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Abstract

Complex dialogue mappings (CDM), includ-
ing one-to-many and many-to-one mappings,
tend to make dialogue models generate inco-
herent or dull responses, and modeling these
mappings remains a huge challenge for neu-
ral dialogue systems. To alleviate these prob-
lems, methods like introducing external infor-
mation, reconstructing the optimization func-
tion, and manipulating data samples are pro-
posed, while they primarily focus on avoid-
ing training with CDM, inevitably weakening
the model’s ability of understanding CDM in
human conversations and limiting further im-
provements in model performance. This paper
proposes a Sentence Semantic Segmentation
guided Conditional Variational Auto-Encoder
(SegCVAE) method which can model and take
advantages of the CDM data. Specifically, to
tackle the incoherent problem caused by one-to-
many, SegCVAE uses response-related promi-
nent semantics to constrained the latent vari-
able. To mitigate the non-diverse problem
brought by many-to-one, SegCVAE segments
multiple prominent semantics to enrich the la-
tent variables. Three novel components, Inter-
nal Separation, External Guidance, and Seman-
tic Norms, are proposed to achieve SegCVAE.
On dialogue generation tasks, both the auto-
matic and human evaluation results show that
SegCVAE achieves new state-of-the-art perfor-
mance.

1 Introduction

In open-domain conversations, complex dia-
logue mappings (CDM) between contexts and
responses commonly exist in the real-world
data, which bring considerable modeling chal-
lenges for neural dialogue models (Csaky et al.,
2019; Sun et al., 2021): one-to-many mapping
can cause models to generate incoherent re-
sponses, while many-to-one mapping makes the
model produce non-diverse responses. For exam-
ple, CornellMovie (Danescu-Niculescu-Mizil

Setting Distinct-3 BLEU Emb.Aver. Coherence

w. CDM 0.033 0.157 0.853 0.828
w/o. CDM 0.028 0.192 0.859 0.828

w. CDM 0.031 0.131 0.465 0.281
w/o. CDM 0.027 0.149 0.469 0.282

Table 1: Preliminary experiments of Seq2Seq models
trained with and without CDM on CornellMovie
(up) and Opensubtitles (down).

and Lee, 2011) and Opensubtitles (Lison
and Tiedemann, 2016) dialogue datasets contain
10.29% (4.18% + 6.11%) and 9.10% (4.79% +
4.31%) CDM data (one-to-many + many-to-one
mappings) accordingly. Many existing efforts tried
identifying CDM and avoiding training on them
to facilitate the dialogue learning. Luong et al.; Li
et al. introduce external information to detach one-
to-many pairs into one-to-one pairs, thus reducing
the difficulty of model training. Some works recon-
struct the optimization functions, allowing model
to learn from self-generated qualified responses
instead of the ground-truth, thereby avoiding the
directly training on many-to-one pairs (Li et al.,
2016c; Zhang et al., 2018b; Liu et al., 2020). Oth-
ers train the model through filtered corpora, which
usually contains few one-to-many and many-to-
one dialogue pairs (Xu et al., 2018b; Csaky et al.,
2019; Akama et al., 2020). For an instance, Csaky
et al. (2019) reported the improvement of a dia-
logue model with high entropy dialogue pairs (i.e.
CDM) filtered out for training, which is consistent
with our preliminary experiments in Table 1.

Table 1 shows the comparison results of the
same Seq2Seq dialogue model trained with/without
CDM. We can observe that the Seq2Seq trained
without CDM improves the BLEU (Papineni et al.,
2002), Emb.Aver. (Liu et al., 2016) and Coher-
ence (Xu et al., 2018c) but reduce the Distinct (Li
et al., 2016a) (metrics detailed in Appendix A.1).
Moreover, the gains on BLEU are big, but the gains
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Figure 1: Four metrics of Seq2Seq models fine-tuned
by increasing one-to-many and many-to-one dialogue
pairs.

on Emb.Aver. and Coherence are small. This re-
sult proves the idea that reducing the CDM of the
dataset is beneficial for increasing the scores of
some automatic evaluation metrics.

However, these methods simply ignore the CDM
data (10% of the dataset), and in this paper, we
argue that these CDM dialogue pairs are still valu-
able for dialogue training. To explore this, we
conduct further experimental investigation by train-
ing two Sequence-to-Sequence dialogue models
(Seq2Seq) (Shang et al., 2015) over the “clean”
Opensubtitles dataset which does not con-
tain any one-to-many or many-to-one pairs, re-
spectively, and then we gradually introduce one-to-
many/many-to-one pairs to fine-tune these models.
From Figure 1, we observe that one-to-many and
many-to-one dialogue pairs have conflicting effects
on Distinct, Emb.Aver. and Coherence, which ex-
plains why simply removing them together yields
smaller gains. Therefore, instead of staying away
from CDM, our primary study of interest is to en-
able model to effectively learn useful knowledge
from these dialogue pairs while avoiding being af-
fected by the disadvantages.

To achieve this goal, we take inspirations
from Conditional Variational AutoEncoder (CVAE)
based dialogue generation methods (Shen et al.,
2017; Zhao et al., 2017; Chen et al., 2018; Gao
et al., 2019a; Sun et al., 2021) and model the many-
to-one and one-to-many from the latent space.
However, previous study shows that due to lack of
the prior knowledge, latent variable hardly involves
semantic relationships, resulting in semantically ir-
relevant responses (Sun et al., 2021). Therefore, we
propose a Sentence Semantic Segmentation guided

Good morning, 
do you want coffee or tea?

Good morning, have a nice day.

What would you want, coffee or tea?

Good morning, may I help you?

Bring me a cup of coffee, please.

I do not know.

Good 
morning, 

do you want 
coffee or tea?

Good morning, 
have a nice day.

Bring me a cup of coffee, 
please.

Semantic Segmentation

What would you want, 
coffee or tea?

Good morning, 
may I help you?

Good morning, 
have a nice day.

Bring me a cup of 
coffee, please.

I do not know.

Semantic 
Segmentation

Same Semantics

Prominent Semantics

(a) One-to-Many mapping

(b) Many-to-One mapping

Figure 2: The schematic of CDM and our primary idea
for modeling CDM. (a) Multiple responses in an one-
to-many mapping can disrupt model’s ability to address
the dialogue context. We associate different responses
with the segmented different prominent semantics, so as
to avoid the interference of multiple responses and to en-
hance the coherence. (b) The response in a many-to-one
mapping has a high proportion in dataset, which de-
ceives models into increasing the generation probability
of it, reducing the diversity of generated responses. We
promote the same prominent semantics to be associated
with the same response, thus extending the response
space to enhance the diversity.

CVAE (SegCVAE), using the sentence semantic
segmentation to constrain the latent variable, which
models the CDM naturally.

