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Abstract

Joint Information Extraction (JIE) aims to
jointly solve multiple tasks in the Information
Extraction pipeline (e.g., entity mention, event
trigger, relation, and event argument extrac-
tion). Due to their ability to leverage task de-
pendencies and avoid error propagation, JIE
models have presented state-of-the-art perfor-
mance for different IE tasks. However, an is-
sue with current JIE methods is that they only
focus on standard supervised learning setting
where training and test data comes from the
same domain. Cross-domain/domain adapta-
tion learning with training and test data in dif-
ferent domains have not been explored for JIE,
thus hindering the application of this technol-
ogy to different domains in practice. To ad-
dress this issue, our work introduces the first
study to evaluate performance of JIE mod-
els in unsupervised domain adaptation setting.
In addition, we present a novel method to
induce domain-invariant representations for
the tasks in JIE, called Domain Adaptation
for Joint Information Extraction (DA4JIE).
In DA4JIE, we propose an Instance-relational
Domain Adaptation mechanism that seeks to
align representations of task instances in JIE
across domains through a generalized version
of domain-adversarial learning approach. We
further devise a Context-invariant Structure
Learning technique to filter domain-specialized
contextual information from induced represen-
tations to boost performance of JIE models in
new domains. Extensive experiments and anal-
yses demonstrate that DA4JIE can significantly
improve out-of-domain performance for cur-
rent state-of-the-art JIE systems for all IE tasks.

1 Introduction

An information extraction (IE) system extracting
structured information from unstructured text typ-
ically involves four major tasks: event trigger de-
tection (ETD), event argument extraction (EAE),
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Figure 1: Top figures demonstrate the difference between
DANN (a) and IrDA (b). Bottom figures are the relation
graphs following the strict uniform alignment of standard DA
methods (c) and the chain connection of IrDA (d).

entity mention extraction (EME), and relation ex-
traction (RE). Recently, the advance of large-scale
pre-trained language model has made it possible to
replace the classical pipeline approaches (Li et al.,
2013; Chen et al., 2015), which suffer from er-
ror propagation, with a single transformer-based
model performing all four tasks jointly, i.e. Joint
Information Extraction approaches (JIE) (Lin et al.,
2020; Nguyen et al., 2021). While effective in
standard supervised learning scenario, these mod-
ern JIE systems fail to address the practical setting
where training data (i.e., the source) and testing
data (i.e., the target) come from different domains
with different distributions. Such discrepancies
pose a major challenge due to both the intrinsic
variations of linguistics (e.g., lexical and seman-
tic shifts) as well as extrinsic factors such as how
textual datasets are collected and annotated. The
problem is further exacerbated when the models
aim to jointly learn multiple tasks, facing various
kinds of domain shifts simultaneously. For exam-
ple, in a Die event where a Person entity mention is
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a Victim event argument, documents recording this
type of event in medical records may express these
instances in a significantly distinct manner com-
pared to when new anchors report similar tragic
incidents.

To address domain difference for IE, a major
approach involve unsupervised domain adaptation
(UDA) where models leverage additional unlabeled
data in target domain together with labeled training
set from source domain to improve the performance
on target domain. As such, the majority of existing
UDA methods have focused on transfer learning
between source and target domains for a single IE
task (Long et al., 2015; Ganin et al., 2016; Ku-
mar et al., 2018). While recent work also aims to
generalize previous approaches to multi-domains
setting (Dai et al., 2020; Wright and Augenstein,
2020), the scenario where the considered task in-
volves multiple objectives (as in JIE) with different
input distributions remains unexplored. In particu-
lar, classical UDA approaches for IE often rely on
simplification assumption on the factorization of
the joint input-output distribution of an IE task to
categorize and solve a specific domain shift prob-
lem. An example includes covariate shift where the
discrepancy is assumed to be only in the marginal
input distribution whereas predictive dependency
remains unchanged (Kull and Flach, 2014). How-
ever, in JIE, this assumption does not hold and
thus necessitates new domain adaptation methods
to address UDA for JIE.

