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Abstract

Neural language models have been analyzed
for their linguistic and extra-linguistic knowl-
edge via probing. Of particular interest has
been the following question: how much can
a language model trained only on form learn
about meaning? Recent work has demon-
strated via probing classifiers that in the setting
of simple procedural text, where by “mean-
ing" we mean the underlying world state, lan-
guage models have a non-trivial performance
on world state tracking. However, our pro-
posed evaluation based on model predictions
shows differing results, suggesting that these
models are either not capturing the world state
or not using it. How do these results change if
the model has access to the world state? We
explore this alternate setting with access to the
underlying world state only during training and
investigate ways of “baking in” the state knowl-
edge along with the primary task of language
modeling. Our proposed approaches allow for
state probing during inference simply via text
prompts, avoiding any probing classifier ma-
chinery. In terms of performance, we show
that baking in the state knowledge during train-
ing leads to significant improvements in state
tracking performance and text generation qual-
ity.1

1 Introduction

There has been recent interest in the extent to
which models trained solely on text (form) cap-
ture aspects of the underlying world state (mean-
ing) (Bender and Koller, 2020; Bisk et al., 2020;
Wu et al., 2021; Bender et al., 2021; Li et al., 2021;
Toshniwal et al., 2022). Li et al. (2021) show via
the use of probing classifiers that language models
trained for simple semantic domains learn to rep-
resent the state of the world described by the text
without any explicit state supervision. However,

1Code and resources at https://github.com/
facebookresearch/state_probing_lm

one of the key limitations of probing classifiers is
that the extractability of any information, such as
world state, doesn’t necessarily mean the model
is using this information (See Belinkov (2022)
for a detailed discussion on limitations of prob-
ing classifiers). Our proposed evaluation based
on model predictions shows results contrary to Li
et al. (2021) wherein we find that the model perfor-
mance is close to chance in capturing/utilizing the
state knowledge (see Table 3).

How do these results change if the language
model has access to the ground truth world state
knowledge? We explore this alternate setting
where we assume that: (a) the language model has
access to the world state only during training, and
(b) that the world state (or parts of it) can be trans-
lated to text. Access to such oracle annotations
during training has also been explored in recent
work (Nye et al., 2021; Lampinen et al., 2022).
Concretely, we build on the setup of Li et al. (2021)
where we explore simple approaches to explicitly
adding the state to the language model training se-
quences. We show that this baking-in of the world
state knowledge allows for state probing during in-
ference simply via prompting. Our experiments
on the Alchemy dataset (Long et al., 2016) show
that our proposed approaches, particularly a multi-
task learning approach, significantly improve over
a baseline language model both in terms of state
prediction and language modeling. More broadly
speaking, the proposed approaches could present
an alternate way for injecting linguistic knowledge
during end task training for NLP tasks (Wu et al.,
2021).

2 Task Setup

In this section, we first formally describe the setup
in which we conduct the language modeling and
state probing experiments. Following that, we
briefly describe the probing classifier setup used
by Li et al. (2021), and finally our proposed lan-
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W0 W1

s1 → throw out the orange beaker

T (W0) → the first beaker has 1 red, the
second beaker has 2 purple, · · ·, the
second to last beaker has 1 orange, the
last beaker is empty

T (W1) → the first beaker has 1 red, the
second beaker has 2 purple, · · ·, the
second to last beaker is empty, the
last beaker is empty

T (W0, fifth beaker) → fifth beaker has 4 red T (W1, fifth beaker) → fifth beaker has 4 red

Table 1: Sample Alchemy instance. W0 represents the initial world state while W1 represents the world state at the
end of sentence s1. T (.) represents the state translator which given the world state and optionally an entity, outputs
a natural language description of the world/entity state. The Alchemy world consists of beakers (entities) and the
state of a beaker is represented by the volume of the colored liquids residing in it.

guage model variants which assume access to state
knowledge during training.

