan-
nels leads to 3.3 points decrease in F1. This result
suggests that the context of the entire sentence in
both channels is helpful for the classification task.
(iii) Removal of [MASK] representations (ro and
r′o), leads to a drop of 1.6 points in F1. This result
shows that not only opinion representations are im-
portant, but also text representations are vital for
classification.

5 Conclusion

In this paper, we focus on comparative opinion
classification, a specific sentiment analysis sub-
task. Built on the top powerful pre-trained lan-
guage models, we show that comparative opinion
classification can be addressed by prompt learning
with promising accuracy. In our proposed CORT,
we designed two channels for comparative targets
arranged in either order, to facilitate the model to
learn the semantics behind the comparative opinion,
e.g., a is better than b vs. b is worse than a. Ex-
periments show that the proposed CORT achieves

state-of-the-art performance compared to various
baselines, on all comparative datasets. We show
that CORT based on the twin framework with dif-
ferent pre-trained language models performs beau-
tifully on both the original and reversal data. We
also show that the model achieves good perfor-
mance in cross-dataset setting, demonstrating its
effectiveness and robustness. We believe, as a sim-
ple and effective model, CORT well serves as a new
baseline for comparative opinion classification.

Limitations

There are two main limitations for comparative
opinion classification: dataset and model design.
Comparative opinion statements comprise over
10% of the total opinionated text (Kessler and
Kuhn, 2013). Hence it is important to study
this common linguistic phenomenon. The largest
dataset has only about 1k instances, which is con-
sidered small for neural models. The lack of high-
quality and large datasets heavily limits the devel-
opment in this area.

In this paper, we make the very first attempt
to perform comparative opinion classification by
dual prompts. By design, the proposed CORT only
considers two targets on one aspect. However, com-
parative text may be expressed in a more complex
way. For example, there may be multiple compared
targets, on multiple compared aspects. Further, the
proposed CORT does not consider the situation that
one of the compared targets is a pronoun. All of
these are important factors for further exploration.

Acknowledgments

This work was supported by the National Key R&D
Program of China (2020AAA0105200) and the
National Science Foundation of China (NSFC No.
62106249, 61902382, 61972381).

References
Eyal Ben-David, Nadav Oved, and Roi Reichart. 2022.

Pada: Example-based prompt learning for on-the-fly
adaptation to unseen domains. Transactions of the
Association for Computational Linguistics, 10:414–
433.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,

7072



Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In
Advances in Neural Information Processing Systems
33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual.

Xiang Chen, Ningyu Zhang, Xin Xie, Shumin Deng,
Yunzhi Yao, Chuanqi Tan, Fei Huang, Luo Si, and
Huajun Chen. 2021. Knowprompt: Knowledge-
aware prompt-tuning with synergistic optimization
for relation extraction. CoRR, abs/2104.07650.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis,
MN, USA, June 2-7, 2019, Volume 1 (Long and
Short Papers), pages 4171–4186. Association for
Computational Linguistics.

Ning Ding, Yulin Chen, Xu Han, Guangwei Xu,
Pengjun Xie, Hai-Tao Zheng, Zhiyuan Liu, Juanzi
Li, and Hong-Gee Kim. 2021. Prompt-learning for
fine-grained entity typing. CoRR, abs/2108.10604.

Xiaowen Ding, Bing Liu, and Lei Zhang. 2009. Entity
discovery and assignment for opinion mining appli-
cations. In Proceedings of the 15th ACM SIGKDD
International Conference on Knowledge Discovery
and Data Mining, Paris, France, June 28 - July 1,
2009, pages 1125–1134. ACM.

Murthy Ganapathibhotla and Bing Liu. 2008. Min-
ing opinions in comparative sentences. In
COLING 2008, 22nd International Conference
on Computational Linguistics, Proceedings of the
Conference, 18-22 August 2008, Manchester, UK,
pages 241–248.

Xu Han, Weilin Zhao, Ning Ding, Zhiyuan Liu, and
Maosong Sun. 2021. PTR: prompt tuning with rules
for text classification. CoRR, abs/2105.11259.