To this end, our work introduces a new UDA
method for JIE, called DA4JIE. At the core of
DA4JIE is an Instance-relational Domain Adap-
tation (IrDA) module that seeks to simultaneously
align instance representations for all downstream
tasks in JIE in the source and target domains.
Inspired by Graph-relational Domain Adaptation
(GrDA) proposed by (Xu et al., 2022) for hetero-
geneous domain adaptation, we view event trigger
and entity mention instances of each domain as do-
main nodes on a domain-instance relational graph,
whose adjacency matrix controls the relationship
between domain-specific representations (Fig. 1a).
In particular, an edge connecting two instances im-
plies that their representations should be aligned,
which is equivalent to their pairwise relationship
containing no information to identify their domains.
This is achieved by an adversarial learning pro-
cess on pairwise node relationships. Specifically,
a graph discriminator is employed to recover the

domain-instance graph via the adjacency structure.
Conversely, the text encoder for JIE would prevent
the discriminator from doing so. IrDA is a general-
ization of the standard domain-adversarial training
method (Ganin et al., 2016) that enforces strict uni-
form alignment (fully-connect relational graph) as
depicted in Fig. 1c. In contrast, our approach as-
sumes a chain connection across instance nodes
(Fig. 1d) that reflects the true relationship among
instance types, allowing flexible and effective adap-
tation to new domains for JIE.

In addition, to improve task performance, pre-
vious JIE systems have leveraged specialized lin-
guistic structures extracted from input sentences in
a heuristic and direct manner, e.g., using heuristic-
based dependency graphs between instances in
different tasks in JIE (Lin et al., 2020; Veyseh
et al., 2020b; Nguyen et al., 2021). However,
this approach is not suitable for domain adapta-
tion as it further introduces more domain-specific
context-dependency information into the learned
representations. To address this problem, we incor-
porate a novel Context-invariant Structure Learn-
ing module (CiSL) into the instance encoding pro-
cess. CiSL uses graph transformer networks (GTN)
(Yun et al., 2019) to fuse different types of context-
independent graphs into a single context-invariant
graph (CiG) for each input sentence. Here, instance
node features are combined with contextual repre-
sentation to encourage the model to use domain-
invariant information for downstream tasks. In
addition, by viewing each input sentence as a graph
with word-level nodes to induce word represen-
tations, we obtain richer instance representations
for JIE by aggregating word-level representations.
As such, our method also proposes a novel a CiG-
conditioned pooling operation to enhance instance
representations for classification tasks and boost
the overall adaptation performance for JIE.

Finally, we provide extensive evaluation of the
proposed UDA method for JIE on the ACE-05
dataset (Walker et al., 2005). The experimen-
tal results demonstrate the advantages of DA4JIE
that achieves state-of-the-art (SOTA) performance
when being adapted to multiple target domains.

2 Related Work

2.1 Joint Information Extraction

Classical methods for IE manually engineered lin-
guistic features to capture the dependency between
IE tasks, including Integer Linear Programming
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for Global Constraints (Roth and Yih, 2004), Struc-
tured Perceptron (Miwa and Sasaki, 2014; Judea
and Strube, 2016), and Graphical Models (Yu and
Lam, 2010; Yang and Mitchell, 2016). The ad-
vance of deep learning and large-scale language
models (Devlin et al., 2019) has greatly enhanced
the representation ability of modern IE models, en-
abling them to jointly solve multiple tasks via the
shared contextual embeddings. These joint mod-
els focused on different sets of IE tasks such as
EME and RE (Zheng et al., 2017; Fu et al., 2019;
Luan et al., 2019; Veyseh et al., 2020a), and ETD
and EAE (Nguyen et al., 2016; Zhang et al., 2019;
Nguyen and Nguyen, 2019). Recently, some ef-
forts have been made to address the four tasks all
together by introducing specialized structures and
regularizations to model the joint instance distribu-
tion across tasks (Lin et al., 2020; Nguyen et al.,
2021, 2022). Our work continues in their direc-
tion, but in UDA setting which is more difficult but
also much more practical compared to the standard
supervised learning setting.

2.2 Unsupervised Domain Adaptation

The main line of research on UDA approaches the
domain shift problem by learning domain-invariant
representations, which is either achieved by ex-
plicitly reducing the distance between source and
target feature space measured by some distribution
discrepancy metric (Long et al., 2015; Zellinger
et al., 2017), or by adversarial training in which
the feature extractor is trained to fool a domain
classifier, both are jointly optimized to arrive at
an aligned feature space (Ganin et al., 2016). We
focus on applying the latter in transformer-based
model (BERT) for IE tasks. In particular, there has
been several prior works addressing UDA setting
for a singular IE task, including event trigger iden-
tification (Naik and Rosé, 2020), event detection
(Ngo et al., 2021; Trung et al., 2022), and relation
extraction (Fu et al., 2017). However, a method
specifically tackles joint task learning in UDA is
still absent from the literature to the best of our
knowledge. Our IrDA is the first to explicitly take
into account multiple representations of different
tasks when transferring between source and target
domains.

