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Abstract

The task of context-dependent text-to-SQL
aims to convert multi-turn user utterances to
formal SQL queries. This is a challenging task
due to both the scarcity of training data from
which to learn complex contextual dependen-
cies and to generalize to unseen databases. In
this paper we explore augmenting the training
datasets using self-play, which leverages con-
textual information to synthesize new interac-
tions to adapt the model to new databases. We
first design a SQL-to-text model conditioned
on a sampled goal query, which represents a
user’s intent, that then converses with a text-
to-SQL semantic parser to generate new inter-
actions. We then filter the synthesized inter-
actions and retrain the models with the aug-
mented data. We find that self-play improves
the accuracy of a strong baseline on SParC and
CoSQL, two widely used cross-domain text-to-
SQL datasets. Our analysis shows that self-play
simulates various conversational thematic re-
lations, enhances cross-domain generalization
and improves beam-search.1

1 Introduction

Multi-turn text-to-SQL translation is a powerful se-
mantic parsing paradigm that converts natural lan-
guage user utterances into executable SQL queries
in a conversational environment. Compared to reg-
ular text-to-SQL tasks such as Spider (Yu et al.,
2018b) and GeoQuery (Zelle and Mooney, 1996),
conversational text-to-SQL requires interpreting
coreference and omission phenomena that fre-
quently appear in human conversations. To be
effective, text-to-SQL models must uncover com-
plex contextual dependencies while grounding user
utterances in task specific database schemas.

Numerous architectures and pretraining methods
have been proposed for tackling context-dependent

∗ Equal Contribution
1Our code is available at: https://github.com/

leuchine/self_play_picard

text-to-SQL (Suhr et al., 2018; Zhang et al., 2019;
Hui et al., 2021; Scholak et al., 2021; Yu et al.,
2021; Xie et al., 2022). However, the size of the
datasets used has been limited due to the high
cost of annotating multi-turn dialogue and SQL
pairs, which often requires trained experts. Exist-
ing multi-turn text-to-SQL datasets, such as SParC
(Yu et al., 2019b) and CoSQL (Yu et al., 2019a),
require text-to-SQL parsers to generalize to unseen
databases at test time, but doing so is difficult with
limited training context.

In this paper we propose the use of self-play to
augment multi-turn text-to-SQL datasets in order to
achieve more robust generalization. Self-play simu-
lates interactions between multiple artificial agents
in order to generate a training signal in addition to
supervised data. It has been successfully applied
in a wide range of tasks, e.g. board games (Silver
et al., 2016, 2018) and multiplayer battle games
(Vinyals et al., 2019; Berner et al., 2019). It has
also been applied in dialogue simulations, during
which a dialogue model converses with a user sim-
ulator to generate synthetic dialogues (Schatzmann
et al., 2006; Gür et al., 2018; Tseng et al., 2021). In
our work, we extend self-play to semantic parsing.

Although self-play has been adopted in task-
oriented dialogue, the need to pre-define a do-
main specific ontology of slot-value pairs (e.g. the
slot value “price=expensive” for a restaurant book-
ing) (Henderson et al., 2014; Wen et al., 2016;
Budzianowski et al., 2018) prevents self-play from
simulating interactions in a new domain. Adding
a new domain for task-oriented dialogue is diffi-
cult and labor-intensive. On the other hand, text-
to-SQL tasks (Yu et al., 2018b, 2019b,a) use a
domain-independent formalism, i.e. SQL queries.
We demonstrate that self-play is well-suited to
simulating interactions in a new domain given a
database schema, improving cross-domain general-
ization.

We use PICARD (Scholak et al., 2021) as the
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SELECT * FROM AIRLINES

SELECT * FROM AIRLINES
WHERE Airline  = 
"JetBlue Airways"

SELECT Country FROM
AIRLINES WHERE Airline 
=  "JetBlue Airways"

User: What are all the
airlines?

User: Of these, which is
Jetblue Airways?

User: What is the country
corresponding to it?

  Airlines : id | airline | abbreviation ... 

  Airports : city | airport_code | airport_name  ... 
  ...  
  Flights : airline | flight_no | source_airport ... 

Database
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Input:      current utterance      |       database       |      previous utterances     
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 Output:    the next SQL 

What are all the
airlines?

SELECT * FROM AIRLINES WHERE Airline  =  "JetBlue Airways"

 Output:    the next utterance 

What is the country corresponding to it?