Minqing Hu and Bing Liu. 2006. Opinion feature extrac-
tion using class sequential rules. In Computational
Approaches to Analyzing Weblogs, Papers from the
2006 AAAI Spring Symposium, Technical Report
SS-06-03, Stanford, California, USA, March 27-29,
2006, pages 61–66. AAAI.

Nitin Jindal and Bing Liu. 2006a. Identifying compar-
ative sentences in text documents. In SIGIR 2006:
Proceedings of the 29th Annual International ACM
SIGIR Conference on Research and Development
in Information Retrieval, Seattle, Washington, USA,
August 6-11, 2006, pages 244–251. ACM.

Nitin Jindal and Bing Liu. 2006b. Mining comparative
sentences and relations. In Proceedings, The
Twenty-First National Conference on Artificial
Intelligence and the Eighteenth Innovative
Applications of Artificial Intelligence Conference,
July 16-20, 2006, Boston, Massachusetts, USA,
pages 1331–1336. AAAI Press.

Wiltrud Kessler and Jonas Kuhn. 2013. Detection of
product comparisons - how far does an out-of-the-
box semantic role labeling system take you? In
Proceedings of the 2013 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2013, 18-21 October 2013, Grand Hyatt Seattle,
Seattle, Washington, USA, A meeting of SIGDAT,
a Special Interest Group of the ACL, pages 1892–
1897. ACL.

Wiltrud Kessler and Jonas Kuhn. 2014. A corpus of
comparisons in product reviews. In Proceedings
of the Ninth International Conference on Language
Resources and Evaluation, LREC 2014, Reykjavik,
Iceland, May 26-31, 2014, pages 2242–2248. Euro-
pean Language Resources Association (ELRA).

Ting Lin, Aixin Sun, and Yequan Wang. 2022.
Aspect-based sentiment analysis through edu-level
attentions. In Advances in Knowledge Discovery
and Data Mining - 26th Pacific-Asia Conference,
PAKDD 2022, Chengdu, China, May 16-19, 2022,
Proceedings, Part I, volume 13280 of Lecture Notes
in Computer Science, pages 156–168. Springer.

Bing Liu. 2012. Sentiment Analysis and Opinion
Mining. Synthesis Lectures on Human Language
Technologies. Morgan & Claypool Publishers.

Chengxiang Liu, Ruifeng Xu, Jie Liu, Peng Qu,
He Wang, and Chengtian Zou. 2013. Compara-
tive opinion sentences identification and elements
extraction. In International Conference on Machine
Learning and Cybernetics, ICMLC 2013, Tianjin,
China, July 14-17, 2013, pages 1886–1891. IEEE.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2021a. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
CoRR, abs/2107.13586.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Yiyi Liu, Yequan Wang, Aixin Sun, Xuying Meng,
Jing Li, and Jiafeng Guo. 2022. A dual-channel
framework for sarcasm recognition by detecting sen-
timent conflict. In Findings of the Association for
Computational Linguistics: NAACL 2022, Seattle,
WA, United States, July 10-15, 2022, pages 1670–
1680. Association for Computational Linguistics.

