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Abstract

We focus on the cross-lingual Text-to-SQL se-
mantic parsing task, where the parsers are ex-
pected to generate SQL for non-English utter-
ances based on English database schemas. Intu-
itively, English translation as side information
is an effective way to bridge the language gap,
but noise introduced by the translation system
may affect parser effectiveness. In this work,
we propose a Representation Mixup Frame-
work (REX) for effectively exploiting transla-
tions in the cross-lingual Text-to-SQL task. Par-
ticularly, it uses a general encoding layer, a tran-
sition layer, and a target-centric layer to prop-
erly guide the information flow of the English
translation. Experimental results on CSPIDER
and VSPIDER show that our framework can
benefit from cross-lingual training and improve
the effectiveness of semantic parsers, achieving
state-of-the-art performance.

1 Introduction

The task of semantic parsing is to translate natu-
ral language utterances into meaning representa-
tions, such as lambda calculus (Liang, 2013) or a
programming language (Yin et al., 2018; Zhong
et al., 2017; Yu et al., 2018). More recently, Text-
to-SQL semantic parsing, using SQL queries as
the meaning representation, has attracted increas-
ing attention from both academia and industry re-
searchers (Zhong et al., 2017; Wang et al., 2020;
Yu et al., 2021; Deng et al., 2021; Shi et al., 2021a;
Scholak et al., 2021).

Benefiting from recently annotated large-scale
datasets (Zhong et al., 2017; Yu et al., 2018), re-
search in Text-to-SQL has been greatly expedited.
Moreover, due to the development of encoder-
decoder pre-trained models (Lewis et al., 2020;
Raffel et al., 2020), semantic parsers have been
improved significantly, benefiting from contextu-
alized representations (Lin et al., 2020; Scholak
et al., 2021). However, these advances have been
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GovernmentForm SELECT sum(Population), GovernmentForm
FROM country GROUP BY GovernmentForm

HAVING avg(LifeExpectancy) > 72

Cho biết những hình thức chính phủ có tuổi thọ trung 
bình của người dân cao hơn 72 và tổng số dân của mỗi 

hình thức chính phủ.

SELECT GovernmentForm, sum(Population)
FROM country WHERE LifeExpectancy > 72

GROUP BY GovernmentForm

Indicate which forms of government have a life 
expectancy of more than 72 people and the total 

population of each form of government.

Figure 1: An illustration of the cross-lingual Text-to-
SQL task. The utterance in English: “Find the govern-
ment form name and total population for each govern-
ment form whose average life expectancy is longer than
72.”. The automatic translation fails to translate “trung
bình” in Vietnamese into “average” in English.

achieved mostly in English, leaving other lan-
guages underexplored. Systems that can handle
non-English inputs well are in urgent need to en-
hance the user experience for non-English speak-
ers. Nevertheless, the performance of current cross-
lingual Text-to-SQL systems is still far from sat-
isfactory. Taking Figure 1 as an example, a Viet-
namese question is asked based on the English
database schema, and the system is expected to
generate the corresponding SQL query.

Because the utterances are non-English, English
parsers cannot be directly applied. For tackling
the cross-lingual issue, machine translation based
methods can be effective solutions, e.g., first trans-
lating non-English utterances into English and then
using English parsers to generate SQL queries.
Here we denote these as Translate-Test methods.
However, translation systems may introduce noise
that causes further errors from the semantic parsers.
For example, in Figure 1, Google Translate pro-
duces the English translation “Indicate which forms
of government have a life expectancy of more than
72 people and the total population of each form of
government.” for the input Vietnamese utterance.
One important information is missing in the trans-
lation process: “trung bình” should be translated
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into “average” but Google Translate fails to do so,
resulting in the wrong WHERE condition prediction:
WHERE LifeExpectancy > 72 instead of HAVING
avg(LifeExpectancy) > 72.

Another direction for solving the cross-lingual
Text-to-SQL problem is to build target language
annotated datasets and train a target language
parser directly (Min et al., 2019; Tuan Nguyen
et al., 2020). However, these methods fail to lever-
age knowledge from English parsers (learned from
annotated English data), which has the potential to
benefit non-English Text-to-SQL parsing.