2.1 Task Description

Let (s)ni=1 represent the segmentation of a text
discourse into a sequence of sentences. Suppose
the world described by this text consists of enti-
ties (e)mj=1. Let (W )ni=0 represent the sequence
of world states where W0 represents the initial
world state and Wi represents the world state at
the end of sentences s1:i. We assume that the
world state is simply the aggregation of the state
of all the entities in the world. Formally speak-
ing, let S(ej , s1:i) represent the state of the en-
tity ej at the end of sentences s1:i, then Wi =
[S(e1, s1:i) · S(e2, s1:i) · · · S(em, s1:i)]. Finally,
we assume access to a state translator T which
takes as input the entity or world state and outputs
a corresponding natural language description. Fig-
ure 1 illustrates the instantiation of the concepts
discussed in the context of Alchemy. We next
describe the language modeling and state probing
task avoiding any model-specific details.

Language Modeling We finetune the
sequence-to-sequence (seq2seq) language
model BART (Lewis et al., 2020) in all our
experiments. The input to the seq2seq language
model is T (W0) · s1:i i.e. the concatenation of
the initial state translated to text and the initial i
sentences of the discourse. The language model
is (primarily) trained to predict the next sentence
but the exact output sequence differs across
models (see Table 2). After training the language
model, we probe the model for its state tracking
capabilities which we define next.

State Probing tasks require predicting the world
state Wi given the initial state W0 and the first i
sentences of the discourse s1:i. Since the world
state is simply an aggregation of entity states, the
world state probing task can be decomposed to pre-
dicting the states of all the entities involved in the
discourse.

Given these generic description of the language
modeling and state probing task, we next describe
the model variants. The input sequence to the
seq2seq language model remains the same across
all the model variants. Hence, we limit the model
details to: (a) the output sequence with which the
language model is trained, and (b) how state prob-
ing is done post language model training.

2.2 Baseline Model
For our baseline, we use the setup of Li et al.
(2021). The baseline model is the canonical lan-
guage model trained to predict the next sentence
of the discourse si+1.

State Probing Li et al. (2021) predict the state of
each entity individually with a linear probing clas-
sifier (number of world states grows exponentially
in the number of entities for Alchemy). Predict-
ing the state of each entity requires extracting their
representation from the discourse representation
for which Li et al. (2021) employ heuristics.

2.3 Baking-in State Knowledge
In this section, we assume access to the ground
truth world state Wi, or equivalently T (Wi), dur-
ing language model training. We propose two ap-
proaches to explicitly adding the state sequence
T (Wi) to language model training sequences. We
first describe the language model training details
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Model Training Inference Probing via PromptProb. Output Sequence Output Sequence

Baseline 1 si+1 si+1 ✗

Multitask Learning p [START]T (Wi) [END] si+1 ✓
(1− p) si+1

RAS p [START]T (Wi) [END]si+1 si+1 ✓
(1− p) si+1

Table 2: Summary of Output Sequences during Training and Inference for all the language model variants. Wi

denotes the world state at the end of first i sentences s1:i of the discourse. T (Wi) denotes the translation of world
state to natural language text. [START]and [END]denote the special tokens used to mark the state description
boundary.

for the proposed models, and then describe the
shared baked-in probing methodology where state
probing can be done simply via prompting the lan-
guage model.

2.3.1 Multitask Learning
In multitask learning, we train the language model
to predict the next sentence si+1 with probability
(1−p) or the current world state [START]T (Wi)
[END]with probability p where the probabil-
ity p is a hyperparameter, and the delimiter to-
kens [START]and [END]denote that the text se-
quence is about world state. In practice, we use
the probabilities of the tasks to scale the prediction
losses i.e.

Lmult = pLstate + (1− p)Lnext

where Lstate is the loss for predicting the state se-
quence, and Lnext is the loss for predicting the
next sentence.