The complex and ambiguous context semantics
can be reduced when segmented into multiple dif-
ferent sub-semantics, so that each sub-semantics
may focus on different perspectives of the context.
We refer these sub-semantics to as prominent se-
mantics, which can explain CDM naturally (see
Figure 2): When the semantics of a context be-
ing segmented into multiple prominent semantics,
each of them corresponds to a response (i.e. one-to-
many mapping); vice versa, when the prominent se-
mantics is segmented by different contexts seman-
tics, the same prominent semantics can correspond
to the same response (i.e. many-to-one mapping).
To achieve this goal, we propose INTERNAL SEP-
ARATION (IS) and EXTERNAL GUIDANCE (EG)
to model the prominent semantics together. The
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IS extracts multiple different words from the con-
text to obtain the prominent semantics. The EG
extracts the instructive words from the vocabulary
to constrain the prominent semantics not far from
the original semantics. Furthermore, to make the
prominent semantics capture the relationship with
responses and latent variables, we propose SEMAN-
TIC ALIENATION NORM, SEMANTIC CENTRAL-
IZATION NORM, and SEMANTIC DISTILLATION

NORM to regularise the learning of CVAE.
Our contributions are as follow:

• We propose SegCVAE to model CDM through
using sentence semantics segmentation (IS and EG)
guided latent variables. SegCVAE constructs the
relationships between multiple responses and mul-
tiple prominent semantics, thereby naturally ex-
plaining CDM. Hence, prominent semantics can
constrain latent variables to involve semantic rela-
tions when modeling CDM.

• We present SEMANTIC ALIENATION NORM, SE-
MANTIC CENTRALIZATION NORM, and SEMAN-
TIC DISTILLATION NORM to regularize promi-
nent semantics and facilitate semantic segmenta-
tion without supervised labels.

• We conduct extensive experiments to show the
superior performance of SegCVAE in modeling
CDM and dealing with the open-domain dialogue
generation task.

2 Related Work

The open-domain dialogue generation has received
dramatic attention recently (Sutskever et al., 2014;
Shang et al., 2015; Sordoni et al., 2015). Sutskever
et al. (2014) identified that “noisy” data, including
one-to-many and many-to-one dialogue pairs, can
affect the performance of dialogue systems. To
address such “noisy” data, many methods have
been proposed in recent years. For instance, a large
body of work on introducing external information
for reducing the number of noisy data (Luong et al.,
2015; Li et al., 2016b; Serban et al., 2016; Zhao
et al., 2017; Huber et al., 2018; Ghazvininejad et al.,
2018; Tao et al., 2018; Chen et al., 2018; Feng et al.,
2020b), and a rich line of work reconstructs the
objective function to avoid training models directly
on such noisy data (Li et al., 2016c; Xu et al., 2017;
Zhang et al., 2018a; Xu et al., 2018a; Zhang et al.,
2018b; Feng et al., 2020a; Liu et al., 2020; He and
Glass, 2020; Mi et al., 2022; Sun et al., 2022; Li
et al., 2022a). Others design a scoring approach

to filter noisy data (Xu et al., 2018b; Csaky et al.,
2019; Akama et al., 2020; Li et al., 2022b);

However, CDM data in human conversations
impels valuable information that can help models
generate better responses, and these methods can-
not learn the valuable information of one-to-many
and many-to-one dialogue pairs, nor can they make
full use of the advantages of these data. For exam-
ple, Li et al. (2016b) uses personal information to
reduce the one-to-many dialogue pairs. The Re-
inforcement Learning based dialogue generation
methods (Li et al., 2016c; Zhang et al., 2018a) only
require the generated response to get high reward
rather than similar with the ground-truth, which
means that some many-to-one dialogue pairs are
ignored during training. Csaky et al. (2019) uses
conditional entropy to assess the dialogue pairs,
which easily filters one-to-many and many-to-one
dialogue pairs.

In addition to the methods above, CVAE-based
dialogue generation methods (Shen et al., 2017;
Zhao et al., 2017; Chen et al., 2018; Gao et al.,
2019a; Wang et al., 2019; Sun et al., 2021) provide
an idea to learn the essential knowledge of the one-
to-many and many-to-one mappings. They try to
encode knowledge into a latent space, a posterior
probability distribution, and a prior probability dis-
tribution. By sampling latent variables, the model
can easily generate multiple responses for one con-
text. We follow this rich line of work to explore
their applicability in modeling CDM, and we pro-
pose new state-of-the-art SegCVAE in dialogue
generation task. Compared with the vanilla CVAE,
SegCVAE uses sentence semantic segmentation to
regularize and guide the latent variables, which
avoids the gap between context and latent variables.
Different from knowledge-guide CVAE, SegCVAE
does not require additional information. Mean-
while, SegCVAE uses the segmented prominent
semantics instead of manually-created orthogonal
vectors, which is more reasonable than SepaCVAE.

3 SegCVAE

SegCVAE is proposed to model CDM (including
one-to-many and many-to-one mappings) through
sentence semantic segmentation guided latent vari-
ables. As discussed above, different prominent
semantics can be segmented from one context se-
mantics, and similar prominent semantics can be
segmented from different context semantics, which
help latent variables learn the semantic relations,
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thus modeling one-to-many and many-to-one natu-
rally. In this section, we provide detailed descrip-
tions of the proposed SegCVAE method.

3.1 Overview

SegCVAE uses multiple prominent semantics
(x1, x2, x3, . . .) to learn the probability distribution
over response with latent variables, and xi denotes
the representation of one prominent semantics. To
train SegCVAE, we derive the Stochastic Gradient
Variational Bayes framework (Kingma and Welling,
2014; Sohn et al., 2015; Yan et al., 2016) and gra-
dient blocking trick (Sun et al., 2021):

L(r, x+) = max
i=1,2,3,...

L(r, xi), (1)

L(r, xi) = Eqϕ(z|re,xi)(log pΩ(r|z, xi))
−KL(qϕ(z|re, xi)||pθ(z|xi)), (2)

where qϕ(z|re, xi) and pθ(z|xi) are the recogni-
tion network and the prior network that used for
sampling latent variable z, respectively. The re =
enc(r) is the semantic vector computed by model’s
encoder enc based on the response r. The pΩ de-
notes the model’s decoder, which generates the
output token based on the conditional probability
pΩ(r|z, xi). Following the gradient blocking trick,
x+ ∈ (x1, x2, x3, . . .) denotes the prominent se-
mantics vector that makes the variational lower
bound largest, and only L(r, x+) is used to opti-
mize the model.

To obtain the prominent semantics (x1, x2, . . .),
SegCVAE employs the INTERNAL SEPARATION

(IS) and EXTERNAL GUIDANCE (EG). To further
capture the relationship among context, prominent
semantics, and response, we propose three novel
semantic norms: SEMANTIC ALIENATION NORM,
SEMANTIC CENTRALIZATION NORM, and SEMAN-
TIC DISTILLATION NORM.

3.2 Internal Separation

The IS processes sentences through multiple trig-
gers and extracts multiple sets of different words,
which can be used to compute different prominent
semantics. Each trigger consists of a convolution
network Conv and a dense network Dense. The
input of a trigger is an embedded matrix represen-
tation C of a context with a shape (max_clen,N ),
where max_clen represents the maximum length
of a context that can be received and N is the di-
mension of the word-embedding. The C is pro-
cessed by Conv whose kernel K and stride S are

(m,N, 1, chan) and (1, 1, 1, 1), respectively. The
chan is the number of channels of the convolu-
tion operation, and (m, N ) denotes the shape of
convolution kernel.