In this work, we propose REX, a Representation
mixup framework for cross-lingual modeling that
utilizes both the English data and the annotated
data in the target language. First, REX adopts a two-
stage training strategy where the target language
models are first initialized with the pre-trained En-
glish parser and then trained with the target lan-
guage data. Using this method, basic schema en-
coding ability and SQL decoding ability of the En-
glish parsers can be reused during target language
training. Second, to further make use of English
parsers’ utterance encoding ability, we use English
translations as context augmentation for bridging
the cross-lingual gap and facilitating non-English
model training.

Instead of simply concatenating the English
translation and the target utterance, REX takes a
general encoder, a transition layer, and a target-
centric encoder to properly guide information flow
of English translations, to mitigate the aforemen-
tioned issue around noisy translations. In detail, the
general encoder generates contextual representa-
tions for bilingual utterances and database schemas.
The transition layer is leveraged to obtain a cross-
lingual mixup representation of the target language
utterance, aiming to make the best use of English
translations while minimizing the noise introduced.
Lastly, the target-centric encoder focuses on the
interaction between the target language utterance
and the source language schema, by ignoring the
side effects caused by translations.

We test our REX framework on two non-English
Text-to-SQL semantic parsing datasets, CSPIDER

and VSPIDER. Experimental results on the bench-
marks show that our framework can further im-
prove upon simple yet effective baselines. At the
time of publication, REX achieves state-of-the-art
performance on the CSPIDER leaderboard based
on the results on the hidden test set.

Our contributions are summarized as follows:

• We propose the REX framework for leverag-
ing knowledge from English parsers and in-
formation from machine translation by using
representation mixup to reduce the negative
side effects of automatic translation.

• We conduct a detailed ablation study to
show how different configurations of the REX

framework affect parser effectiveness.

• Our framework obtains state-of-the-art perfor-
mance on the CSPIDER and VSPIDER bench-
marks. The implementation is available for
future work.1

2 Problem Definition and Notation

Given an utterance X = (x1, x2, ..., xn) and a
database schema S, a Text-to-SQL model is ex-
pected to translate the utterance into a valid SQL
query. Our framework is based on a standard
encoder-decoder architecture. For the task, we as-
sume the existence of an internationalized database
where the database schema S is in English. The
natural language queries from users are not in En-
glish; we denote these non-English languages as
target languages.

Formally, we denote Xt = {x1, x2, ..., xnt} as
an utterance in the target language with nt tokens.
Similarly, the utterance in the source language2

with ns tokens is denoted Xs = {x1, x2, ..., xns}.
We assume the database schema S contains sev-
eral tables T ∈ D with column names C =
{c1, c2, ..., c|T |}, where |T | denotes the number of
columns in table T .

3 Baseline: Single-source Input

Here we introduce a sequence-to-sequence based
semantic parsing model and a baseline that lever-
ages English translation for non-English Text-to-
SQL semantic parsing.

The model for Text-to-SQL semantic parsing has
been continuously improved in recent years (Yin
and Neubig, 2017; Wang et al., 2019; Guo et al.,
2019; Wang et al., 2020; Rubin and Berant, 2021;
Shi et al., 2021b; Choi et al., 2021; Hui et al., 2022;
Qi et al., 2022). Specifically, Scholak et al. (2021)
utilize the pre-trained sequence-to-sequence model

1https://github.com/Impavidity/Rex
2In this work, the source language refers to English.
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Figure 2: Illustration of the REX framework. The left part is the overall framework comprising a general encoder, a
transition layer, and a target-centric encoder. The SQL query is decoded autoregressively from the SQL decoder.
The right part demonstrates one of the implementations of the transition layer: Explicit Utterance Mixup.