3 Model

3.1 Problem Statement
The JIE problem composes of four tasks EME,
ETD, RE, and EAE. Given an input sentence, a uni-
fied model is used to optimized a linear combina-
tion of each task objective. In particular, EME aims
to detect and classify entity mentions (names, nomi-
als, pronouns) according to a set of predefined (se-
mantic) entity class (e.g., Person). Similarly, ETD
seeks to identify and classify event triggers (verbs
or normalization) that clearly evoke an event in a
given set of event classes (e.g., Attack). Note that
event triggers can involve multiple words. Next,
RE objective is to predict the semantic relationship
between two entity mentions in the sentence. Fi-
nally, in EAE, given an event trigger, the systems
need to predict the roles that each entity mention
plays in the corresponding event. Entity mentions
are thus also called event argument candidates in
this work. Noted that the sets of relations and roles
are pre-determined and include a special class of
None to indicate negative category.

In UDA setting, data comes from two different
domains. For training, we have a labeled source
dataset S consisted of N s samples and an unlabeled
set T of N t samples drawn from target domain.
The goal is to leverage both datasets to optimize
model performance on test data from target domain.
At each iteration, a mini-batch consists of samples
from both S and T is sampled, the former are used
to learn the main downstream tasks using their true
labels, while the latter are employed to impose a
domain-invariant constraint on the extracted fea-
tures.

3.2 JIE Architecture
The following encoding process is applied to data
from both domains, thus we omit the domain index
in notations for brevity. Given an input sentence
w = [w1, w2, . . . , wn] with n words, the model
first identifies span of an instance, which can be
an entity mention or an event trigger, in w and
then compute its representation for downstream
tasks. In particular, following Lin et al. (2020),
two conditional random field (CRF) layers, one
for event triggers and another for event mentions,
take in as input word-level contextual represen-
tation sequence X = [x1,x2, . . . ,xn] (xi ∈ Rh

is obtained by averaging the word-pieces’ hidden
vectors of wi returned by the transformer encoder,
e.g., BERT). The CRFs output the best BIO tag se-
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Figure 2: The overall architecture of our framework DA4JIE. First, input sentences from both source and target domains go
through the same transformer encoder to compute their contextual representations. Concurrently, the CiSL module (pink) extracts
the attention probability matrices at each layer to create attention graphs, using position embeddings as node features. These
graphs are used to augment the dependency graphs, which are then fused across layers by a GTN to create a context-invariant
graph. The node features of which are combined with the contextual representations as input for the instance span detection
task using CRF layers. Next, the instance representations are computed based on the outputted spans conditioned on the
context-invariant graph. Finally, source instances are used to optimize the encoder for the main JIE tasks (blue), while the IrDA
module (green) takes the representations from the corresponding instance types for the nodes in the type-relational graph to
calculate the discriminator loss.

quences (Chiu and Nichols, 2016) to indicate event
trigger and entity mention/event argument spans
(i.e., no label prediction yet) in w, which are then
used to compute their representations Etr and Ear

(each can contain multiple instances) by aggregat-
ing information from words in the corresponding
spans. Finally, separate task-specific feed-forward
networks are used to calculate label scores from
Ear, Etr, (Ear,Ear) (i.e., pairs of entity mention
spans), and (Etr,Ear) (i.e., pairs of entity mentions
and event triggers) in cross-entropy losses for EME,
ETD, RE and EAE respectively. Note that entity
mentions/event arguments and event triggers are
commonly called "instances" for the tasks in JIE.

For UDA, we follow the domain-adversarial
training process in DANN (Ganin et al., 2016). The
same encoder E is used to compute instance repre-
sentations for JIE from input sentences in source
and target domains. The source representations
are then fed into a classification head F for main
task learning. Concurrently, a domain discrimina-
tor D is employed taking as input representations
of unlabeled samples from both domains to pre-
dict their corresponding origins. By pushing E to
both minimize the main task losses and maximally

misdirect D, the resulting representations will be
both discriminative for the tasks at hand and in-
distinguishable to the domain classifier to boost
performance in the target domain.