Fc = Conv(C,K, S) (3)

After that, we get the semantic features Fc. We
squeeze and transpose the Fc from (max_clen−
m + 1, 1, chan) to (chan,max_clen − m + 1),
and put it into the Dense. The weight of Dense is
W with a shape (max_clen−m+ 1,max_clen).

We use SoftMax function to handle the last
dimension of the input (Fc · W).

Fd = SoftMax(Fc · W) (4)

Hence, the shape of Fd is (chan,max_clen),
which represents the probability of words in the
context of attention in different channels. Then,
we select the word with highest probability in each
channel, which is processed by encoder enc to ex-
tract certain semantic information. However, this
discrete process will hamper the optimization of
model. To ensure the gradient back-propagation,
we introduce Gumbel SoftMax (GS; Jang et al.
(2017)) to replace the SoftMax (Eq. 4) and selec-
tion process:

F ′
d = GS(Fc · W), GS(Input) = (5)




einput11/τ∑n
k=1 e

input1k/τ · · · einput1n/τ
∑n

k=1 e
input1k/τ

...
. . .

...
einputm1/τ∑n

k=1 e
inputmk/τ · · · einputm1/τ∑n

k=1 e
inputmk/τ


 ,

where inputij ∈ Input and τ is the temperature
parameter. We control τ to be as small as possible,
so that the output of GS is as close as possible to
the result of argmax(Fd). Thence, we can get the
embedded matrix representation of extracted words
CIS = F ′

d ·C with the shape of (chan,N ).
Finally, we randomly initialize M trigger net-

works in IS to extract M embedded matrix repre-
sentations (C1

IS , C2
IS , . . . , CM

IS ) of different word-
combinations from a context.

3.3 External Guidance
The EG is responsible for extracting instructive in-
formation from the outside of the sentence (i.e. the
vocabulary) according to the context semantics. To
achieve this goal, we change the hyper-parameter
of the dense network in the trigger defined in the
previous section. The new weight matrix of the
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dense in EG is W ′, whose shape is changed from
(max_clen−m+1,max_clen) to (max_clen−
m+ 1, vocab_size), where vocab_size is the size
of the vocabulary. Hence, the results of the dense
network denote the probability of words in the vo-
cabulary of attention in different channels. There-
fore, the output of EG is a matrix representation
VEG of chan words in vocabulary related to the
semantics of the input :

VEG = GS(Fc · W ′) · Wemb (6)

where Wemb is the word-embedding matrix whose
shape is (vocab_size,N ). Finally, we can also ran-
domly initializes M new triggers in EG to extract
V1

EG, V2
EG, . . ., VM

EG. Therefore, the CIS and
the VEG are used together to calculate multiple
different prominent semantics of a context:

xi = enc([Ci
IS ,V

i
EG]) | i = 1, 2, . . . ,M, (7)

where enc denotes the model’s encoder, xi repre-
sents i-th prominent semantics.

3.4 Semantic Norms
We consider self-supervise learning methods and
propose SEMANTIC ALIENATION NORM (Lsan),
SEMANTIC CENTRALIZATION NORM (Lscn), and
SEMANTIC DISTILLATION NORM (Lsdn), to con-
strain the relations among the context, prominent
semantics and response. Lsan and Lscn are respon-
sible for promoting the multiple prominent seman-
tics to be closely connected with the context on
the basis of maintaining their own independence,
which leverages the diversity and coherence of gen-
erated responses. Lsdn is used to facilitate the con-
struction of semantic relations among prominent
semantics.

3.4.1 Semantic Alienation Norm
We first propose Lsan to make each prominent se-
mantics as different as possible from other promi-
nent semantics, which is computed by:

Lsan = |I− SoftMax(X ·X⊤)| (8)

X = concatenate([x1, x2, . . . , xM])

The SoftMax function handles the last dimen-
sion of the input matrix X whose shape is M×N .
The I is an identity matrix with shape (M×M),
and xi is the i-th prominent semantics vector calcu-
lated by the enc. X ·X⊤ represents the correlation
between a certain prominent semantic vector and
other prominent semantic vectors. Figure 3 shows
a schematic of the SEMANTIC ALIENATION NORM.

Original 
Semantics

Prominent 
Semantics 1

Prominent 
Semantics 2

Semantic
Segmentation

Push

PushPush

Push

Prominent 
Semantics M

Push Push

...

Figure 3: A Schematic of SEMANTIC ALIENATION
NORM. Note that the “push arrow” indicates that the
semantic similarity between the Prominent Semantics
at both ends is decreased.

Pull

Original 
Semantics

Prominent 
Semantics 1

Prominent 
Semantics 2

Prominent 
Semantics M

Centralization 
Prominent 
Semantics

Add

Figure 4: A Schematic of SEMANTIC CENTRALIZA-
TION NORM. Note that the “pull arrow” indicates
that the semantic similarity between the Centralization
Prominent Semantics and the Original Semantics will
be increased.

3.4.2 Semantic Centralization Norm
Then we propose the Lscn to ensure the ensemble
result

∑M
i xi of these prominent semantic vectors

(x1, x2, . . . , xM) is similar with the semantics of
the original context, which is shown in Figure 4.

Lscn = 1− cosine(enc(C),

M∑

i

xi), (9)

where enc(C) represents the vector representation
of the original semantics, C is the vector represen-
tation of the original context.

3.4.3 Semantic Distillation Norm
Finally, we propose Lsdn, which uses the relation-
ship among the ground-truth responses to teach
our model to learn the semantic relation of these
prominent semantics. That is, with Lsdn, the con-
nections between prominent semantics and ground-
truth responses can be further established, which
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Model ppl Distinct-1 Distinct-2 Length BLEU-1 BLEU-2 BLEU-3 Emb.Aver. Coherence

Seq2Seq 52.6±.10 0.006±.00 0.019±.00 6.8±.63 0.310±.02 0.243±.02 0.199±.02 0.853±.00 0.828±.00
CVAE 12.2±.13 0.035±.01 0.268±.02 9.7±.16 0.347±.00 0.282±.00 0.236±.00 0.842±.00 0.798±.00
K-CVAE 9.8±.22 0.045±.00 0.337±.01 9.7±.33 0.338±.01 0.275±.00 0.231±.00 0.838±.00 0.796±.00
SpaceFusion 24.3±.59 0.018±.00 0.087±.01 7.3±.21 0.335±.01 0.264±.01 0.217±.01 0.851±.00 0.825±.00
SepaCVAE 5.6±.07 0.041±.00 0.367±.02 15.6±.75 0.425±.01 0.357±.01 0.306±.01 0.859±.00 0.833±.00
SegCVAE 6.1±.12 0.038±.00 0.341±.01 17.4±.27 0.453±.00 0.384±.00 0.330±.00 0.865±.00 0.836±.00