Input:      user goal      |       previous utterances       |      last SQL query     |       database

SELECT Country
FROM AIRLINES
WHERE Airline =
"JetBlue Airways"  

Of these, which is Jetblue
Airways? What are all the
airlines?

SELECT * FROM
AIRLINES WHERE
Airline = "JetBlue

flight_2 | airlines : id,
airline,... | airports:

Figure 1: Multi-turn text-to-SQL with self-play. We transform an interaction from SParC on the left to seq2seq
formats (top: text-to-SQL, bottom: SQL-to-text). User utterances, SQL queries, databases, and user goals are
concatenated with a “ | ” symbol and shown in green, blue, yellow, and purple respectively. We use self-play
to generate synthetic interactions. The synthetic interactions are filtered and used to retrain the text-to-SQL and
SQL-to-text models.

base of our text-to-SQL model. When generating a
new interaction, we first sample a SQL query with
Zhong et al. (2021) as the goal query and condi-
tion the SQL-to-text model on this sampled SQL.
The text-to-SQL model converses with the SQL-to-
text model to simulate a new interaction. We filter
out the interactions that are not grounded to the
sampled goals and employ self-training (Yarowsky,
1995; Zoph et al., 2020) to retrain the text-to-SQL
model and the SQL-to-text model. We conduct
extensive experiments on SParC and CoSQL. Our
main findings are:

• Self-play helps the text-to-SQL model learn
various conversational thematic relations
(§5.3) and improves cross-domain generaliza-
tion (§5.1).

• Self-play improves the performance on the
majority of SQL types. Models after self-
play perform particularly well on queries of
medium difficulty (§5.1).

• Self-play improves beam search. Models after
self-play are less sensitive to the beam size
and can perform well with even small beam
sizes (§5.2).

2 Preliminary

In this section, we formally define the multi-
turn text-to-SQL task and introduce the PICARD

(Scholak et al., 2021) model, which we use as our
baseline. PICARD obtains state-of-the-art results
on several text-to-SQL tasks.

2.1 Task Definition
In context-dependent text-to-SQL tasks, we are
given interactions between a user and a system.
Each interaction spans multiple turns. The user
ends the interaction when the query returns the
required information from the database. Formally,
at each turn t (where 1 ≤ t ≤ T ), multi-turn text-
to-SQL produces a valid and executable SQL query
Qt given a database D, a current user utterance Ut,
and a dialogue context Ct (which is usually the
previous user utterances U<t):

p(Qt | Ut, Ct,D). (1)

2.2 Baseline: PICARD
We use PICARD (Scholak et al., 2021) as our
baseline conditional model for Equation 1. PI-
CARD serializes the database schema D into a
sequence following Lin et al. (2020). An example
of the input and output format is shown in Figure
1. PICARD finetunes T5 (Raffel et al., 2019), a
sequence-to-sequence transformer, with input and
output sequences. PICARD proposes an incremen-
tal parsing method for constrained decoding during
beam search. Specifically, it rejects inadmissible
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tokens at each beam search step subject to pars-
ing rules that encode lexical and grammatical con-
straints. Only the beam hypotheses that pass all
the constraint checks are kept. PICARD also lever-
ages SQL schema information, such as the column
names of each table, to impose checks on the valid-
ity of the generated SQL. PICARD greatly reduces
the likelihood of decoding invalid SQL queries.

3 Method

Here we introduce how we use self-play for data
augmentation. We first design a SQL-to-text model
(§3.1). Next, we describe how to use self-play to
generate synthetic interactions (§3.2). Finally, we
explain how we incorporate the generated data for
self-training (§3.3).

3.1 The SQL-to-Text Model
We design a user simulator, which is a SQL-to-text
model, to converse with the text-to-SQL model
to generate synthetic interactions. Specifically, at
each turn t we would like the user simulator to pro-
duce a meaningful question that would naturally
be asked by a human user. In each interaction, a
user has a goal to achieve. We explicitly condition
the SQL-to-text model on a user goal, G, to en-
courage the user simulator to ask questions that are
grounded to this goal. Formally, the SQL-to-text
model calculates the following conditional at each
turn:

p(Ut | Qt−1, Ct,G,D), (2)