T5 as the parser to directly generate SQL, simplify-
ing the intermediate representation design for the
grammar-based decoder. In detail, the model input
is the concatenation of utterance X and linearized
database schema S. With a pre-trained encoder,
the contextualized utterance representation Hx and
the database schema representation Hd can be ob-
tained. The pre-trained decoder leverages these
contextualized hidden states for generating SQL
in an autoregressive fashion with constrained de-
coding. This architecture obtains state-of-the-art
performance on English benchmarks without com-
plex modeling. By replacing the T5 model with
its multilingual version, mT5 (Xue et al., 2021),
the model can be applied to non-English training
data, to obtain parsers that have the ability to han-
dle non-English utterances. We denoted this as
single-source target-language training.

4 Representation Mixup Framework

Here, we propose a representation mixup frame-
work for cross-lingual Text-to-SQL semantic pars-
ing. As shown in Figure 2, the encoder stacks
several general encoding layers with a transition
layer, and some target-centric encoding layers.

First, utterances from the source and target lan-
guages can be encoded separately or jointly in the
general encoder layers. Then, a transition layer
implements the representation mixup between the
input sequences, such as source language utterance,
target language utterance, and database schema,
in a specific layer. Then, a target-centric encod-
ing layer will try to ignore the noise produced by
machine translation systems by only focusing on

the target language utterance. Finally, a SQL de-
coder leverages the information from the encoder
component to generate a full SQL query.

4.1 Framework Overview
4.1.1 General Encoder
The general encoder is used to generate basic rep-
resentations of the utterances, including the source
language and target language, and the database
schema. Here we discuss two different methods,
namely independent encoder (Fang et al., 2021)
and joint encoder. The general encoder is parame-
terized with m-layer transformers.

Independent General Encoder: Formally, the
source and target language utterances can be en-
coded with m-layer transformers to obtain hidden
representation Hs and Ht:

Hm
s = Transformerss(Xs)

Hm
t = Transformerst(Xt)

(1)

The database schema is first linearized into the
token sequence S, following the method used
in Scholak et al. (2021). An m-layer transformer is
applied on the linearized database schema tokens
to obtain Hd:

Hm
d = Transformersd(S) (2)

One benefit of independent encoding is that the
representation of the schema can be shared and
reused for all queries to the database, speeding up
model inference. Note that the m-layer transformer
parameters from different components can be either
independent or tied.
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Joint General Encoder: The interactions between
the schema and the utterances are vital for training
an effective semantic parser. Instead of encoding
the information independently, joint encoding al-
lows full information interaction between the utter-
ances and schema. More specifically, the input of
the joint encoder is the concatenation of the source
language utterance, the target language utterance,
and the schema:

Hm
s , Hm

t , Hm
d = Transformers([Xs;Xt;S])

(3)
where [;] denotes the concatenation operation.
Compared to the independent general encoder, this
design requires re-encoding of the schema for each
natural language query, where the model can bene-
fit from interactions between the utterances and the
schema.

4.1.2 Transition Layer
The transition layer is used to guide the information
flow among the different components properly. The
output of the transition layer is the representation
of the target language utterance and the database
schema. Formally, the transition layer is denoted
as follows:

Hm+1
t , Hm+1

d = f(Hm
s , Hm

t , Hm
d ). (4)

We discuss different transition layer designs in de-
tail in Section §4.2.

4.1.3 Target-centric Encoder
Only the hidden states of the target language ut-
terance and the schema are kept for further mod-
eling, eliminating the side effects of noisy transla-
tions. Formally, k-layer transformers are applied
to the concatenation of target language utterance
and schema representations:

Ht, Hd = Transformers([Hm+1
t ;Hm+1

d ]) (5)

The output of the target-centric encoder is then
used in the SQL decoder.

4.1.4 SQL Decoder
The transformer decoder is trained to generate SQL
queries token by token. The SQL queries are di-
rectly tokenized without any preprocessing. The
cross-attention of the transformer decoder is ap-
plied to the output of the target-centric encoder.
Compared to a grammar-based SQL decoder, SQL
queries generated token by token may have syntac-
tic errors. For example, the SQL generator may

hallucinate column names that are not from the
corresponding database schema. To alleviate this
issue, we apply the constrained decoding algorithm
Picard (Scholak et al., 2021) to improve the SQL
generation quality.