Seq2Seq 45.9±.13 0.003±.00 0.015±.00 11.8±.82 0.236±.04 0.193±.03 0.163±.03 0.465±.08 0.281±.05
CVAE 12.2±.17 0.009±.00 0.131±.00 13.1±.24 0.172±.02 0.144±.02 0.123±.02 0.285±.04 0.195±.03
K-CVAE 12.1±.20 0.010±.00 0.135±.00 13.1±.10 0.202±.02 0.169±.02 0.144±.01 0.308±.06 0.198±.05
SpaceFusion 8.2±.02 0.006±.00 0.017±.00 9.7±.22 0.365±.01 0.292±.01 0.243±.00 0.808±.00 0.697±.00
SepaCVAE 2.0±.06 0.025±.00 0.330±.03 13.5±.58 0.395±.01 0.326±.01 0.276±.01 0.807±.02 0.677±.01
SegCVAE 3.2±.08 0.021±.00 0.323±.01 14.4±.80 0.437±.01 0.364±.01 0.310±.01 0.836±.00 0.707±.01

Table 2: Results over the test data of CornellMovie (up) and Opensubtitles (down). The best score in each
column is in bold. Note that our BLEU-1,2,3 scores are normalized to [0, 1]. We run all models 5 times.

Decoder

Positive 
Prominent 

Semantics 1

Positive 
Prominent 

Semantics 2

Positive 
Prominent 

Semantics B

Generated 
Response 

Representation 1

Generated 
Response 

Representation 2

Generated 
Response 

Representation B

Self 
Dot

Ground-Truth 
Response 

Representation 1

Ground-Truth 
Response 

Representation 2

Ground-Truth 
Response 

Representation B

Self 
Dot

KL

KL

KL

Figure 5: A Schematic of SEMANTIC DISTILLATION
NORM. Note that the “Self Dot” operation is to make
each Generated or Ground-Truth Response Represen-
tation perform an inner product with itself and other
representations, and then perform SoftMax to get the
correlation between each representation and all repre-
sentations. KL means the KL divergence.

can improve the consistency of response generation
and the potential meaning of prominent semantics.
In addition, since the representation is performed
by enc, Lsdn can further adjust its semantic repre-
sentation capability. The schematic of SEMANTIC

DISTILLATION NORM is shown in Figure 5 and
Lsdn is defined as:

Lsdn = KL(SoftMax(Rgt ·R⊤
gt||

SoftMax(R+
gen ·R+⊤

gen)), (10)

where Rgt with the shape (B ×N) represents the
semantic matrix (vector representation) of batch
size B ground-truth responses obtained by the
model’s encoder enc. And R+

gen is the concate-
nated result of the vector representations of B gen-
erated responses, which are obtained through the
positive prominent semantics x+. Note that the
SoftMax function is also used to handle the last
dimension of the input matrix.

3.5 Objective Function

The final objective function for training our model
is to maximize:

Lall = L(r, x+)−λ(Lsan+Lscn+Lsdn), (11)

where L(r, x+) is shown in Eq (1), and λ in-
creases linearly from 0 to 1 in the first snorm_step
batches.

4 Experiment Settings

4.1 Data Setting

Two well-established open domain dia-
logue datasets are conducted for experiment:
CornellMovie and Opensubtitles. We
derived a processed version of Opensubtitles
released by Sun et al. (2021), which has 5M,
100K, and 50K single-turn dialogue pairs in
training, validation, and test sets, respectively. We
follow the same process for CornellMovie and
we obtain 51,108, 6,358 and 6,249 single-turn
dialogue pairs for training, validation, and test.

4.2 Baseline Models

We compare our model with state-of-the-art dia-
logue models: A GRU-based Seq2Seq (Shang et al.,
2015; Sordoni et al., 2015), a general CVAE based
dialogue model with BOW trick (CVAE; Shen et al.
(2017)), a knowledge guide CVAE (K-CVAE; Zhao
et al. (2017)), a SpaceFusion (Gao et al., 2019b)
and a self-separated CVAE (SepaCVAE; Sun et al.
(2021)). Due to the lack of knowledge annota-
tions in datasets, we use the the cluster results of
K-means (K) as the knowledge.
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DataSet model Diversity Relevance Fluency

Seq2Seq 6.13 3.47 2.30
CVAE 4.20 3.20 3.50

Cornell- K-CVAE 2.57 3.33 3.83
Movies SpaceFusion 5.13 3.60 2.73

SepaCVAE 1.97 2.57 4.03
SegCVAE 1.40 2.23 3.27

GroundTruth 3.60 1.13 1.03

Seq2Seq 4.03 2.80 3.80
CVAE 2.47 2.97 3.97

Open- K-CVAE 2.73 3.37 4.00
Subtitles SpaceFusion 6.57 2.66 2.30

SepaCVAE 2.33 2.43 3.47
SegCVAE 1.93 2.10 2.20

GroundTruth 3.93 1.53 1.07

Table 3: Human evaluation results on test data. The best
score in each column is in bold.

4.3 Evaluation Metrics and Training Details

In addition to the Distinct-n, BLEU, Emb.Aver and
Coherence, we also use Perplexity (ppl) (Neubig,
2017) and Length (Csaky et al., 2019) to evaluate
the performance of all models. For human evalua-
tion, we hired three annotators to rank all models
based on their generated responses. Please see Ap-
pendix A for more details on experimental settings.

5 Results and Analysis

5.1 Automatic Evaluation Results

Table 2 reports the automatic results on test data of
CornellMovie and Opensubtitles. These
results show that our SegCVAE achieves a better
performance in terms of most metrics. Specifically,
our SegCVAE achieves the best Length, BLEU,
Emb.Aver. and Coherence scores on both datasets,
which demonstrates the superior performance of
our model on generating coherent and related re-
sponses. In addition, the SegCVAE has a compet-
itive ppl and Distinct results. Generally speaking,
the Distinct metric is easily affect by the length
of generated responses. Therefore, as the SegC-
VAE generates longest responses, the proportion
of repeated words will increase, resulting in a de-
crease in the distinct score. In a nutshell, these
results shows the ability of SegCVAE to handle the
general dialogue generation task.

5.2 Human Evaluation Results

The results of the human evaluation are shown
in Table 3 (refer to Appendix A.2 for detailed se-
tups). To evaluate the consistency of the ranking

results assessed by three annotators, we use Pear-
son’s correlation coefficient. This coefficient is
0.80 on Diversity, 0.62 on Relevance, and 0.77
on Fluency, with p < 0.0001 and below 0.001,
which indicates high correlation and agreement.
This result shows that our model significantly out-
performs baselines in terms of diversity, relevance,
and fluency. Except for the ground-truth responses,
our model achieves the best scores of relevance
and diversity metrics on both datasets. The flu-
ency result of SegCVAE on the CornellMovie
is slightly worse than that of baselines, which is
mainly due to the length of responses generated
by SegCVAE being longer than that of baselines
(see Table 2). When the response lengths are simi-
lar on the Opensubtitles, SegCVAE can also
achieve the best fluency score.