where the context Ct contains the previous user ut-
terances U<t. During training, G is the SQL query
of the final turn T , i.e. QT . During inference we
adopt Zhong et al. (2021) to sample a new goal
query as shown in §3.2. We employ the seq2seq
approach and parameterize the SQL-to-text model
(Eq. 2) with T5. We concatenate the user goal G,
the last SQL query Qt−1, the previous user utter-
ances U<t, and the serialized schema D to predict
the next user utterance Ut. For example, one input
would be: “user goal | previous utterances | last
SQL query | serialized database”. Its target label is
the correct user utterance for the next turn. We pad
the last utterance with a special stop-of-interaction
symbol. In SQL-to-text, there could be multiple
reasonable questions to ask for the next turn, i.e.
a one-to-many relation. A well-trained SQL-to-
text model can generate new questions, thereby
increasing the diversity of user dialogue flows in
the dataset and improving generalization.

Algorithm 2: Self-training.
Input :Gold interactions I, # iteration k for

synthetic data generation, threashold w.
Output :A text-to-SQL model and a SQL-to-text

model.
Pretrain a text-to-SQL model p(Qt|Ut, Ct,D) and a

SQL-to-text model p(Ut|Qt−1, Ct,G,D) on I.
I′ = ∅
for i in (1, ..., k) do

Sample a goal query G.
Generate a synthetic interaction IS by self-play

between text-to-SQL and SQL-to-text.
Calculate score(QT ,G) on IS .
if score(QT ,G) > w then

Add IS to I′

Retrain p(Qt|Ut, Ct,D) and p(Ut|Qt−1, Ct,G,D)
on I ∪ I′.

return the retrained text-to-SQL model and the
SQL-to-text model.

3.2 Self-Play

We pretrain both the text-to-SQL and SQL-to-text
models on the gold training data by minimizing the
negative log likelihood:

L = −
N∑

i=1

V∑

j=1

log p(yij | yi1, yi2, . . . , yij−1), (3)

where N is the number of training examples, V is
the sequence length, and each yij is a token in the
reference sequence. With the models pretrained
on the gold dialogues, we can generate synthetic
interactions using self-play. First, we need to spec-
ify a SQL query as the eventual goal G of the in-
teraction. We adopt the query sampling method
proposed in Zhong et al. (2021) for synthesizing
a goal G. Zhong et al. (2021) first builds and sam-
ples coarse SQL templates with the SQLs in the
training set by replacing the column and value men-
tions in the queries with typed slots. For example,
SELECT T1.id, T2.name is converted to the tem-
plate SELECT key1, text1. To adapt the models
to an unseen environment, they sample an unseen
database and fill in the typed slots with columns and
values from the sampled database to form a new
SQL query. We follow this approach to synthesize
goals in new domains for cross-domain generaliza-
tion. The complete sampling procedure is given in
Appendix A.1. We concatenate the sampled goal
G with an empty context and the serialized schema
as shown in Eq. 2 and feed it into the SQL-to-text
model to produce the first user utterance. Then,
the text-to-SQL model and SQL-to-text model can
continue the interaction with Eq. 1 and Eq. 2 until
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the end. A synthetic interaction ends whenever the
SQL-to-text model decodes the stop-of-interaction
symbol.

Filtering Synthetic conversations generated by
self-play may diverge from the sampled goals. To
filter these low-quality conversations, we compare
the generated SQL query QT from the last turn T
with the sampled goal G (see §3.2) using a sim-
ilarity score score(QT ,G). We follow Yu et al.
(2018b) and decompose the SQL queries QT and
G into SQL substructures QTs ,Gs (e.g. select,
where, group_by, order_by statements) and
calculate the accuracy on each substructure. We let
score(QT ,G) be the average of the accuracy over
all the substructures. We keep a synthetic conver-
sation if score(QT ,G) is larger than a threshold
value w. A high score means that the synthetic
conversation is grounded to the sampled goal.

3.3 Self-Training
We re-train a new text-to-SQL model and a new
SQL-to-text model with both the gold training data
and the filtered synthetic interactions. Algorithm 2
shows the overall procedures. The complete self-
play and self-training steps are shown in Figure 1.
Our method is an instance of self-training as the
models are re-trained with their own outputs. To re-
train the text-to-SQL and SQL-to-text models, we
can either combine the filtered synthetic data with
gold interactions, or pretrain on the synthetic inter-
actions before fine-tuning on the gold interactions.
We employ the second approach as we observe that
the second approach performs slightly better than
the first one.