4.2 Design of the Transition Layer
Here we introduce the transition layer in detail. The
transition layer enhances interactions among the
different components (source language utterance,
target language utterance, and database schema).
The transition layer serves as an information mixer
and information flow controller, by fusing infor-
mation from different components implicitly or
explicitly and feeding it to the next layer. The
output of the transition layer is the hidden represen-
tation of the utterance in the target language and the
schema, ignoring the source language information.
In this way, the source language utterance only
serves as context for the target utterance and/or
the schema, without interfering with the decoder
behavior explicitly due to unexpected translation
noise. Here, we discuss three different transition
mechanisms, namely implicit full mixup, implicit
utterance mixup, and explicit utterance mixup.

Implicit Full Mixup (IFM): For implicit full
mixup, all three components are involved in the
modeling. The implicit full mixup layer is parame-
terized with a single layer transformer:

Hm+1
t , Hm+1

d

= Transformer([Hm
s ;Hm

t ;Hm
d ])[p : q],

(6)

where [p : q] is the span of the concatenated se-
quence of target language utterance and schema
tokens. Note that the hidden states of the source
language utterance only serve as keys and values,
while the hidden states of the target language ut-
terance and the schema serve as queries, keys, and
values in the multi-head attention. This is different
from a vanilla transformer layer.

Implicit Utterance Mixup (IUM): The implicit
utterance mixup implements the information flow
transition on the utterance part:

Hm+1
t = Transformer([Hm

s ;Hm
t ])[p : q]

Hm+1
d = Hm

d ,
(7)

where [p : q] is the span of the target language
utterance. For the schema representation, skip con-
nections are applied. Similar to implicit full mixup,
the hidden states of the utterance from the source
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language are specifically used as keys and values,
while the target utterance hidden states are also
used for queries in multi-head attention. The main
goal is to enhance the representation of the tar-
get language utterance by integrating information
from the source language counterparts. This can
further reduce the cross-lingual representation dis-
crepancy between the target language utterance and
the source language (English) schema.

Explicit Utterance Mixup (EUM): Instead of us-
ing fully connected self-attention to learn represen-
tation mixup, explicitly controlling the information
flow is another strategy. Formally, self-attention
is applied independently to the source language
utterance and the target language utterance:

H
′
s = MultiHead(Hm

s , Hm
s , Hm

s )

H
′
t = MultiHead(Hm

t , Hm
t , Hm

t ).
(8)

Manifold mixup (Yang et al., 2021) provides a way
to obtain intermediate representations by conduct-
ing linear interpolation on the hidden states, lever-
aging a cross-attention layer:

Hm+1
t|s = MultiHead(H

′
t , h

′
s, h

′
s). (9)

Following Yang et al. (2021), the cross-attention
layer shares parameters with the self-attention layer.
With the cross-attention layers, by using the hid-
den states of the target language tokens as queries
and the hidden states of the source language to-
kens as keys and values, the model can extract
target-related signals from the source. With the
interpolation operation controlled by a mixup ratio
λ, the target representation can be enhanced:

Hm+1
t = LayerNorm(λHm+1

t|s + (1− λ)Hm+1
t ),

(10)
where the mixup ratio λ is shared by each example
in training and inference. Similar to Equation 7,
a skip connection layer is applied to the schema
representations.

5 Framework Configurations

By configuring parameters such as m and k, some
basic model architectures can be obtained.

Multi-source Input with Concatenation: Con-
catenation is a simple yet effective baseline for
leveraging both the source language utterance and
the target language utterance at the same time. By
setting k = 0 and Transition Layer = None,

our framework is configured as a simple concatena-
tion model. In this case, the decoder can leverage
bilingual information to generate the SQL query.

Focused Simple Concatenation: By setting k = 0
and Transition Layer= Implicit Full Mixup,
our REX framework can obtain a new architecture,
denoted as focused simple concatenation. Different
from simple concatenation, the SQL decoder only
focuses on the target utterance component and the
database schema, ignoring the source language ut-
terance. This can reduce the negative effects caused
by noisy machine translations.