3.3 Instance-relational Domain Adaptation

Existing domain adaptation methods such as
DANN tend to view all domains equally and ig-
nore any topological structure among different do-
mains to align them all perfectly. Recently, Xu et al.
(2022) propose Graph-relational Domain Adapta-
tion to generalize DANN to multi-domains adapta-
tion setting by introducing a domain graph that cap-
tures domain heterogeneity. Each node of the graph
represents a domain and a relation between two do-
mains can be captured by an edge. By tailoring the
adaptation of domains to a domain graph that re-
flects the true domain relationships, GrDA relaxes
the uniform alignment to adapt more flexibly across
domains. We adopt GrDA to solve the problem of
UDA for multiple tasks in JIE by treating each of
the task (i.e., EME and ETD) in two domains as
a node in the type-relational graph Gr = (Vr,Ar)
(i.e., type here refers to a combination of a task
and a domain). Specifically, the vertex set Vr con-
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sists of four nodes Es
ar, Es

tr, Et
ar, and Et

tr, and the
adjacency matrix Ar ∈ R4×4 dictates which pair
of types should be aligned by setting the value of
corresponding position to 1. We assume a chain
connection in the respective mentioned order for
Gr (i.e., in Fig. 1d), on which detailed analysis will
be provided later to justify the assumption. IrDA
performs a minimax optimization similar to that of
DANN with the following objective:

min
E,F

max
D

Ls
c(E,F )− λLs−t

d (Dg, E),

where λ is a balancing term and Ls
c is the combined

loss for label prediction for JIE tasks in source do-
main, which depends on the encoder E and classi-
fication head F . Different from DANN where the
discriminator predicts the domain identity given
representations in the domains (Fig. 1a), the dis-
criminator objective Ls−t

d aims to reconstruct the
type-relational graph Gr given the encoding of data
from different types (Fig. 1b). In particular, the
graph discriminator Dg computes the pairwise rela-
tionship âij between two instance representations
ei and ej (described in next section) for types i and
j: âij = eTi ej , which is then used as input to the
discriminator loss:

Ls−t
d =

∑

i,j

l(âij),

l(âij) = −aijlog σ(âij)− (1− aij)log (1− σ(âij)),

where aij is the value of the edge between
type i and j from the adjacency matrix Ar.
Intuitively, Dg aims to recover the relation graph
Gr via the adjacency structure Ar, while E seeks
to prevent it from doing so. At equilibrium,
the representations of two connected types will
provide no information regarding their connection
in Ar. In other words, these types are aligned
as we cannot infer their origins based on their
representations.

3.4 Context-invariant Structure Learning
One problem with domain-adversarial training
based methods in general is that they are sensi-
tive to the amount of discrepancy between source
and target domains. In particular, DANN’s bound
on target performance (David et al., 2010a) also
depends on the loss of the ideal model to perform
the main task on both domains. Accordingly, as
the ideal model’s loss is often assumed to be neg-
ligible for a single prediction task, it is ignored in
the modeling process for DANN. However, in our

setting with JIE, this simplification might be sub-
optimal as the combination of multiple tasks might
increase the ideal model’s loss, thus necessitating
approaches to minimize this component for JIE in
DA. In fact, if this component is not constrained,
DANN will have little alignment effect for the rep-
resentations while also worsening joint error term
(David et al., 2010b; Wu et al., 2019). To this end,
our proposal to minimize the ideal model’s loss is
to learn more transferable representations to facil-
itate its prediction in different domains. As such,
we introduce a Context-invariant Structure Learn-
ing (CiSL) mechanism that aim to induce domain-
general structures for input texts to better support
transferable representation learning for JIE.

CiSL first creates domain-independent structure
by combining linguistic and attention graphs ex-
tracted from the input sentence. For linguistic
graph, we employ dependency trees that prior work
found to be useful for IE tasks (Veyseh et al.,
2020b). In particular, a graph Gd = (Vd,Ad) is
constructed for each sentence based on the out-
put of an off-the-shelf syntactic dependency parser,
where Vd is a set of word-level nodes whose fea-
tures are obtained by embedding the dependency
relations between a word and its governor (embed-
dings are learnable parameters). The adjacency
matrix Ad is a binary matrix whose cell (i, j) is
only set to 1 if wj is the governor of wi in the de-
pendency tree. We create augmented versions of
Gd to reduce its sparsity and increase transferabil-
ity, by merging it with attention graphs extracted
from the output of each layer of the transformer
encoder. Specifically, define an attention graph at
layer l as Gl

a = (Vl
a,Al

a), which composes of the
transformer’s position embeddings as node features
for word-level nodes in Vl

a and attention probabil-
ity matrix as adjacency matrix Al

a (1 ≤ l ≤ L,
where L is number of encoder’s layers). The re-
sulting attention-augmented dependency graphs
Gl

da = (Vl
da,Al

da) are computed as follow:

Al
da = αl

aAl
a + αl

dAd ,

Zl
da = βl

aZl
a + βl

dZd ,

where {αl
a, α

l
d, β

l
a, β

l
d}Ll=1 are learnable weights,

and the Zs are the node representations of cor-
responding graphs. These graphs are context-
independent in the sense that no word embedding
information is explicitly included in their node fea-
tures, whereas their adjacency matrices reflex re-
lation among words that are universal across do-
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mains in natural language. Finally, CiSL employs
a Graph Transformer Network (Yun et al., 2019) to
fuse the attention-augmented dependency graphs
across all layers into a single context-invariant
graph Gci = (Vci,Aci) with Aci ∈ Rn×n and node
features Zci ∈ Rn×h.

To incorporate Gci into the instance represen-
tation learning process, we add the node features
Zci to the contextual representation X, resulting in:
Xci = X + Zci as input to the CRF layers. This
encourages downstream tasks to leverage more
context-independent information from Zci instead
of just relying on the domain-specific features X.

Additionally, by viewing the input sentence as
a graph with word-level nodes can be pooled ob-
tain instance-level nodes, we introduce a CiG-
conditioned pooling operation to create final in-
stance representations for classification tasks. Each
of the BIO tag sequence outputted by the CRF lay-
ers can be reformulated into a binary assignment
matrix Sbase ∈ Rn×m, where m ≤ n is the number
of spans detected, and Sbaseij = 1 only if word i
lies inside span j. Prior JIE systems simply com-
pute each instance representation by summing its
span’s words: ej =

∑
i; wi∈spanj

xi, thus solely
relying on the text used to express the instance’s
meaning in the specific context. Accordingly, the
previous equation (for each instance type) can also
be formulated in matrix form as follow:

E = STXci , where S = Sbase.

To this end, instead of fixing the assignment matrix,
we propose to learn S by conditioning its on the
context-invariant graph Gci as follow:

Sci = γ ⊙ Sbase + µ ,

where (γ, µ) = GCN(Zci,Aci) ∈ Rn×2m are the
outputs of a graph convolution network (Kipf and
Welling, 2017; Nguyen and Grishman, 2018) tak-
ing in Gci as input. Finally, the instance represen-
tation for label prediction is computed via:

E = ST
ciXci = (γ ⊙ Sbase)

TXci + µTXci ,

which is able to aggregate information over all
words in the sentence through µ, and conversely
suppress the role of the domain-related span’s
words through γ.

4 Experiments

4.1 Dataset, Settings, and Baselines
ACE-05 Following the prior works on JIE (Lin
et al., 2020; Nguyen et al., 2021), we evaluate

Out-of-domain
in bc cts wl un aDom

BERT Trigger-I 78.4 71.4 65.2 62.9 66.3 66.4
Role-I 64.1 59.5 49.0 46.3 46.9 50.4
Entity 88.9 80.8 84.0 85.5 80.9 82.8
Relation-C 64.3 61.7 58.0 52.5 48.0 55.0
Trigger-C 76.3 68.7 62.4 56.3 64.5 63.0
Role-C 60.8 55.4 47.9 42.9 43.0 47.3
aTask 72.6 66.6 63.1 59.3 59.1 62.0

OneIE Trigger-I 79.1 70.3 68.2 63.2 64.6 66.6
Role-I 66.2 60.1 51.2 50.6 46.7 52.1
Entity 89.1 79.5 86.9 85.5 81.5 83.4
Relation-C 65.6 63.1 56.7 54.7 50.0 56.1
Trigger-C 77.2 67.5 64.6 56.8 63.4 63.1
Role-C 62.2 55.7 49.9 47.2 42.6 48.9
aTask 73.5 66.5 64.6 61.1 59.4 62.9

FourIE Trigger-I 79.1 70.7 66.0 65.2 64.3 66.6
Role-I 66.6 60.0 52.6 48.9 49.1 52.6
Entity 89.1 80.3 84.4 85.4 81.9 83.0
Relation-C 66.0 63.7 56.6 53.1 52.7 56.5
Trigger-C 76.9 68.5 63.2 56.4 62.4 62.6
Role-C 61.8 55.4 51.8 44.5 43.6 48.8
aTask 73.5 66.9 64.0 59.8 60.1 62.7