4 Datasets and Main Results

In this section, we evaluate the performance of self-
play on cross-domain multi-turn semantic parsing.
We first introduce the datasets (§4.1), then detail
the evaluation metrics (§4.2), and finally we show
the main results (§4.3).

4.1 Datasets
We evaluate our method on two large-scale bench-
mark datasets, SParC (Yu et al., 2019b) and CoSQL
(Yu et al., 2019a). Table 1 summarises the statis-
tics of the two datasets. Following PICARD, we
additionally pretrain the text-to-SQL model on a
single-turn text-to-SQL dataset Spider (Yu et al.,
2018b). All these datasets require generalization
to new domains as they contain different databases

for training, development, and testing, respectively,
to evaluate the cross-domain performance. We dis-
cuss SParC and CoSQL in detail.

SParC SParC is a multi-turn text-to-SQL dataset
that spans 200 databases in which the tables cover
138 different domains. Each question in an interac-
tion belongs to one of the four thematic relations:
refinement, theme-entity, theme-property, and an-
swer refinement (Bertomeu et al., 2006). For exam-
ple, given a question “Which major has the fewest
students?", the next query can be an “refinement”
query, “What is the most popular one?", which
asks for the same entity as the previous question
but with a different constraint.

CoSQL CoSQL is the dialogue version of
SParC. In CoSQL, besides a SQL query, the sys-
tem also generates a natural language response.
It is collected with the Wizard-of-Oz setting
(Budzianowski et al., 2018). The dataset is used
for three tasks including state-tracking, user act
prediction, and response generation. We use this
dataset for state-tracking, where the goal is to map
user utterances into a SQL query at each turn.

4.2 Settings and Evaluation Metrics
Following Yu et al. (2018b), we measure the per-
formance with question match (QM) and interac-
tion match (IM), both of which are based on the
exact set match accuracy. The exact set match
is computed by decomposing the predicted SQLs
into clauses such as SELECT, WHERE, GROUP BY
and calculating the set matching score on each.
QM is 1 if the exact set match for a question
in an interaction is 1. IM is 1 if the exact set
matches for all questions in an interaction are 1.
The number of the self-play generated training
data for SParC (CoSQL) before filtering is 100,000
(100,000) and 49,623 (48,291) after filtering. Ap-
pendix A.2 shows implementation details of our
experiments.

4.3 Main Results
We report the main results in Table 2. We observe
that the configuration “w/ PICARD w/ self-play”
achieves the best results on both datasets (measured
by QM and IM). This demonstrates the benefit of
self-play. The improvement brought by self-play
is more salient on SParC than on CoSQL, while
T5-Large w/ PICARD w/ self-play outperforms
the vanilla T5-3B reported by Scholak et al. (2021).
Therefore, we conclude that self-play is an effective
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Dataset System Response # Dialogues #Turns # Databases # Domains # Tables Avg. Q len Vocab
SParC ✗ 4,298 12,726 200 138 1,020 8.1 3,794
CoSQL ✓ 3,007 15,598 200 138 1,020 11.2 9,585

Table 1: Comparison of cross-domain context-dependent text-to-SQL datasets.

SParC CoSQL

Models Dev Test Dev Test

QM IM QM IM QM IM QM IM

T5-Base

w/ PICARD w/ self-play 62.4 42.1 - - 53.0 21.5 - -
w/ PICARD w/o self-play 57.5 38.6 - - 49.9 20.2 - -
w/o PICARD w/ self-play 57.2 37.5 - - 50.6 20.4 - -
w/o PICARD w/o self-play 50.3 31.7 - - 45.2 18.7 - -

T5-Large

w/ PICARD w/ self-play 65.5 45.6 64.0 39.6 55.7 23.2 53.4 22.7
w/ PICARD w/o self-play 63.0 43.0 60.7 36.9 54.3 21.9 52.1 21.6
w/o PICARD w/ self-play 64.1 44.1 - - 53.9 21.2 - -
w/o PICARD w/o self-play 57.5 38.1 - - 51.4 20.6 - -

Table 2: Main results. Models after self-play outperform the baselines under different configurations.

data augmentation method to improve performance
on cross-domain context-dependent text-to-SQL.
Appendix A.3 shows the system’s performance un-
der different configurations of the generated syn-
thetic data.