6 Experimental Setup

Datasets: In this work, we evaluate our frame-
work on two Text-to-SQL semantic parsing
datasets, CSPIDER (Min et al., 2019) and VSPI-
DER (Tuan Nguyen et al., 2020), which are
Chinese and Vietnamese cross-domain Text-to-
SQL datasets adapted from the SPIDER bench-
mark (Yu et al., 2018).

For CSPIDER, we use Exact Set Match (EM) ac-
curacy as the evaluation metrics. For VSPIDER, we
use both EM accuracy and Test-suite (TS) (Zhong
et al., 2020) accuracy for evaluation. For Exact Set
Match accuracy, the prediction is classified as cor-
rect only if all of the components (SELECT clause,
WHERE clause, HAVING clause, etc.) are correct. The
Test-suite accuracy, which is an improved version
of execution accuracy (if the execution results of
a predicted SQL query are the same as those of
the ground truth SQL query, then it is classified as
correct), serves as a tight upper bound for semantic
accuracy (Zhong et al., 2020).

Model Training: Our REX framework is an
adapted sequence-to-sequence transformer. Bene-
fiting from pre-trained sequence-to-sequence lan-
guage models such as BART (Lewis et al., 2020)
or T5 (Raffel et al., 2020), performance is signifi-
cantly improved by finetuning pre-trained models.
Furthermore, because our REX framework is ex-
pected to process utterances in multiple languages,
our experiments are based on mT5-large, which
has 24 layers.

To leverage English annotated data, we conduct
two-stage training: We first train mT5-large on the
English dataset to obtain a trained parser check-
point. Note that this trained English parser is based
on a standard sequence-to-sequence architecture
instead of the REX framework. The input of the
parser is the concatenation of the English utterance
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Model Dev. Test

DG-SQL (Wang et al. (2021)) 50.4 46.9
XL-SQL 54.9 47.8
RAT-SQL + GraPPa + Adv 59.7 56.2
LGESQL + ELECTRA + QT 64.5 58.1

Single-source

Target-language Training 63.7 -

Multi-source

Concatenation 65.5 -
REX 66.1 59.7

Table 1: Model performance on the CSPIDER develop-
ment set and hidden test set with EM accuracy.

Model EM TS

Single-source

Target-language Training 64.2 59.0

Multi-source

Concatenation 65.6 61.9
REX 69.0 64.5

Table 2: Model performance on the VSPIDER develop-
ment set with EM accuracy and TS accuracy.

and the linearized database schema. This model
obtains state-of-the-art performance on the SPIDER

benchmark. We use the checkpoint to initialize our
REX framework and further finetune on target lan-
guage datasets. During inference, we translate the
target language utterances into English as model
inputs. To fix the number of model parameters, we
always use m+k+1 = 24 in our experiments. For
hyper-parameters, we follow Scholak et al. (2021)
in all our experiments. By default, we use Google
Translate for all model training and inference.

7 Main Results

CSPIDER: We report the performance of Rex on
CSPIDER, which can be compared with other state-
of-the-art systems on the leaderboard.3 As shown
in Table 1, our Rex framework obtains 66.1% EM
accuracy on the development set and 59.7% EM
accuracy on the hidden test set, exceeding the best-
performing system, LGESQL+ELECTRA+QT, by
1.6% on both the development set and the test set.
Our model is based on a joint general encoder, ex-
plicit utterance mixup with 0.1 mixup ratio, and set-
ting m = 16 and k = 7. Our system achieves state-
of-the-art performance on the CSPIDER benchmark
at the time of writing.
3https://taolusi.github.io/CSpider-explorer

Model zh vi
G. M. ∆ G. M. ∆

Concat. 65.5 61.4 4.1 65.6 63.0 2.6
REX 66.1 65.0 1.1 69.0 66.8 2.2

Table 3: Robustness with respect to translation error.
The performance comparison is conducted based on
parsers that use Google Translate (G.) and parsers that
use Marian Translate (M.). Concat. denotes multi-
source input with the concatenation model. Marian
Translate introduces more noise than Google Translate.
EM accuracy is reported.