2.3.2 Randomly Added State (RAS)
In the multitask learning approach, the current
state prediction and next sentence prediction are
treated as separate prediction tasks. In RAS, we
combine the two tasks stochastically. Specifically,
for some chosen probability p, the RAS(p) lan-
guage model is trained to predict the concatenated
sequence [START]T (Wi) [END]si+1 with prob-
ability p, and with probability (1− p) it is trained
on the canonical task of predicting the next sen-
tence si+1. The RAS model allows for the flexibil-
ity of Multitask Learning model in the sense that
both the state sequence (see discussion on State
Probing later in this Section) and next sentence
can be independently predicted. At the same time
during training it allows the model to learn the re-
lationship between the two tasks.

Note that the RAS(p = 1) model is always
trained to predict the next sentence with the state
sequence. Hence, during inference we first predict
the state sequence, and then predict the next sen-
tence.

2.3.3 State Probing

In the above proposed models, the language model
is either explicitly trained to predict the world state
or the world state is a prefix of the predicted se-
quence. Moreover, the state sequence T (Wi) is
delimited by the special tokens [START] and
[END]. Thus, prompting the decoder of the
trained seq2seq language model with [START]
token conditions the model to generate the state.2

For Alchemy, we can enumerate all the possi-
ble states for any entity (beaker) and score them
with the language model, the predicted entity state
being the one with the highest probability.3 We pre-
dict the world state in Alchemy by individually pre-
dicting the state for each entity (beaker). 4

2.4 Next Sentence Probability

For the baseline model, the probability of next
sentence P (si+1) is trivially calculated using the
autoregressive decoder of the seq2seq language
model (for ease of notation we hide the condition-
ing on W0 and s1:i). For the proposed model vari-
ants, we additionally mask out the probability as-
signed to the [START] and [END] tokens at all
timesteps i.e. renormalize the distribution after ze-
roing out the probability assigned to the [START]

2This bears similarity with the use of control tokens in text
generation (Keskar et al., 2019; See et al., 2019).

3Any beaker in our Alchemy setup has one of 210 states.
4During training, we shuffle the order in which the beaker

states are presented in T (Wi). We do this to avoid bias to-
wards any particular order in which the language model is
used to predicting the beaker states.
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Model Perplexity World State Entity State Valid Next Sentence

Baseline (Li et al., 2021) 2.98 7.6 75.0 48

Multitask Learning 2.91 57.8 92.2 70
RAS 2.91 49.3 90.1 74

Table 3: Comparison of performance of Language Model variants on the proposed evaluations. The state tracking
results for the Baseline model are from Li et al. (2021).

and [END] tokens as the special tokens are only
used while predicting the state.

For the RAS (p = 1) model, calculating the ex-
act P (si+1) is non-trivial because the model condi-
tions the next sentence prediction on the state pre-
diction. We report an approximation of P (si+1)
(for details see Appendix A.1.1).

3 Experimental Details

3.1 Hyperparameter Details

For all our experiments, we use the BART-base lan-
guage model. For the Multitask and RAS model,
we tune the probability p of the auxiliary task over
{0.1, 0.2, 0.3, · · · , 0.8, 0.9, 1.0}. Training details
in Appendix A.1.2.

3.2 Data and Evaluation Details

We borrow the Alchemy setup from Li et al. (2021)
(see Appendix A.1.3 for details). For the vali-
dation split, we report: (a) Perplexity, and (b)
World/Entity State Accuracy: The world state ac-
curacy measures the instances for which the model
predicts the correct state for all the entities while
the entity state accuracy measures the accuracy
over predicting the correct entity state.