5 Analysis

In this section we take SParC and systematically
analyze the effect of self-play. First, to gain more
insight into how a question’s position or the query
template affect the models, we examine self-play
performance stratified by different turn number and
SQL templates in §5.1. Then, we study whether
self-play improves decoding during beam search
(§5.2). We further conduct a case study of self-play
interactions in §5.3.

5.1 Turn and Template Analysis
We first plot the distribution of interaction lengths
in Figure 2. Self-play produces shorter interactions
with a mean length of 2.53, whereas the mean of
the training data is 2.97. Figure 3 shows Question
Match (QM) accuracy stratified by question turns.
The performance after self-play increases on the
turn numbers ≤ 3 and decreases on the turn num-
ber 4. This is because self-play does not generate
enough long interactions as shown in Figure 2.

Next we compare the performance of the models
with and without self-play stratified by the diffi-
culty of the SQL template. We first convert SQLs
into templates using the method in Zhong et al.
(2021). To get a sense of the overlap of the tem-
plates in self-play and training, 85% of self-play
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Figure 2: The distribution of interaction lengths of gold
interactions and self-play interactions.

templates occur in the training templates. That is to
say, 15% of self-play templates are new templates
that are unseen during training. As shown in Figure
4, self-play interactions have higher proportions of
easy and extra hard templates and lower propor-
tions of medium and hard templates. We compare
the performance before and after self-play on the
SParC validation set in Table 3. Self-play brings
the largest improvement to interactions of medium
difficulty, followed by hard and easy ones.

On manually inspecting the performance for tem-
plates we observe that the performance on most
is improved after self-play. Of the 72 unique
templates in the SParC validation set, there are
only 12 query templates whose performance de-
creases. The performance on the templates with
the operator “select counts” improves signifi-
cantly (on average an increase of 12 for the 11 tem-
plates with “select counts”), possibly because
the word “count” appears more often in the gen-
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Figure 4: The distribution of template difficulties.

erated ones than training. For example, “select
count (*_col_0)” is one of the top templates in
the generated dataset as shown in Table 4. We
find that the accuracy of the template “select sum
(number_col_0)” increases from 50 to 100 after
self-play. Self-play also reduces hallucination to
some extent. For example, when asked to display
certain record companies, the model would halluci-
nate the constraint “having count(*)>2” before
self-play, but the system gives the correct result
after self-play. These results confirm the effective-
ness of self-play. Appendix A.4 shows more exam-
ples of generated templates and the improvement
brought by self-play.

Difficulty Before self-play After self-play Improvement
Easy 80.9 82.4 1.5
Medium 62.6 67.7 5.1
Hard 41.2 44.5 3.4
Extra Hard 31.8 31.8 0

Table 3: The performance before and after self-play on
SParC validation set grouped by template difficulties.

5.2 Beam Search Analysis

In this section we study whether self-play improves
beam search by increasing the recall of the correct
SQL. We first define “Recall at beam size k” as the
probability that the ground-truth SQL is contained

0 4 8 12 16 20
Beam Size k

62

66

70

74

78

Re
ca

ll 
at

 k

Before self-play
After self-play

Figure 5: Recall at k plot. Models after self-play have
higher recall at different beam sizes.

in the hypotheses of the beam search. This metric
measures the recall of the ground-truth SQL when
using the beam size k. As shown in Figure 5, we
plot “Recall at beam size k” with k from 1 to 20.
We observe that the model after self-play has higher
recall compared to the model before self-play at
different beam sizes. For example, the recall is 76.1
before self-play and 79.0 after self-play when k is
20. This shows that self-play can improve the recall
of the ground-truth SQL. The recall at beam size 20
after self-play is 13.5 higher than the corresponding
exact match score (79.0 vs. 65.5), demonstrating
that the model has a high recall of the ground-truth
SQL yet the ground-truth SQL may not have the
highest beam score.

As shown in Figure 6, we further plot the exact
match score of the T5-Large model with 4 config-
urations at different beam sizes to understand the
effect of beam size on model performance. In gen-
eral, the exact match score improves with larger
beam sizes. We observe that (1) the model with
self-play outperforms the model without self-play
in all configurations; (2) the models with PICARD
are more sensitive to beam sizes because the perfor-
mance improves significantly with increasing beam
sizes;2 (3) the models with self-play are less sen-
sitive to beam sizes as they can obtain high exact
match scores with even small beam sizes; (4) self-
play can improve the performance with/without
PICARD.