Comparing the multi-source models to single-
source ones, we observe that the extra informa-
tion can improve parser effectiveness. With multi-
source concatenation, the parser is already com-
petitive with the state-of-the-art parser. Our Rex
framework further improves the model by 0.6%
over the multi-source input with concatenation.

VSPIDER: Because our data split on VSPIDER

is different from Tuan Nguyen et al. (2020), our
results are not directly comparable.4

The main results for VSPIDER are shown in Ta-
ble 2. As a single source baseline, target language
training obtains 64.2% EM accuracy and 59.0% TS
accuracy. Multi-source concatenation outperforms
target-language training, with 1.4% improvement
on EM accuracy and 2.9% improvement on TS
accuracy. Our REX framework achieves better ef-
fectiveness both on EM accuracy and TS accuracy,
with 69.0% EM accuracy and 64.5% TS accuracy.
The model is based on a joint general encoder, ex-
plicit utterance mixup with 0.3 mixup ratio, and
setting m = 12 and k = 11.

8 Discussion

To investigate issues in cross-lingual semantic pars-
ing and to better understand our REX framework,
we performed several ablation experiments.

8.1 Robustness to Translation Noise

We argue that the models with transition layers are
more robust to translation noise than the baseline
model using multi-source input with concatena-
tion. To verify this, we conduct an ablation study
by testing the models using English translations
from different translation systems: Google Trans-

4Tuan Nguyen et al. (2020) split the dataset into train-
ing (6831), dev (954), test (1906) sets. In order to prevent data
leak from the trained English parser, we keep our splits con-
sistent with SPIDER: training set (8659) and dev set (1034).
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Model zh vi

Target language Training 62.5 62.8
En → Target language Training 63.7 64.2

Table 4: Ablation study of two-stage training. “Target
language training” denotes using target language labeled
data to train the parser from scratch and “En→ Target
language Training” denotes two-stage training. EM
accuracy is the evaluation metric.

late and Marian Translate (Tiedemann and Thot-
tingal, 2020). More specifically, the models are
first trained with translations obtained from Google
Translate, using the simple concatenation model
and the REX architecture. These models are tested
with different translation systems. The results in
the G. and M. columns show the performance of
models that are tested with data from Google Trans-
late and Marian Translate, respectively. The ∆ col-
umn shows the performance gap between using
Google Translate and Marian Translate.

The experimental results are shown in Table 3.
For Chinese, the concatenation based model is sen-
sitive to translation noise, degrading from 65.5%
to 61.4% when the translation system is switched
from Google Translate to Marian Translate. How-
ever, performance of the REX model only drops
1.1% on accuracy, showing better robustness to-
wards the translation noise. Similarly, on the VSPI-
DER benchmark, our REX model shows better ro-
bustness than the concatenation model or the model
obtained from source-language training.

8.2 Effectiveness of Two-stage Training

Here we conduct an ablation study to show that
two-stage training is an effective way to leverage
annotated English data. With labeled data in the tar-
get language, we can train the parser from scratch
or apply two-stage training. Results are shown in
Table 4. We can observe that two-stage training
can benefit the parser consistently under different
settings. For example, two-stage training can im-
prove 1.2% EM accuracy for Chinese and 1.4% for
Vietnamese. These results rationalize our design
choice for the REX framework.

8.3 Transition Layer Index and Design

We explore choices of transition layer index un-
der different transition layer designs, including im-
plicit full mixup, implicit utterance mixup, and
explicit utterance mixup. We configure m ∈
{4, 8, 12, 16, 20, 23}. Note that when m = 23,

Model 4 8 12 16 20 23

IFM 66.4 67.5 68.7 68.8 68.6 68.9
IUM 67.6 67.7 68.8 68.4 68.0 67.5
EUM 67.6 67.4 69.0 68.5 68.2 66.8

Table 5: Ablation study of the transition layer index on
the VSPIDER dev set. IFM denotes implicit full mixup;
IUM denotes implicit utterance mixup; EUM denotes
explicit utterance mixup. EM accuracy is reported.