Valid Next Sentence Evaluation Additionally,
we create an artificial evaluation set of 100
Alchemy language modeling instances where for
each input we also have the exact set of valid out-
puts i.e. next sentences which can be “executed"
given the world state. For each input, the model
selects the most probable next sentence among all
the candidate next sentences. We then measure the
Valid Next Sentence Accuracy which is how often
does a model select a valid next sentence as the top
choice. This evaluation is meant to test the models
behaviorally in terms of whether the models can
use their world state knowledge or not while pre-
dicting the next sentence. A model doing poorly
on this evaluation is either failing at state tracking

or unable to use its state knowledge while predict-
ing the next sentence. For context, a naive baseline
of selecting the next sentence among the 100 can-
didate next sentences using a uniform distribution
gets an accuracy of 45.56± 4.65.

4 Results
Table 3 presents the results for the baseline model
and our proposed language model variants. Across
all evaluations we see a clear benefit of having ac-
cess to state knowledge during training. In partic-
ular, the Multitask Learning model improves over
the baseline model on the world state prediction
task by about 50 points absolute (and also avoids
training a separate probing classifier). For the lan-
guage modeling task, we see a drop in perplexity
for both the proposed models in comparison to the
baseline model suggesting that the state knowledge
also aids the language modeling task. This is even
more emphatically reflected in the Valid Next Sen-
tence evaluation where the proposed variants im-
prove over the baseline language model by about
40% relative. Interestingly, the baseline language
model gets an accuracy of 48 on this task which is
within one standard deviation of the random base-
line’s score. This suggests that even if the baseline
language model trained on just the text discourse
(form) has implicitly learned the state (meaning),
it most likely has not learned to use the state knowl-
edge while predicting the next sentence. Among
our proposed variants the Multitask Learning vari-
ant excels in predicting the state while the RAS
model is the best at utilizing the state knowledge
in next sentence prediction.

5 Conclusion

We show via our proposed evaluation of Valid
Next Sentence prediction that a baseline language
model is at par with chance performance, suggest-
ing that the model struggles to capture the state
knowledge. Based on this evidence, we explore
language model variants which assume access to
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the world state during training. The proposed
language model variants can be easily probed for
world state via text prompt, and significantly im-
prove over a canonical language model for both
state tracking and text generation. Our results sug-
gest that injecting semantic knowledge could be
beneficial more broadly as well, and our proposed
approaches can be useful for this end.

6 Limitations

Our work is limited to a simple setup where we
assume: (a) access to the ground truth state knowl-
edge, and (b) that this state knowledge can be de-
terministically translated to text. Both these as-
sumptions don’t necessarily hold true in most real
world settings. Our baked-in probing approach re-
quires knowing the probing task before training
the model which again may not be true in general
settings.
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A Appendix

A.1 Miscellaneous
A.1.1 Perplexity Calculation for RAS(p = 1)

Model
For the RAS(p = 1) model, calculating the ex-
act P (si+1) is challenging because the model con-
ditions the next sentence prediction on the state
prediction. To explain this challenge, suppose the
world state space is Z . So under the RAS(p = 1)
model, we would be required marginalize over the
entire world state space i.e.

P (si+1) =
∑

z∈Z
P (si+1|z)P (z)

Since this marginalization is impractical for
Alchemy, we instead report:

P (si+1) = max
z∈Z

P (si+1|z)

Thus, the perplexity results for the RAS(p = 1)
model are not directly comparable to other vari-
ants.

A.1.2 Additional Training Details
The model is trained for a maximum of 100 epochs
with a batch size of 24. Validation set perplexity
is computed at the end of every epoch and train-
ing stops after no improvement for 5 consecutive
epochs. We use the Adam optimizer with an initial
learning rate of 10−5. The learning rate is warmed
up linearly for the first 10 epochs followed by a
linear decay.

A.1.3 Additional Data Details
The dataset has 3657 train and 245 validation in-
stances which correspond to 14,628 and 980 lan-
guage modeling instances respectively – 5 sen-
tences per original instance, thus, 4 next sentence
prediction task per original instance.

A.1.4 Infrastructure Details
All our models are trained on 32GB V100 GPUs.
Training for any model finishes within couple of
hours.
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