5.3 Case Study of Self-Play Interactions
Table 5 shows successful (5a) and failed interac-
tions (5b, 5c) generated with self-play. In Table
5a, given the sampled goal (the same as the final
system query from turn 3), the SQL-to-text model

2This conforms with the plot on the Spider dataset in
Scholak et al. (2021), where the authors observe pronounced
improvements with larger beam sizes.
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Top Templates in Train Proportion Top Templates in Self-Play Proportion
select text_col_0 7.56% select text_col_0 13.33%
select text_col_0 where text_col_1 = value 4.99% select *_col_0 5.13%
select *_col_0 3.67% select count ( *_col_0 ) 4.57%

Table 4: The top templates and their proportions in the SParC training and generated data.
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Figure 6: Question Match with different beam sizes.

can decompose it into smaller questions over mul-
tiple turns. After asking for the locations of gas
stations in the first turn, the SQL-to-text model
asks for the company names of the gas stations, a
theme-entity question, and then proceeds to query
the assets of these companies in descending or-
der, an answer refinement question. This demon-
strates that different thematic relations are learned
by the SQL-to-text model. Meanwhile, the text-to-
SQL model produces the correct SQL queries in a
context-dependent way.

Next, we analyze the failure cases. In Table 5b,
the user utterances are not grounded to the sample
query in the course of the dialogue, e.g. the ques-
tion in the final turn does not match the semantics
of the goal query. Although the final system query
matches the sampled goal, language drift happens
in the middle of the conversation. For example, the
user utterance mentions templates in the second
turn, but the text-to-SQL model ignores this key-
word in the SQL query. Another failure case is the
repetition of user utterances. Figure 7 shows the
proportion of generated interactions in which the
user utterances repeat. Repetition happens more
frequently with increasing interaction lengths. Ta-
ble 5c shows an example of a repetitive interaction.
Although the SQL-to-text model produces the sam-
pled goal in the first turn, the stop-of-interaction
symbol does not appear in the user utterance. As
a result, the conversation continues, and the user
simply repeats its first question in the third turn.
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0.1

0.2
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0.4

Pr
op

or
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Proportion of Repetition

Figure 7: The proportion of repetition in generated in-
teractions grouped by interaction length.

6 Related Work

Data Augmentation for Semantic Parsing Data
augmentation (Feng et al., 2021) is an effective
strategy to increase the diversity of training data
without manually collecting new data. Data aug-
mentation has been applied in NLP (Jia and Liang,
2016) on various tasks such as paraphrase extrac-
tion (Barzilay and McKeown, 2001), machine trans-
lation (Sennrich et al., 2016; Liu et al., 2021), and
question-answering (Longpre et al., 2019). Data
augmentation is also widely-adopted in semantic
parsing tasks (Jia and Liang, 2016; Hou et al.,
2018; Yu et al., 2020; Zhong et al., 2021; Wang
et al., 2021; Yang et al., 2022). Most previous
work on data augmentation for text-to-SQL tasks
use single-turn datasets such as SPIDER. Yu et al.
(2018a) create cross-domain augmentation data
with question-SQL patterns extracted from Spi-
der. Guo et al. (2018) use a syntax-and-table-aware
semantic parser and a copy-based latent variable
model to generate SQLs and questions, respectively.
Wu et al. (2021) apply the abstract syntax tree gram-
mar for SQL generation and a hierarchical SQL-to-
question generation model to generate questions.

Data augmentation for multi-turn SQL-to-text
datasets is under-explored. The task is more chal-
lenging compared to single-turn datasets as it re-
quires sequential generation that takes into con-
sideration complex contextual dependencies and
user goals. Zhong et al. (2021) combine a for-
ward semantic parser with a backward utterance
generator to generate multi-turn interactions. The
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Turn User Utterance System Query Execution Result

1
Show the location for all gas stations. select location Herne Hill, Channel Hill

from gas_station Reading North ...