5.3 Ablation Study
Table 4 reports the results of the ablation study.
It can be seen from the table that after removing
IS, Lscn and Lsdn, respectively, the results all de-
creased. And the results decreased the most after
removing IS, indicating that IS has the most im-
portant role in model performance. In addition,
we found that after removing EG, the Diversity of
the model increased, but the Emb.Aver. and Co-
herence decreased. This is because EG is mainly
responsible for regulating the prominent semantics
in the model without deviating from the original
semantics. Therefore, by removing EG, the promi-
nent semantics obtained by IS lacks constraints
and can become more diverse, but the connection
with the context is weaker. Similarly, Lsan is used
to make multiple prominent semantic information
segmented to be different from each other, so re-
moving Lsan will reduce Diversity and increase
Emb.Aver. and Coherence.

5.4 Case Study
We use the prominent semantics to guide the gener-
ation of responses, which requires the SegCVAE to
learn the relations among the contexts, the promi-
nent semantics, and the responses. To illustrate the
connection among prominent semantics, context
and generated responses, we report three samples
and their related words that extract by EG and IS,
which are shown in Table 5. Note that the words
extracted by EG and IS are used for calculating
prominent semantics through the encoder.

In Table 5, we can notice that the output of EG
is difficult to relate to the response. We suppose
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Model Distinct-1 Distinct-2 Distinct-3 BLEU-1 BLEU-2 BLEU-3 BLEU-4 Emb.Aver. Coherence

SegCVAE 0.021±.00 0.323±.01 0.781±.02 0.437±.01 0.364±.01 0.310±.01 0.249±.01 0.836±.00 0.707±.01

-wo. IS 0.010±.00 0.179±.02 0.570±.05 0.348±.10 0.291±.09 0.248±.07 0.199±.06 0.693±.16 0.519±.20
-wo. EG 0.022±.00 0.353±.03 0.816±.03 0.396±.02 0.328±.02 0.277±.02 0.222±.01 0.815±.01 0.673±.03
-wo. Lsan 0.018±.01 0.289±.07 0.731±.08 0.432±.02 0.358±.01 0.302±.01 0.239±.01 0.843±.01 0.727±.02
-wo. Lscn 0.021±.00 0.313±.03 0.755±.05 0.421±.00 0.349±.00 0.296±.00 0.238±.00 0.833±.00 0.703±.00
-wo. Lsdn 0.020±.00 0.320±.01 0.774±.01 0.433±.00 0.358±.00 0.302±.00 0.243±.00 0.836±.01 0.703±.02

Table 4: Ablation results on test data of Opensubtitles. The best score in each column is in bold.

Context I’m sorry, you’re mistaken.

EG Confided Confided
IS I Mistaken
SegCVAE So, I’ll help my mate and you. listen, one

day to tell me to go from the fields together.

Context Move! What have you done?

EG Rendezvous Humiliate
IS Move !
SegCVAE Hey, please. relax.

Context Not this year, dani. Mom said you have to.

EG Tying Tying
IS Said Not Said
SegCVAE I’m compounded you talk about our great

<unk> in the other times.

Table 5: Generated responses and their corresponding
keyword combinations of SegCVAE. EG and IS repre-
sent the External Guidance and the Internal Separation.

that this would blame the poor interpretability of
neural models and the lack of annotations. Note
that EG is trained by self-supervised learning with-
out any explicit-knowledge annotations. Therefore,
it learns to minimise the designed loss, which may
produce some unrecognised results or intermediate
features for human. We speculate that introducing
annotations or knowledge that consistent with hu-
man cognition will help the model to produce more
interpretable and better performance. We consider
it as an important future work and require more
efforts on this topic.

We also collect the generated responses and
show them in Appendix B.

5.5 Effectiveness Analysis

To further study the effectiveness of CDM, we con-
duct experiments over these mappings.

Data and Tasks We collect two particular
datasets (named as O2M and M2O) from the
Opensubtitles, and define two new tasks (one-
to-many and many-to-one dialogue learning task)
to analyse the ability of generative dialogue models
in handling CDM. In our experiments, all models

model Suitability Erudition

CVAE 2.69 2.33
K-CVAE 2.75 2.35
SepaCVAE 2.15 2.21
SegCVAE 2.03 1.89

CVAE 2.42 1.96
K-CVAE 2.48 1.89
SepaCVAE 2.16 1.92
SegCVAE 2.05 1.92

Table 6: Evaluation results on test data of O2M (up) and
M2O (down). The best score in each column is bold.

are trained on O2M or M2O to accomplish the two
tasks. The training and validation procedures are
the same as for general dialogue generation task.
In inference stage, every model should generate
N responses for each context in test set of O2M
or M2O. Note that N is set to 8 in this paper (See
Appendix C for detail).

Evaluation Settings Different from the previous
settings, we conduct a new human evaluation strat-
egy. First, each model received 50 contexts ran-
domly extracted from O2M and M2O, respectively,
and generated 400 responses. Then, three annota-
tors were invited to rank all models with respect
to “Suitability” and “Erudition” of their responses.
Ties are allowed. Suitability indicates how many
diverse and relevant responses are generated by the
model. Erudition specifies whether multiple gen-
erated responses have the same semantics as the
ground-truth responses. We design Suitability to
validate whether the model can learn the diversity
and relevance from CDM samples, and we use Eru-
dition to assess whether the semantic information
of multiple ground-truths is involved in multiple
responses generated by the model.

Results and Analysis Table 6 reports the result.
We observe that SegCVAE achieves the best Suit-
ability on both O2M and M2O datasets, which we
believe stems from the model’s superior ability to
model the CDM. We also observe that SegCVAE
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achieves the best Erudition on O2M dataset but poor
Erudition on M2O dataset, and K-CVAE achieves
best Erudition on M2O dataset but worst Erudition
on O2M dataset. This finding is in line with the
characteristics of these models: (1) Due to the
cluster information, the K-CVAE samples latent
variables from a concentrated prior distribution,
resulting in generating multiple similar responses
easily. (2) The SepaCVAE uses the orthogonal vec-
tors for sampling latent variables, which increases
the diversity but decreases the number of relevant
responses. (3) Our SegCVAE uses multiple promi-
nent semantics to capture the diverse and relevant
features, resulting in generating different but co-
herent responses. Therefore, the similar responses
generated by K-CVAE are easily hit the only “one”
response in M2O dataset but hardly hit multiple
responses in O2M dataset, which leads the best Eru-
dition on M2O but worst Erudition on O2M.

On the contrary, our SegCVAE generates multi-
ple responses corresponding to multiple prominent
semantics, which easily captures the semantics of
multiple responses in O2M dataset and achieves the
best Erudition on O2M dataset. However, due to the
trade-off between diversity and relevance, the Eru-
dition of SegCVAE on M2O dataset is a little poor.
We also use the Pearson’s correlation coefficient
to evaluate the consistency of the ranking results.
The coefficient is 0.64 on Suitability, and 0.51 on
Erudition, with p<0.0001 and below 0.001, which
indicates high correlation.