7073

https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
http://arxiv.org/abs/2104.07650
http://arxiv.org/abs/2104.07650
http://arxiv.org/abs/2104.07650
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
http://arxiv.org/abs/2108.10604
http://arxiv.org/abs/2108.10604
https://doi.org/10.1145/1557019.1557141
https://doi.org/10.1145/1557019.1557141
https://doi.org/10.1145/1557019.1557141
https://aclanthology.org/C08-1031/
https://aclanthology.org/C08-1031/
http://arxiv.org/abs/2105.11259
http://arxiv.org/abs/2105.11259
http://www.aaai.org/Library/Symposia/Spring/2006/ss06-03-013.php
http://www.aaai.org/Library/Symposia/Spring/2006/ss06-03-013.php
https://doi.org/10.1145/1148170.1148215
https://doi.org/10.1145/1148170.1148215
http://www.aaai.org/Library/AAAI/2006/aaai06-209.php
http://www.aaai.org/Library/AAAI/2006/aaai06-209.php
https://aclanthology.org/D13-1194/
https://aclanthology.org/D13-1194/
https://aclanthology.org/D13-1194/
http://www.lrec-conf.org/proceedings/lrec2014/summaries/1001.html
http://www.lrec-conf.org/proceedings/lrec2014/summaries/1001.html
https://doi.org/10.1007/978-3-031-05933-9_13
https://doi.org/10.1007/978-3-031-05933-9_13
https://doi.org/10.2200/S00416ED1V01Y201204HLT016
https://doi.org/10.2200/S00416ED1V01Y201204HLT016
https://doi.org/10.1109/ICMLC.2013.6890903
https://doi.org/10.1109/ICMLC.2013.6890903
https://doi.org/10.1109/ICMLC.2013.6890903
http://arxiv.org/abs/2107.13586
http://arxiv.org/abs/2107.13586
http://arxiv.org/abs/2107.13586
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/2022.findings-naacl.126
https://doi.org/10.18653/v1/2022.findings-naacl.126
https://doi.org/10.18653/v1/2022.findings-naacl.126


Ziheng Liu, Rui Xia, and Jianfei Yu. 2021b. Com-
parative opinion quintuple extraction from product
reviews. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
EMNLP 2021, Virtual Event / Punta Cana,
Dominican Republic, 7-11 November, 2021, pages
3955–3965. Association for Computational Linguis-
tics.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In 7th International
Conference on Learning Representations, ICLR
2019, New Orleans, LA, USA, May 6-9, 2019. Open-
Review.net.

Alexander Panchenko, Alexander Bondarenko, Mirco
Franzek, Matthias Hagen, and Chris Biemann.
2019. Categorizing comparative sentences. In
Proceedings of the 6th Workshop on Argument
Mining, ArgMining@ACL 2019, Florence, Italy,
August 1, 2019, pages 136–145. Association for
Computational Linguistics.

Charles Sutton, Andrew McCallum, and Khashayar Ro-
hanimanesh. 2007. Dynamic conditional random
fields: Factorized probabilistic models for labeling
and segmenting sequence data. J. Mach. Learn. Res.,
8:693–723.

Maksim Tkachenko and Hady Wirawan Lauw. 2014.
Generative modeling of entity comparisons in text.
In Proceedings of the 23rd ACM International
Conference on Conference on Information and
Knowledge Management, CIKM 2014, Shanghai,
China, November 3-7, 2014, pages 859–868. ACM.

Yequan Wang, Minlie Huang, Li Zhao, and Xiaoyan
Zhu. 2016. Attention-based LSTM for aspect-level
sentiment classification. In Proceedings of the
2016 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2016, Austin, Texas,
USA, November 1-4, 2016, pages 606–615. The As-
sociation for Computational Linguistics.

Yequan Wang, Aixin Sun, Jialong Han, Ying Liu,
and Xiaoyan Zhu. 2018. Sentiment analysis by
capsules. In Proceedings of the 2018 World Wide
Web Conference on World Wide Web, WWW 2018,
Lyon, France, April 23-27, 2018, pages 1165–1174.
ACM.

Yequan Wang, Aixin Sun, Minlie Huang, and Xiaoyan
Zhu. 2019. Aspect-level sentiment analysis using
as-capsules. In The World Wide Web Conference,
WWW 2019, San Francisco, CA, USA, May 13-17,
2019, pages 2033–2044. ACM.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transform-
ers: State-of-the-art natural language processing. In

Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Hu Xu, Bing Liu, Lei Shu, and Philip S. Yu.
2019. BERT post-training for review reading
comprehension and aspect-based sentiment analy-
sis. In Proceedings of the 2019 Conference of
the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis,
MN, USA, June 2-7, 2019, Volume 1 (Long and
Short Papers), pages 2324–2335. Association for
Computational Linguistics.