DA4JIE Trigger-I 79.0 72.2 66.0 64.4 66.5 67.3
Role-I 67.3 59.0 54.6 49.8 51.5 53.7
Entity 89.2 82.6 86.0 85.2 83.0 84.2
Relation-C 68.8 65.3 58.7 57.7 54.3 59.0
Trigger-C 76.5 68.7 63.0 57.4 64.1 63.3
Role-C 62.5 55.6 51.9 45.3 44.4 49.3
aTask 74.2 68.0 65.0 61.4 61.4 64.0

Table 1: F1 scores of the models on ACE-05 test data for in-
domain (in) and out-of-domain (bc, cts, wl, un) adaptation
settings. The suffixes “-I” and “-C” correspond to the identifi-
cation performance (only concerning the offset correctness)
and identification+classification performance (evaluating both
offsets and classes). aTask is the average score over the four
classification tasks, and aDom is the average out-of-domain
score for each task.

DA4JIE on the ACE-05 dataset (Walker et al.,
2005) which provides annotations in 599 docu-
ments for entity mentions, event triggers, relations,
and argument roles. In particular, there are 33 event
classes, 7 entity classes, 6 relation classes, and 22
argument roles. ACE-05 was collected from 6 dif-
ferent domains: bn, nw, bc, cts, wl, and un.
For UDA setting, we follow Ngo et al. (2021) and
gather data from two closely related domains, bn
and nw, to create a sizable source domain dataset
and refer to is it as in domain. We use 80% of its
documents for training whilst the rest are used for
development. For out-of-domain (OOD) setting,
each of the other domains is considered a target
domain of a single adaptation scenario, where 20%
of its documents are reserved for unlabeled train-
ing target data and the remainders are utilized as
the test dataset. We use the same data processing
scripts as in (Lin et al., 2020; Nguyen et al., 2021)
for consistency.

Baselines We compare DA4JIE with the follow-
ing current SOTA JIE systems: (i) BERT (Devlin
et al., 2019) uses a shared Transformer encoder to
represent the instances for ETD, EME, EAE, and
RE and performs classification for the instances
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based on the task-specific label distributions. (ii)
OneIE (Lin et al., 2020) is same as BERT, but
leverages set of predefined global features to cap-
ture the cross-subtask and cross-instance interac-
tions. (iii) FourIE (Nguyen et al., 2021) creates
a graph structure of contextual representations to
explicitly capture the interactions between related
instances of the four IE tasks in a sentence, while
also employing a heuristic dependency between the
task instances in a dependency-based regulariza-
tion to further boost the performance of the mod-
els. OneIE and FourIE are current state-of-the-art
models for JIE.

Implementation Details and Hyper-parameters
All models are implemented in Pytorch. We lever-
age the pre-trained BERT-large-cased models and
checkpoints from Huggingface repository (Wolf
et al., 2020). To achieve a fair comparison with the
baselines, we follow the same evaluation script and
correctness criteria for entity mentions, event trig-
gers, relations, and arguments as in prior work (Lin
et al., 2020). To tune each model over in-domain
development data, we use Adam optimizer with
learning rates chosen from [5e-5, 1e-4, 5e-4, 1e-3,
5e-3], mini-batch size from [16, 32, 64] of which
50% are unlabeled target data. We use GCNs with
2 or 3 layers and GTN with number of channels in
[2, 4, 8]. All of the downstream heads are imple-
mented as 2 or 3 layers feed-forward networks with
hidden vectors of size [100, 50] or [200, 100, 50],
respectively. The IrDA balancing term λ is picked
from the range [0.1, 0.5, 1, 5, 10]. Every model
is trained for 50 epochs for each target domain,
from which the model with the best average task
F1 score on the in-domain development set is then
evaluated OOD on the test set of the corresponding
target domain. Finally, our reported results are av-
erage of three runs using the best hyper-parameter
configuration with different random seeds. The
selected hyper-parameters for our model from the
fine-tuning process include: 3 layers for the GCNs
and feed-forward classification heads, GTN with
4 channels, 1e-5 for the learning rate with Adam
optimizer, 16 for the batch size, and 1 for the bal-
ancing term λ. In this work, we use a single Tesla
V100-SXM2 GPU with 32GB memory for all ex-
periments.