6 Conclusion

This paper proposes a novel SegCVAE to model
complex dialogue mappings (CDM) in human con-
versations. SegCVAE parses the CDM from a se-
mantic perspective: Using multiple prominent se-
mantics segmented from the context to establish re-
lationships with the responses, multiple prominent
semantics can correspond to multiple responses,
and multiple contexts can also segment similar
prominent semantics. In this way, prominent se-
mantics can constrain latent variables to learn
semantic relations to tackle incoherent problem,
while enriching them to mitigate the non-diverse
problem. To realize SegCVAE, we propose three
novel modules: Internal Separation (IS), External
Guidance (EG), and Semantic Norms (i.e. Lsan,
Lscn, and Lsdn). IS is used to get the basic infor-
mation for computing prominent semantics, EG
is used to constrain the prominent semantics not

to deviate too far from the original semantics, and
three Semantic Norms are proposed to establish re-
lationships for contexts, prominent semantics and
responses. The experimental results show the supe-
riority of our model in dialogue generation, one-to-
many and many-to-one dialogue learning tasks.

Limitations

The limitations of our paper are as follow:
• The SegCVAE model is proposed to model the
serious complex dialogue mappings (i.e. one-
to-many and many-to-one) phenomena in open-
domain dialogue generation task. Therefore, the
SegCVAE is suitable for generative tasks where
non-one-to-one mappings exist in the dataset. If
the task does not require modeling non-one-to-one
mappings, our model has little advantage.

• The hyper-parameters (e.g.the number of ex-
tracted words chan, the number of triggers M and
so on) need to be determined through multiple ex-
periments, which cannot be set adaptively. These
initial promising results for segmenting context
into multiple prominent semantics for modeling
complex dialogue mappings will hopefully lead to
future work in this interesting direction.

• We provide further analysis on One-to-Many and
Many-to-One dialogue learning task, and propose
a new human evaluation strategy to directly valid
the performance of models on processing non-one-
to-one dialogue samples. However, we do not pro-
vide results on automatic evaluation of modeling
one-to-many and many-to-one mappings. This is
primarily because there are no publicly recognized
metrics for the evaluation of the performance on
modeling one-to-many and many-to-one dialogue
mappings directly. In addition, it is also difficult
to propose the automatic metrics to achieve the
evaluation process due to the lack of supervised
information. Automatically evaluating the genera-
tive dialogue model’s ability to model the complex
mappings is a challenging problem and we leave
that for future work.

Acknowledgements

We would like to thank the anonymous reviewers
for their constructive comments. This research is
supported by Beijing Natural Science Foundation
(No. 4222037 and L181010). Kan Li is the corre-
sponding author.

4148



References
Reina Akama, Sho Yokoi, Jun Suzuki, and Kentaro Inui.

2020. Filtering noisy dialogue corpora by connec-
tivity and content relatedness. In EMNLP, pages
941–958.

Hongshen Chen, Zhaochun Ren, Jiliang Tang, Yi-
hong Eric Zhao, and Dawei Yin. 2018. Hierarchical
variational memory network for dialogue generation.
In WWW, pages 1653–1662. ACM.

Richard Csaky, Patrik Purgai, and Gábor Recski.
2019. Improving neural conversational models with
entropy-based data filtering. In ACL (1), pages 5650–
5669.

Cristian Danescu-Niculescu-Mizil and Lillian Lee. 2011.
Chameleons in imagined conversations: A new ap-
proach to understanding coordination of linguistic
style in dialogs. In ACL.

Shaoxiong Feng, Hongshen Chen, Kan Li, and Dawei
Yin. 2020a. Posterior-gan: Towards informative and
coherent response generation with posterior genera-
tive adversarial network. In AAAI, pages 7708–7715.

Shaoxiong Feng, Xuancheng Ren, Hongshen Chen, Bin
Sun, Kan Li, and Xu Sun. 2020b. Regularizing dia-
logue generation by imitating implicit scenarios. In
EMNLP, pages 6592–6604.

Jun Gao, Wei Bi, Xiaojiang Liu, Junhui Li, Guodong
Zhou, and Shuming Shi. 2019a. A discrete CVAE for
response generation on short-text conversation. In
EMNLP-IJCNLP, pages 1898–1908. Association for
Computational Linguistics.

Xiang Gao, Sungjin Lee, Yizhe Zhang, Chris Brock-
ett, Michel Galley, Jianfeng Gao, and Bill Dolan.
2019b. Jointly optimizing diversity and relevance
in neural response generation. In NAACL-HLT (1),
pages 1229–1238.

Marjan Ghazvininejad, Chris Brockett, Ming-Wei
Chang, Bill Dolan, Jianfeng Gao, Wen-tau Yih, and
Michel Galley. 2018. A knowledge-grounded neural
conversation model. In AAAI, pages 5110–5117.

Tianxing He and James R. Glass. 2020. Negative train-
ing for neural dialogue response generation. In ACL,
pages 2044–2058.

Bernd Huber, Daniel J. McDuff, Chris Brockett, Michel
Galley, and Bill Dolan. 2018. Emotional dialogue
generation using image-grounded language models.
In CHI, page 277.

Eric Jang, Shixiang Gu, and Ben Poole. 2017. Cate-
gorical reparameterization with gumbel-softmax. In
ICLR (Poster). OpenReview.net.

Diederik P. Kingma and Max Welling. 2014. Auto-
encoding variational bayes. In ICLR.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. 2016a. A diversity-promoting ob-
jective function for neural conversation models. In
HLT-NAACL, pages 110–119.

Jiwei Li, Michel Galley, Chris Brockett, Georgios P.
Spithourakis, Jianfeng Gao, and William B. Dolan.
2016b. A persona-based neural conversation model.
In ACL (1).

Jiwei Li, Will Monroe, Alan Ritter, Dan Jurafsky,
Michel Galley, and Jianfeng Gao. 2016c. Deep re-
inforcement learning for dialogue generation. In
EMNLP, pages 1192–1202.

Yiwei Li, Shaoxiong Feng, Bin Sun, and Kan Li. 2022a.
Diversifying neural dialogue generation via negative
distillation. In Proceedings of the 2022 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, NAACL 2022, Seattle, WA, United States,
July 10-15, 2022, pages 407–418. Association for
Computational Linguistics.

Yiwei Li, Bin Sun, Shaoxiong Feng, and Kan Li. 2022b.
Stop filtering: Multi-view attribute-enhanced dia-
logue learning. CoRR, abs/2205.11206.

Pierre Lison and Jörg Tiedemann. 2016. Opensub-
titles2016: Extracting large parallel corpora from
movie and TV subtitles. In LREC.

Chia-Wei Liu, Ryan Lowe, Iulian Serban, Michael Nose-
worthy, Laurent Charlin, and Joelle Pineau. 2016.
How NOT to evaluate your dialogue system: An
empirical study of unsupervised evaluation metrics
for dialogue response generation. In EMNLP, pages
2122–2132.

Qian Liu, Yihong Chen, Bei Chen, Jian-Guang Lou,
Zixuan Chen, Bin Zhou, and Dongmei Zhang. 2020.
You impress me: Dialogue generation via mutual
persona perception. In ACL, pages 1417–1427.