Kaiquan Xu, Stephen Shaoyi Liao, Raymond Y. K.
Lau, Heng Tang, and Shanshan Wang. 2009. Build-
ing comparative product relation maps by mining
consumer opinions on the web. In Proceedings
of the 15th Americas Conference on Information
Systems, AMCIS 2009, San Francisco, California,
USA, August 6-9, 2009, page 179. Association for
Information Systems.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G.
Carbonell, Ruslan Salakhutdinov, and Quoc V.
Le. 2019. Xlnet: Generalized autoregressive
pretraining for language understanding. In
Advances in Neural Information Processing Systems
32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, December
8-14, 2019, Vancouver, BC, Canada, pages 5754–
5764.

7074

https://doi.org/10.18653/v1/2021.emnlp-main.322
https://doi.org/10.18653/v1/2021.emnlp-main.322
https://doi.org/10.18653/v1/2021.emnlp-main.322
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.18653/v1/w19-4516
http://dl.acm.org/citation.cfm?id=1314523
http://dl.acm.org/citation.cfm?id=1314523
http://dl.acm.org/citation.cfm?id=1314523
https://doi.org/10.1145/2661829.2662016
https://doi.org/10.18653/v1/d16-1058
https://doi.org/10.18653/v1/d16-1058
https://doi.org/10.1145/3178876.3186015
https://doi.org/10.1145/3178876.3186015
https://doi.org/10.1145/3308558.3313750
https://doi.org/10.1145/3308558.3313750
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://doi.org/10.18653/v1/n19-1242
https://doi.org/10.18653/v1/n19-1242
https://doi.org/10.18653/v1/n19-1242
http://aisel.aisnet.org/amcis2009/179
http://aisel.aisnet.org/amcis2009/179
http://aisel.aisnet.org/amcis2009/179
https://proceedings.neurips.cc/paper/2019/hash/dc6a7e655d7e5840e66733e9ee67cc69-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/dc6a7e655d7e5840e66733e9ee67cc69-Abstract.html


Appendix

A Implementation Details

We list the implementation details of the proposed
models, to support reproduction.

A.1 Model Hyperparameters of CORT
In our implementation of PLMs, we choose the
version “bert-base-uncased” (Devlin et al., 2019),
“roberta-base” (Liu et al., 2019), “xlnet-base-
cased” (Yang et al., 2019) based on Transform-
ers (Wolf et al., 2020) for BERT, RoBERTa and
XLNet models, respectively. In all our experiments,
default parameters are used for BERT, RoBERTa,
XLNet encoder, except batch size, dropout, and
learning rate. Specifically, we set batch size to be
16 instances. Dropout is 0.1 for the representations
of all models except CORT with BERT. CORT with
BERT does not use dropout.

All models are implemented on Pytorch (version
1.11.0), and model parameters are randomly initial-
ized. For the models including PLM Fine-Tuning,
PLM w. Prompt, and CORT based on RoBERTa
and XLNet, AdamW (Loshchilov and Hutter, 2019)
is used as optimizer, and we use 1e− 5, 1e− 5 and
1e− 4 as learning rate for RoBERTa, XLNet, and
BERT, respectively.

During training, the hyperparameters λ, µ of
opinion objective in Equation 9 and ξ of compar-
ative objective in Equation 11 are vital. We use a
greedy method to optimize them on both datasets.
Experiments results show that the optimized λ, µ
and ξ are “0.5, 0.5 and 1.0”, “0.9, 0.1 and 1.0”,
“1.0, 1.0 and 1.0” for RoBERTa, BERT, and XL-
Net, respectively.

A.2 Details of CRF Baseline
For CRF model, we define five features: word,
position, entity, POS tag, word label. Word label
has been described in the paper. Position denotes
the distance between the current word and the first
word in a given sentence. Entity refers to entity,
recognized by StanfordNLP5. POS tag is part-of-
speech tagging. The implementation is based on
CRF++-0.54 6.

5https://stanfordnlp.github.io/
stanfordnlp/index.html

6https://sourceforge.net/projects/
crfpp/files/crfpp/0.54/
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