2

select t3.location, t2.company from
For each of them, also show the station_company as t1 join company (Hennry Hill, Petrobras)
company names. as t2 on t1.company_id = t2.company_id (Maindy Ave, BP)...

join gas_station as t3 on
t1.station_id = t3.station_id

3

select t3.location, t2.company from (Herne Hill, Royal Dutch Shell)
Order them by assets in descending order. station_company as t1 join company (Herne St, ExxonMobil)...

as t2 on t1.company_id = t2.company_id
join gas_station as t3 on
t1.station_id = t3.station_id order
by t2.assets_billion desc

(a) A successful interaction.

Turn User Utterance System Query Execution Result

1
Show the names of all documents. select document_name Introduction of OS,

from documents How to write a CV...

2
For each of them, also show the select document_name, count(*) from (A history of Arts, 1),
number of templates. documents group by document_name (About Korea, 1)...

3
Order the document names in descending select document_name from documents Welcome to NY,
order of the number of templates. group by document_name order Understanding DB...

by count(*) desc

(b) Failure case: language drift.

Turn User Utterance System Query Execution Result

1 What is the average room count? select avg(room_count) from properties 5.73

2
What is the average selling price? select avg(agreed_selling_price) 48653794

from properties

3 What is the average room count? select avg(room_count) from properties 5.73

(c) Failure case: repetition.

Table 5: Examples of successful and failed interactions generated by self-play.

algorithm truncates the contextual window to 2
and does not condition on a global user goal dur-
ing generation. As a result, this method fails to
consider long-range contextual dependencies. Dif-
ferently, our method conditions each turn on its full
history context and the sampled user goal. This
enables capturing longer contextual dependencies.
For further comparison of the model performance
between our proposed self-play method and Zhong
et al. (2021), please see Appendix A.3.

Self-Play in Task-Oriented Dialogue As learn-
ing from real users is costly and time-consuming,
self-play with user simulators has been employed in
task-oriented dialogue systems (Levin et al., 2000).
Two types of user simulators including rule-based
(Schatzmann et al., 2006, 2007; Schatzmann and
Young, 2009; Shah et al., 2018b,a)) and data-driven

(Asri et al., 2016; Gür et al., 2018; Kreyssig et al.,
2018; Tseng et al., 2021) are widely-adopted. Rule-
based user simulators make use of hand-crafted
rules in building dialogue schedules, while data-
driven user simulators are trained on gold dialogues.
In task-oriented dialogue systems, each domain
has its own slot-value pairs, which are domain-
dependent. As a result, adapting the system to a
new domain usually requires data collection, model
redesigning, and retraining. Differently, SQL is
domain-agnostic for text-to-SQL tasks. Self-play
is well-suited for cross-domain text-to-SQL tasks
as it can synthesize user and system interactions to
generalize to new domains.

Mitigating the Exposure Bias Exposure bias
(Bengio et al., 2015; Ranzato et al., 2015) is the
mismatch between training and the generation pro-
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cedure that happens when the model is only ex-
posed to ground-truth interactions without being
conditioned on its own predicted interactions. Sev-
eral methods (Ranzato et al., 2015; Shen et al.,
2016; Leblond et al., 2017; Welleck et al., 2019)
have been proposed to bridge this train and test time
discrepancy. Our model demonstrates the benefits
of using the high-quality predicted interactions to
retrain the original model and is a reasonable way
to condition the model on its own prediction and
mitigate the exposure bias issue.

7 Conclusion

We explore using self-play as a data augmenta-
tion method for generating synthetic dialogues in
the cross-domain conversational semantic parsing
task to address the challenge of data scarcity and
cross-domain generalization. Self-play learns vari-
ous thematic relations in dialogues, improves beam
search, and encourages the model’s generalization
to different domains. Experiments on a T5 text-
to-SQL semantic parser demonstrate the benefit of
our proposed method. In the future, we will study
using rewards in a RL setting to guide self-play to
produce better synthetic dialogues.

Limitations

Although the filtered dialogues after self-play are
mostly grounded to the sampled user goal, some
synthetic dialogues are unnatural as illustrated in
section §5.3 Therefore, a more controlled genera-
tion of self-play that penalizes producing repetitive
questions, and encourages dialogues that last longer
turns would be desirable. The experiments require
large GPU resources and restrict us to run self-
play for one round. Running self-play with the re-
trained models iteratively for multiple rounds may
possibly improve the results more. Dataset-wise,
in the real world, as humans do not ask questions
in a controlled setting as in SParC and CoSQL, the
data distribution may be more noisy and compli-
cated. Self-play is not able to generate synthetic
dialogues that diverge from the training data to
simulate real-world scenarios.
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A Appendix

A.1 Query Sampling Procedure in GAZP
The query sampling procedure in GAZP (Zhong
et al., 2021) is shown in Algorithm 3.
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Algorithm 3: Query Sampling Procedure
in GAZP.