Thang Luong, Hieu Pham, and Christopher D. Manning.
2015. Effective approaches to attention-based neural
machine translation. In EMNLP, pages 1412–1421.

Fei Mi, Yitong Li, Yulong Zeng, Jingyan Zhou, Yasheng
Wang, Chuanfei Xu, Lifeng Shang, Xin Jiang, Shiqi
Zhao, and Qun Liu. 2022. PANGUBOT: efficient
generative dialogue pre-training from pre-trained lan-
guage model. CoRR, abs/2203.17090.

Graham Neubig. 2017. Neural machine translation and
sequence-to-sequence models: A tutorial. CoRR,
abs/1703.01619.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalua-
tion of machine translation. In ACL, pages 311–318.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word
representation. In EMNLP, pages 1532–1543.

4149



Iulian Vlad Serban, Alessandro Sordoni, Yoshua Ben-
gio, Aaron C. Courville, and Joelle Pineau. 2016.
Building end-to-end dialogue systems using gener-
ative hierarchical neural network models. In AAAI,
pages 3776–3784.

Lifeng Shang, Zhengdong Lu, and Hang Li. 2015. Neu-
ral responding machine for short-text conversation.
In ACL (1), pages 1577–1586.

Xiaoyu Shen, Hui Su, Yanran Li, Wenjie Li, Shuzi
Niu, Yang Zhao, Akiko Aizawa, and Guoping Long.
2017. A conditional variational framework for dialog
generation. In ACL (2), pages 504–509.

Kihyuk Sohn, Honglak Lee, and Xinchen Yan. 2015.
Learning structured output representation using deep
conditional generative models. In NIPS, pages 3483–
3491.

Alessandro Sordoni, Michel Galley, Michael Auli, Chris
Brockett, Yangfeng Ji, Margaret Mitchell, Jian-Yun
Nie, Jianfeng Gao, and Bill Dolan. 2015. A neural
network approach to context-sensitive generation of
conversational responses. In HLT-NAACL, pages
196–205.

Bin Sun, Shaoxiong Feng, Yiwei Li, Jiamou Liu, and
Kan Li. 2021. Generating relevant and coherent dia-
logue responses using self-separated conditional vari-
ational autoencoders. In ACL/IJCNLP, pages 5624–
5637. ACL.

Bin Sun, Shaoxiong Feng, Yiwei Li, Jiamou Liu, and
Kan Li. 2022. THINK: A novel conversation model
for generating grammatically correct and coherent
responses. Knowl. Based Syst., 242:108376.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural networks.
In NIPS, pages 3104–3112.

Chongyang Tao, Shen Gao, Mingyue Shang, Wei Wu,
Dongyan Zhao, and Rui Yan. 2018. Get the point of
my utterance! learning towards effective responses
with multi-head attention mechanism. In IJCAI,
pages 4418–4424.

Weichao Wang, Shi Feng, Daling Wang, and Yifei
Zhang. 2019. Answer-guided and semantic coherent
question generation in open-domain conversation. In
EMNLP-IJCNLP, pages 5065–5075. Association for
Computational Linguistics.

Jingjing Xu, Xuancheng Ren, Junyang Lin, and Xu Sun.
2018a. Diversity-promoting GAN: A cross-entropy
based generative adversarial network for diversified
text generation. In EMNLP, pages 3940–3949.

Xinnuo Xu, Ondrej Dusek, Ioannis Konstas, and Verena
Rieser. 2018b. Better conversations by modeling,
filtering, and optimizing for coherence and diversity.
In EMNLP, pages 3981–3991.

Xinnuo Xu, Ondrej Dusek, Ioannis Konstas, and Verena
Rieser. 2018c. Better conversations by modeling,
filtering, and optimizing for coherence and diversity.
In EMNLP, pages 3981–3991.

Zhen Xu, Bingquan Liu, Baoxun Wang, Chengjie Sun,
Xiaolong Wang, Zhuoran Wang, and Chao Qi. 2017.
Neural response generation via GAN with an approx-
imate embedding layer. In EMNLP, pages 617–626.

Xinchen Yan, Jimei Yang, Kihyuk Sohn, and Honglak
Lee. 2016. Attribute2image: Conditional image gen-
eration from visual attributes. In ECCV (4), volume
9908 of Lecture Notes in Computer Science, pages
776–791.

Hainan Zhang, Yanyan Lan, Jiafeng Guo, Jun Xu, and
Xueqi Cheng. 2018a. Reinforcing coherence for se-
quence to sequence model in dialogue generation. In
IJCAI, pages 4567–4573.

Yizhe Zhang, Michel Galley, Jianfeng Gao, Zhe Gan,
Xiujun Li, Chris Brockett, and Bill Dolan. 2018b.
Generating informative and diverse conversational
responses via adversarial information maximization.
In NeurIPS, pages 1815–1825.

Tiancheng Zhao, Ran Zhao, and Maxine Eskénazi. 2017.
Learning discourse-level diversity for neural dialog
models using conditional variational autoencoders.
In ACL (1), pages 654–664.

4150



A Experimental Settings

A.1 Automatic Evaluation Metrics
Our primary metrics of interest are Distinct-n,
BLEU, Embedding Average (Emb.Aver.), and Co-
herence. The Distinct-n is responsible for evaluat-
ing the diversity of generated responses, which is
calculated through the ratio of distinct n-grams and
all generated n-grams. The BLEU is used to eval-
uate the degree of the word-overlap between the
generated response and the ground truth response.
The Emb.Aver. is introduced to evaluate the seman-
tic relationship of generated responses and ground-
truth responses. The Coherence is applied to assess
the coherence and relevance between contexts and
generated responses. In addition, we also employ
the Perplexity (ppl) and Length to validate all mod-
els. The ppl is an indicator commonly used in
dialogue generation tasks, which is usually used to
assess the degree of convergence of the model. The
Response length is the average number of words of
all generated responses.

A.2 Human Evaluation
We conduct a human evaluation to further validate
our model and baseline models for their ability to
generate proper responses. First, we randomly ex-
tracted 200 samples from the test sets of the two di-
alogue datasets, respectively. Each sample contains
one context and the response generated by different
models. Then, we hired three annotators to rank all
responses of all experimented models concerning
three aspects of the generated responses: Diversity,
Relevance and Fluency. Ties are allowed. Diversity
indicates how much the generated response pro-
vides specific and diverse information. The more
diverse the information, the higher the ranking of
the model on Diversity. Relevance specifies how
likely the generated response is relevant to the con-
text, which requires annotators to consider whether
the response is suitable for the context at a semantic
level. Fluency represents how likely the generated
response is produced by human. The fewer syntac-
tic errors, the higher the model will rank in terms
of Fluency.

A.3 Training Details
For fair comparison, we used the 300-dimensional
GloVe embeddings as the word-embedding ma-
trix for all models. The hidden size of all mod-
els is set to 300. The maximum length of con-
text and response is set to 25. The m, chan and

Context That’s what your crew said. Are they ly-
ing? or are you?