4.2 Main Results

Table 1 showcases the UDA results in F1 scores
for all tasks in JIE. We observe that the latest

systems for JIE such as OneIE and FourIE pro-
vide marginal improvement to the standard BERT
model. In particular, while the specialized architec-
tures of these models are able to boost in-domain
performance as expected, they are not tailored to
UDA settings where the focus is on extracting trans-
ferable and domain-invariant features. As a result,
their effectiveness in out-of-domain (OOD) settings
over BERT is situational (OneIE is good for cts
and wl domains, while FourIE is better at adapt-
ing to un domains). In contrast, DA4JIE manages
to achieve the best adaptation performance in av-
erage across all considered domains. Our model
is 2 points higher in F1 scores than BERT’s over-
all, surpassing the current SOTA methods by over
1 point on average. Notably, this improvement is
the result of the simultaneous increases in the aver-
age performance of all downstream tasks, which is
achieved by combining IrDA and CiSL modules as
shown in the following section.

bc cts wl un aDom
DA4JIE Trigger-I 72.2 66.0 64.4 66.5 67.3

Role-I 59.0 54.6 49.8 51.5 53.7
Entity 82.6 86.0 85.2 83.0 84.2
Relation-C 65.3 58.7 57.7 54.3 59.0
Trigger-C 68.7 63.0 57.4 64.1 63.3
Role-C 55.6 51.9 45.3 44.4 49.3
aTask 68.0 65.0 61.4 61.4 64.0
Trigger-I 71.6 65.9 64.1 64.7 66.6DA4JIE

-CiSL Role-I 60.1 52.9 49.5 47.9 52.6
Entity 82.1 74.4 82.9 82.0 80.3
Relation-C 63.3 54.8 54.9 53.1 56.5
Trigger-C 69.3 63.8 56.3 62.9 63.1
Role-C 56.0 51.7 44.1 43.4 48.8
aTask 67.7 61.2 59.5 60.3 62.2
Trigger-I 66.4 64.8 64.9 66.9 66.9DA4JIE

-IrDA Role-I 52.5 49.8 47.1 52.4 52.4
Entity 87.2 84.6 81.7 83.9 83.9
Relation-C 55.3 52.9 53.3 56.1 56.1
Trigger-C 63.4 57.7 63.5 63.3 63.3
Role-C 51.3 46.0 42.0 48.7 48.7
aTask 67.2 64.3 60.3 60.1 63.0
Trigger-I 71.4 65.2 62.9 66.3 66.4
Role-I 59.5 49.0 46.3 46.9 50.4

DA4JIE
-IrDA
-CiSL Entity 80.8 84.0 85.5 80.9 82.8

Relation-C 61.7 58.0 52.5 48.0 55.0
Trigger-C 68.7 62.4 56.3 64.5 63.0
Role-C 55.4 47.9 42.9 43.0 47.3
aTask 66.6 63.1 59.3 59.1 62.0

Table 2: Performance (F1 scores) for ablation study on the
ACE-05 test datasets for different domains.

4.3 Ablation study

We conduct an ablation study to validate the ef-
fectiveness of each of our main components by
investigating the following variations of our model
by removing CiSL, IrDA, and both respectively.
The results is shown in Table 2, where we ob-
serve that DA4JIE-IrDA noticeably boosts per-
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formances for all domains compared to BERT
(DA4JIE-IrDA-CiSL), while DA4JIE-CiSL
only has positive impact when adapting to bc and
un domains, providing little to no improvement
on average. This is the result of CiSL making the
instance representations more transferable at low-
level, thus ensuring the necessary condition for the
domain-adversarial training in IrDA to reach equi-
librium. By combining both components, DA4JIE
significantly outperforms other variants, especially
when transferring to target domains that are highly
dissimilar to source domains (i.e., wl and un).

bc cts wl un aDom
None 66.6 63.1 59.3 59.1 62.0
Full 67.1 63.7 60.0 60.1 62.7
Pair-Task 67.5 63.2 60.0 61.1 62.9
Pair-Dom 67.0 62.7 59.1 59.5 62.1
Chain 68.0 65.0 61.4 61.4 64.0

Table 3: Average task scores for domain-adversarial learning
analysis. Performance (F1 scores) on the ACE-05 test datasets
for different domains.

aId aCls
CiSL 60.5 64.0
CiSL-Pool 59.7 63.2
CiSL-Node 59.4 62.3
CiSL-Node-Pool 58.0 62.0
CiSL-Dep 59.8 62.8
CiSL-Attn 59.2 62.5

Table 4: Average identification and classification scores for
CiSL analysis. Performance (F1 scores) on the ACE-05 test
datasets for different domains. aId and aCls are the average
scores across all new domains, of all identification and classi-
fication tasks, respectively.