Input :Databases D, training data Xtr .
Output :Sampled query z′.
Preprocess queries in training data Xtr .
Replace columns and values in Xtr with typed slots

to form coarse templates Z.
Sample a database, d ∼ UNIFORM(D)
Z′ = ∅
for z ∈ Z do

if z can be filled with d then
Z′.ADD(z)

end
end
Build empirical distribution PZ′ by counting their

occurrences in Xtr .
Sample a template z′ ∼ PZ′ .
Randomly assign columns and values s, v in d to

populate the corresponding typed slots in z′.
return z′ .

A.2 Implementation Details

We experiment with T5-Base (~220m parameters)
and T5-Large (~770m parameters). Adam (Kingma
and Ba, 2014) is used for optimization with a learn-
ing rate of 1e-4 and 5e-6 for text-to-SQL and SQL-
to-text, respectively. The beam size is set to 4 for
text-to-SQL and 20 for SQL-to-text. We used 8
GPUs for all our experiments. PICARD is set to
the highest mode “Parse with Guard”, and the max
number of tokens to check for PICARD is 2. Inputs
longer than 512 tokens are truncated. The maxi-
mum number of self-play turns is set to 5. The
threshold w for filtering interactions is set to 0.5.
We generate 100,000 synthetic interactions before
filtering.

A.3 Analysis on the Generated Data

To study the effect of the size of generated data
on the final accuracy, we show the QM scores af-
ter self-play on SParC validation set with T5-base
trained on different number of synthetic data before
filtering. As shown in Table 6, we do not observe
significant improvements after using 100,000 syn-
thetic data before filtering, thus we choose the size
to be 100,000 in the experiments.

# of synthetic data 50,000 100,000 150,000
Question Match (QM) 60.2 62.4 62.5

Table 6: The QM score after self-play on SParC vali-
dation set with T5-base trained on different number of
synthetic data before filtering.

In our experiments, filtering is applied to dis-
card low-quality synthetic interactions that diverge

from the user’s goals. We find that training on low-
quality interactions gives negative effects for the
final performance. We study the effect of changing
the filter threshold value w, as shown in Table 7.
The final threshold w for filtering interactions is
set to 0.5 as a larger threshold aggressively filters
most synthetic dialogues that are of hard/extra-hard
difficulties.

w 0 0.3 0.5 0.7
Question Match (QM) 56.2 60.5 62.4 61.8

Table 7: The QM score on SParC validation set with
T5-base trained with different filter value w.

We further study if conditioning on a user goal
G when generating interactions is necessary. When
we ablate the user goal, the QM score on SParC
drops from 62.4 to 59.8. We argue that it is im-
portant to condition on the user goal to obtain
grounded interactions.

We also reimplement the method used in Zhong
et al. (2021) by ablating both the user goal and
the context. The QM score on SParC drops from
62.4 to 58.3. We argue that it is important to condi-
tion on the user goal and the full context to obtain
grounded interactions.

A.4 Template Examples

Top Templates Unseen in Train Proportion
select text_col_0 group_by key_col_0 0.19%
order_by count (*_col_0) desc limit_value

select number_col_0 group_by number_col_0 0.12%
order_by count (*) desc limit_value

select text_col_0 , count (*_col_0) 0.07%
group_by text_col_0 order_by count (*) desc

Table 8: Examples of generated templates unseen in
SParC train.
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Template and Example Improvement

select sum (number_col_0) 50
e.g. SELECT sum(number_products) FROM shop

select text_col_0 , count (*_col_0) group_by text_col_0 42.9
e.g. SELECT Nationality , COUNT(*) FROM people GROUP BY Nationality

select text_col_0 where key_col_0 = value 28.6
e.g. SELECT AirportName FROM AIRPORTS WHERE AirportCode = "AKO"

select text_col_0 where key_col_0 not in (select key_col_1) -22.2
e.g. SELECT Name FROM people WHERE People_ID NOT IN (SELECT People_ID FROM poker_player)

Table 9: Examples of templates on which self-play improves (or reduces) performance.
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