Seq2Seq I’m not going to be a long time.
CVAE Great. You’ve brought us before that’s ten

o’clock.
K-CVAE You played the maximum?
SpaceFusion I’m not a couple of firing.
SepaCVAE These’re what ... to now you?
SegCVAE Well, We know it’s twenty, new york,

they’re throwing the company.

Context We don’t know.

Seq2Seq I don’t know.
CVAE I told you, Mrs. Webster. You don’t

wanna put the police and he’s dead.
K-CVAE Now it’s something i want to know that.
SpaceFusion What do you think they were going to do?
SepaCVAE Do you see of what stupid well here?
SegCVAE What the matter? You think we under-

stand anything to that, anything?

Table 7: Generated responses from the baseline and
SegCVAE on test set of CornellMovie.

M are set to 3, 3 and 8, respectively. We set
the batch sizes to 64 and 32 for CornellMovie
and Opensubtitles, respectively. Adam is uti-
lized for optimization. The initial learning rate is
set to 0.001. The snormstep is set to 20000 for
CornellMovie, but for Opensubtitles, the
λ is constant at 1.0. We also introduce KL anneal-
ing trick to leverage the KL divergence during the
training. The KL weight increases linearly from 0
to 1 in the first 10000 batches. We train all mod-
els in 50 epochs on a RTX 2080Ti GPU card with
Tensorflow, and save the generated responses when
the ppl reaching minimum. The random seed is
set as 123456. Greedy search is used to generate
responses for evaluation.

B Case Study

We collected the generated responses from the test
set of CornellMovie and showed them in Ta-
ble 7. In the first example, we found that SegCVAE
gave a response of “they’re throwing the company.”
considering “they lying” in the context. Compared
with the responses generated by other models, the
response of SegCVAE is more specific and more
relevant to the context. As for the second sam-
ple, only the Seq2seq only generates a general and
short reply "I don’t know."; the others all generate
diverse responses. However, considering the co-
herence between the generated responses and the
context, our model is more advantageous. This
result shows the superiority of SegCVAE in solv-
ing the dialogue context and generating diverse
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dataset type # tokens # pairs # contexts(c) # responses(r) avg # r avg # c max # r max # c

training 40,875 778,658 284,516 778,658 2.74 - 1,546 -
O2M validation - 222,126 81,057 222,126 2.74 - 689 -

test - 110,446 40,710 110,446 2.71 - 497 -
training 40,331 768,183 768,183 279,978 - 2.74 - 1,588

M2O validation - 217,474 217,474 79,552 - 2.73 - 957
test - 109,815 109,815 39,795 - 2.76 - 321

Table 8: Statistics for One-to-Many (O2M) and Many-to-One (M2O) datasets. The # tokens is the vocabulary
size, and the # pairs/contexts/responses is the number of the dialogue pairs/contexts/responses in datasets. The
avg/max # r is the average/maximum number of responses for each context, and the avg/max # c is the aver-
age/maximum number of contexts for each response. “-” means the cell is not necessary for this type/dataset.

response for dialogue generation task. As we have
analyzed, using the prominent semantics to replace
the original context for response generation can
better establish the semantic relationship between
context and response, thus ensuring the diversity
and relevance of the generated responses.

C Further Analysis on One-to-Many and
Many-to-One Dialogue Learning

C.1 Data Settings

We extract two particular datasets from the raw
Opensubtitles: One-to-Many and Many-to-
One, for the One-to-Many and Many-to-One di-
alogue learning, respectively. To build these
two datasets, we first extract single-turn dia-
logues from the Opensubtitles: T − 1 single-
turn dialogues [(u1, u2), (u2, u3), ..., (uT−1, uT )]
can be extracted from one multi-turn dialogue
(u1, u2, ..., uT ), where u represents an utterance
in each dialogue. Then, we selected and collected
a large collection of one-to-many dialogue pairs
as the One-to-Many (O2M) dataset, and another
large collection of many-to-one dialogue pairs as
the Many-to-One (M2O) dataset. Finally, we use
the token-list of GloVe (Pennington et al., 2014) to
filter the O2M and M2O datasets. For each dialogue
pair (context ci, response ri), we first obtain its
tokens after word segmentation, and then judge
whether its tokens are all contained in GloVe’s
token-list. If the GloVe do not contain any tokens
of (ci, ri), we drop all dialogue pairs containing the
ci or ri from the dataset. Table 8 lists key statistics
of the dataset after processing.

C.2 Non-one-to-one Dialogue Learning Tasks

One-to-Many Dialogue Learning Task Let c
denote a context, and rs=r1, r2, . . . , rn denote the
responses to c. Follow the general dialogue genera-
tion task, we put the c and rs into n dialogue pairs

Context I’d rather die than live with you! freaking
unk!

Responses Relax! where does it hurt?
Stop! ma’am, ma’am!

CVAE I’m gonna get you to know!
That’s a bad idea, mister.
I have a hell!
It’s a joke that you said he’s a special agent!
why do you want me to believe?
You have something to do with this? aah.
Hey, you’re ready? yeah.
The world’s in the mood!
Here, put your hands in the bowl.

SegCVAE Yep tonight really... to me. sean?
Calm down. hurry any, hurry unk.
Nothing, they are hot / hey,
No-no, your unk. i...
God? uh... did not fit...
Be it then let’s abandon it. 9 pigs. 1 50,000.
open.
Really is going with nothing? all unk came
in the past hours.
Most way. hell and i are unk

Table 9: Generated responses from the baseline and
SegCVAE on O2M dataset.

(c, r1), (c, r2), . . . , (c, rn). Let D1n represent the
dataset that only contains such one-to-many dia-
logue pairs. This task requires a dialogue gener-
ation model to learn the one-to-many knowledge,
and to generate multiple coherent and informative
responses for every context sentence.

Many-to-One Dialogue Learning Task Rela-
tively speaking, let cs=c1, c2, . . . , cn denote the
contexts, and r denote a response to the cs. Cor-
respondingly, we use Dn1 to represent a dataset
that only contains many-to-one dialogue pairs
(c1, r), (c2, r), . . . , (cn, r). This task requires the
dialogue generation model to learn the many-to-
one knowledge, and to distinguish which of the
contexts can give the same response, and then in-
crease the diversity while keeping the coherence of
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the generated response.
In our experiments, all models are trained on

D1n or Dn1 to accomplish the One-to-Many Di-
alogue Learning Task or Many-to-One Dialogue
Learning Task. The training and validation proce-
dures are the same as for general dialogue genera-
tion task. In inference stage, every model should
generate N responses for each context in test set of
D1n or Dn1. Note that N is set to 8 in this paper.

C.3 Case Study
We collected the generated responses of contexts in
test set of O2M dataset and showed a sample in Ta-
ble 9. We can observe that the SegCVAE generates
“Calm down.” and “No-no,”, which are correspond-
ing to the “Relax!” and “Stop” in true responses.
This result illustrates that the SegCVAE can ef-
fectively build the relations between the multiple
prominent semantics and the multiple responses.
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