ratio Easy Med. Hard Extra All

0.1 88.3 73.1 49.4 42.2 67.8
0.2 87.1 72.6 51.7 47.0 68.5
0.3 89.1 71.7 52.9 45.2 68.5
0.4 84.7 70.0 54.6 45.2 66.9
0.5 86.3 70.9 51.7 45.8 67.3

Table 6: Study of the mixup ratio. Experimental results
are based on the VSPIDER benchmark, using EM ac-
curacy as the evaluation metric. Accuracy on different
difficulty levels are reported.

the Target-centric Encoder = None. For the
explicit utterance mixup, we use a fixed ratio con-
troller by setting λ = 0.3 (see study of the mixup
ratio in Section §8.4). We conduct the ablation
study on the VSPIDER dataset and the experimen-
tal results are shown in Table 5.

The EM accuracy scores from the configurations
shown in Table 5 are better than the concatenation
baseline (65.6%). For implicit full mixup, we find
that the transition layer can contribute to model
effectiveness more when m ≥ 12. Note that when
m = 23, the framework is configured as focused
simple concatenation (see §5). For implicit utter-
ance mixup, when m = 12 or m = 16, the model
can perform better. Similarly, for explicit utter-
ance mixup, implementing in the middle layers
benefits the most. Especially when m = 12, the
parser achieves the best EM accuracy. One possible
explanation is that utterance mixup changes the in-
formation flow more significantly than full mixup,
requiring more target-centric layers to encode the
mixed information. Regarding the different settings
of transition layer design, there is no clear winner.
For example, implicit full mixup usually outper-
forms the others when m ∈ {16, 20, 23}. When
m ∈ {4, 8}, implicit utterance mixup achieves
higher accuracy than full mixup.

8.4 Choice of Mixup Ratio

The mixup ratio for the explicit utterance mixup
is an important hyper-parameter that affects the
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Model zh vi

Independent Encoder 64.1 66.2
Joint Encoder 66.1 69.0

Table 7: Ablation study of the general encoder. EM
accuracy is reported.

information flow of English translations. Here,
we conduct an analysis to see how the ratio influ-
ences parser effectiveness. The experiments are
based on the supervised setting with the VSPI-
DER dataset, by configuring m = 16 and λ ∈
{0.1, 0.2, 0.3, 0.4, 0.5}.

The experimental results are shown in Table 6.
Based on the overall results, we can observe that the
parser obtains the best overall performance when
the mixup ratio is 0.2 or 0.3. For different difficulty
levels,5 there is no single ratio setting that achieves
the best performance on the four difficulty levels.
For example, 0.3 is the best ratio for easy questions
while 0.4 is the best for hard questions.

8.5 Choice of General Encoder Design

We compare different design choices for the gen-
eral encoder in Table 7. Even though the indepen-
dent encoder has the merit of efficient inference
(the hidden states of the schema can be reused for
all queries to the database), the performance drop
is noticeable. The independent encoder is similar
to the local transformers proposed in the FILTER
architecture (Fang et al., 2021), which benefits POS
tagging and multilingual QA tasks. However, we
argue that for the semantic parsing task, full in-
teractions between different components are more
beneficial.

8.6 Case Studies

Here we conduct an analysis to see what cases the
REX framework can improve over the baseline and
what cases it still fails.

The noise introduced by translation may affect
the parser performance unexpectedly if the decoder
accesses the translated English utterance represen-
tations directly, such as with the model using multi-
source input with concatenation. For example 1
in Table 8, the English translation does not cor-
rectly translate 以数量升序 (“in ascending or-
der of the count”), which causes the concatena-
tion based model to fail to predict the ORDER BY

5The difficulty level of a query is based on the complexity of
the corresponding SQL; see Yu et al. (2018) for more details.