5 Analysis

5.1 Instance-relational Graph Analysis
We investigate the effect of IrDA with different pat-
terns of relationships in the type-relational graph
compared to our chain relation in DA4JIE. In Ta-
ble 3, Full refers to the standard DANN approach
where all types (i.e., task+domain) are uniformly
aligned (Fig. 1c). Pair-Task and Pair-Dom are
models with only a pair of edges in relation graph,
the former connects the same task across domains
(Es

ar − Et
ar and Es

tr − Et
tr), while the latter has

tasks in the same domain linked (Es
tr − Es

ar and
Et
tr − Et

ar). Finally, None means no adaptation is
used and Chain corresponds to our assumption in
DA4JIE. The results show that Full improves over
None, but underperforms when compared to Pair-
Task in most new domains. This indicates that the

alignment imposed by Full is overly strict and not
optimal when adapting multiple tasks together. In
addition, appropriate connections are required for
effective adaptation, as shown by the low scores of
Pair-Dom, which basically is equivalent to domain-
conditioning the representations without adapting
between source and target domains.

We argue that Chain is robust and substan-
tially outperforms other models across all domains
because it reflects the true relationship among
the tasks and domains (types) for JIE. In partic-
ular, event triggers are restricted and closely re-
lated to the predefined event classes which are
shared across domains, therefore their represen-
tations should be aligned when adapting to new
domains. Conversely, event arguments (i.e., entity
mentions) are more diverse and context-dependent,
thus may significantly differ across domains and
should not be directly connected in the relation
graph. They are, however, implicitly connected in
Chain through the event trigger nodes, which im-
plies their representations are "weakly" aligned, as
shown by Xu et al. (2022) where GrDA being able
to enforce different levels of alignment. Lastly, the
pair of trigger-event edges in source and target do-
mains also equate to aligning the representations of
trigger-event relation and help transfer model’s role
classification ability from source to target domain.

5.2 Context-invariant Structure Learning

To determine the role of different components
in CiSL module, we analyze their contributions
to DA4JIE performance at different levels of
downstream tasks. In Table 4, CiSL-Dep and
CiSL-Attn are the models without leveraging de-
pendency graph and attention graph respectively.
CiSL-Pool just uses the base assignment matrix
for pooling, and CiSL-Node is the case where
node features of the context-invariant graph are
removed from the inputs for the CRF layers. Fi-
nally, we completely disable the CiSL module in
CiSL-Node-Pool. From the results, it is clear
that both node features and conditional pooling are
responsible for the significant improvement of the
final model. Particularly, adding the node features
is more effective as it also helps boost the perfor-
mance of identification tasks by making the repre-
sentations more transferable from source to target
domains at low-level. Furthermore, the last two
rows in the table indicate that combining different
kinds of structures has a positive impact, especially
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when they contain universal linguistic information
that is general across domains.

6 Conclusion

We present DA4JIE, a novel framework that jointly
solves four IE tasks (EME, ETD, RE, and EAE)
in UDA setting. In particular, DA4JIE employs
Instance-relational Domain Adaptation method that
generalizes the standard domain-adversarial train-
ing approach to simultaneously align high-level
type representations of all downstream tasks be-
tween domains. Additionally, we incorporate
a Context-invariant Graph learning module into
the encoder to encourage the usage of domain-
independent information at low-level, thus extract-
ing more transferable features to improve model’s
performance in new domains. The extensive ex-
periments demonstrate the effectiveness of the pro-
posed framework. In the future, we plan to extend
our approach to more general settings such as multi-
source domain adaptation with more IE subtasks
such as entity/event coreference resolution.

Limitations

We present the first work to tackle the joint infor-
mation extraction problem in unsupervised domain
adaptation setting. Our framework DA4JIE com-
bines Instance-relations Domain Adaptaion method
with Context-invariant Structure Learning mecha-
nism, outperforming state-of-the-art systems on
ACE-05 consistently across multiple new domains.
Despite positive empirical results, there are still
several limitations that can be addressed in future
works. First, the current model assumes a chain
connection for the type-relational graph in IrDA.
While intuitive and effective for the considered set-
ting in this work, it is only designed manually. A
method that explicitly learns to find the optimal
connections for the relation graph might be able to
produce better performance for our problem. An-
other issue is the limited kinds of linguistic struc-
tures that CiSL uses to create the context-invariant
graph. Prior works have successfully improved
IE tasks using semantic role labeling (Christensen
et al., 2010) and abstract meaning representation
(Zhang and Ji, 2021). Integrating structured graphs
extracted from these methods is straightforward for
DA4JIE and might improve model performance
further.
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