Example 1
Chinese Utterance:
请以数量升序显示管弦乐队的唱片格式。

English Translation:
Please display the orchestra record format in ascending
order.
Concat. Prediction:
SELECT major_record_format FROM orchestra ORDER
BY major_record_format ASC

REX Prediction:
SELECT major_record_format FROM orchestra GROUP
BY major_record_format ORDER BY count(*) ASC

Gold:
SELECT major_record_format FROM orchestra GROUP
BY major_record_format ORDER BY count(*) ASC

Example 2
Chinese Utterance:
欧洲哪些国家至少有3家汽车制造商？

English Translation:
Which European countries have at least 3 car
manufacturers?
Concat. Prediction:
SELECT Country FROM CAR_MAKERS GROUP BY Country
HAVING COUNT(*) >= 3

REX Prediction:
SELECT T1.CountryName FROM COUNTRIES AS T1 JOIN
CAR_MAKERS AS T2 ON T1.CountryId = T2.Country
WHERE T1.Continent = "欧洲" GROUP BY
T1.CountryName HAVING COUNT(*) >= 3

Gold:
SELECT T1.CountryName FROM COUNTRIES AS T1 JOIN
CONTINENTS AS T2 ON T1.Continent = T2.ContId
JOIN CAR_MAKERS AS T3 ON T1.CountryId =
T3.Country WHERE T2.Continent = "欧洲" GROUP BY
T1.CountryName HAVING count(*) >= 3

Table 8: Case studies comparing REX and the Con-
catenation baseline. Examples are selected from the
CSPIDER dev set.

clause. In contrast, our REX framework leverages
the explicit utterance mixup transition layer and
the target-centric encoder to ignore this translation
noise and predict the SQL query correctly.

For example 2, both the baseline system and
REX fail. However, comparing the REX pre-
diction with the Concat. prediction, we see that
the REX output is closer to the gold SQL query.
Comparing the two, we see that the REX query
fails to join COUNTRIES with CONTINENTS and uses
CONTINENTS.Continent = "欧洲" in the WHERE
clause instead of COUNTRIES.Continent, because
COUNTRIES.Continent has the ID instead of the
name. This suggests that the model can be further
improved by proposing better encoding techniques
for the schema information.
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9 Related Work

Cross-lingual Semantic Parsing: The goal of
cross-lingual semantic parsing is to process user
utterances in multiple languages and convert them
into some type of logical representation. Much
research progress has been made on this task in
recent years.

Dataset creation represents a fundamental
contribution that is useful for benchmarking
progress (Bai et al., 2018; Li et al., 2021a; Cui
et al., 2022; Sherborne et al., 2020; Susanto and
Lu, 2017; Upadhyay et al., 2018; Xu et al., 2020).
On the other hand, for model development, mul-
tilingual pre-trained models are widely applied to
the task in a supervised fashion or zero-shot fash-
ion (Sherborne et al., 2020; Sherborne and Lapata,
2022; Li et al., 2021a).

For example, Sherborne and Lapata (2022) re-
cently focused on cross-lingual transfer, where
the model trained on English data is effectively
adapted to other languages. However, their work
focuses on single-database semantic parsing and
the trained models do not generalize well across
different databases. Instead, we focus on cross-
database semantic parsing under the supervised
learning setting.

Representation Mixup: The term “mixup” was
first introduced by Zhang et al. (2018), referring
to a data-agnostic data augmentation method for
reducing the memorization issue and improving
model robustness. Follow-up work tried to mix up
the hidden representations (Verma et al., 2019) in-
stead of the input. This technique has been widely
applied in different directions (Yang et al., 2021;
Fang et al., 2022; Li et al., 2021b). Our approach
is the first to introduce the idea of mixup to cross-
lingual Text-to-SQL semantic parsing.

10 Conclusions

We propose the REX framework that effectively in-
tegrates information from English translations into
the modeling of target language utterances. More
specifically, we propose three different transition
layer implementations that enhance the interactions
among different components. We further compare
their effectiveness with detailed ablation studies.
Experiments show that our framework is robust
to translation noise by controlling the information
flow properly, outperforming existing baselines on
the VSPIDER and CSPIDER benchmarks.

11 Limitations

In this work, our model uses 24-layer transform-
ers, with 1.2B parameters in total. To train such a
model requires 8 V100 GPUs for around 24 hours.
Thus, this work requires substantial GPU resources.
Due to limited data resources, we can only test our
methods in Chinese and Vietnamese. In the future,
we plan to extend the framework to more language
families by creating additional multilingual anno-
tated datasets.
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