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Abstract
Semi-supervised learning has shown promise
in allowing NLP models to generalize from
small amounts of labeled data. Meanwhile, pre-
trained transformer models act as black-box
correlation engines that are difficult to explain
and sometimes behave unreliably. In this pa-
per, we propose tackling both of these chal-
lenges via Automatic Rule Induction (ARI), a
simple and general-purpose framework for the
automatic discovery and integration of sym-
bolic rules into pretrained transformer models.
First, we extract weak symbolic rules from low-
capacity machine learning models trained on
small amounts of labeled data. Next, we use
an attention mechanism to integrate these rules
into high-capacity pretrained transformer mod-
els. Last, the rule-augmented system becomes
part of a self-training framework to boost su-
pervision signal on unlabeled data. These steps
can be layered beneath a variety of existing
weak supervision and semi-supervised NLP
algorithms in order to improve performance
and interpretability. Experiments across nine
sequence classification and relation extraction
tasks suggest that ARI can improve state-of-the-
art methods with no manual effort and minimal
computational overhead.

1 Introduction

Large-scale pretrained neural networks can strug-
gle to generalize from small amounts of labeled
data (Devlin et al., 2019), motivating approaches
that leverage both labeled and unlabeled data. This
is partially due to the black-box and correlational
nature of neural networks, which confers the addi-
tional difficulties of uninterpretability (Bolukbasi
et al., 2021) and unreliability (Sagawa et al., 2020).

A growing body of research seeks to ameliorate
these issues by augmenting neural networks with
symbolic components: heuristics, logical formu-
las, program traces, network templating, blacklists,
etc (Arabshahi et al., 2018; Galassi et al., 2020;
Wang et al., 2021). In this paper, we refer to these

components as rules. Symbolic reasoning has at-
tractive properties. Rules need little or no data to
systematically generalize, and rules are inherently
interpretable with respect to their constituent oper-
ations.

In this paper we propose a general-purpose
framework for the automatic discovery and inte-
gration of symbolic rules into pretrained models.
The framework contrasts with prior neuro-symbolic
NLP research in two ways. First, we present a fully
automatic rule generation procedure, whereas prior
work has largely focused on manually crafted rules
(Mekala and Shang, 2020; Awasthi et al., 2020; Li
et al., 2021) or semi-manual rule generation proce-
dures (Boecking et al., 2020; Galhotra et al., 2021;
Zhang et al., 2022). With these existing techniques,
practioners must formulate and implement their
rules by hand, creating a second-order “rule anno-
tation” burden on top of the data labeling process.

Second, the proposed framework is general
purpose and can be applied to any classification
dataset. This contrasts with prior research that pro-
poses task- and domain-specific symbolic logic,
through weak supervision signals (Ratner et al.,
2017; Awasthi et al., 2020; Safranchik et al., 2020),
special loss functions (Xu et al., 2018), model ar-
chitectures (Seo et al., 2021), and prompt templates
(Schick and Schütze, 2020a).

Our framework consists of two steps. First, we
generate symbolic rules from data. This involves
training low-capacity machine learning models on
a reduced feature space, extracting artifacts from
these models which are predictive of the class la-
bels, then converting these artifacts into rules. After
the rule induction step, we use the induced rules
to amplify training signal in the unlabeled data. In
particular, we adopt a rule-augmented self-training
procedure, using an attention mechanism to aggre-
gate the predictions of a backbone classifier (e.g.
BERT) and the rules.

We evaluate the ARI framework across nine text
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classification and relation extraction tasks. The
results suggest that the proposed algorithm can
exceed state-of-the-art semi-supervised baselines,
and that these gains may be because the model
learns to rely more heavily on rules for difficult-to-
predict examples. We also show that the proposed
rule induction strategy can rival human crafted
rules in terms of their quality. Last, we demon-
strate the interpretabiltiy of the overall system. In
summary, the contributions of this paper are:1

• Methods for automatically inducing and filter-
ing symbolic rules from data.

• A self-training algorithm and attention mech-
anism for incorporating these rules into pre-
trained NLP models.

• Evidence suggesting the proposed framework
can be layered beneath a number existing algo-
rithms to boost performance and interpretabil-
ity.

2 The ARI Framework

The proposed rule induction framework seeks to
automatically induce symbolic rules from labeled
data. Next, the rules can be used to amplify train-
ing signal on the unlabeled data. These steps are
depicted in Fig. 1.

More formally, assume we are given a target
classification task consisting of labeled classifica-
tion data L = {(xi, yi)}Mi=1 and unlabeled data
U = {(xi+M )}Ni=1, where each xi is a text string
and yi ∈ {1, ...,K}. Our proposed method uses
the labeled data L to generate a set of symbolic
prediction functions (“rules”) R = {rj}Rj=1 that
take the text and output a label or abstain: rj(x) ∈
{−1} ∪ {1, ...,K}. We then train a joint system
which models P (y|x; L,U ,R), i.e., an estimator
which utilizes the labeled data, unlabeled data, and
rules to make reliable and interpretable predictions.

2.1 Rule Induction
We begin by explaining our rule induction tech-
nique. Concretely, the goal is to generate a set of
prediction functions which use the text to output a
label or abstain. We operationalize this as a three-
stage pipeline. First, we featurize the text. Second,
we use these features to construct rule-based pre-
dictor functions. Last, we filter the rules in order

1An open-source implementation of the framework
is available at: https://github.com/microsoft/
automatic-rule-induction.

Figure 1: Overview of the proposed Automatic Rule
Induction (ARI) framework. First, rules are induced
from labeled data (top, shown with real example rules).
Second, the rules are integrated into pre-trained NLP
models via an attention mechanism and a self-training
procedure (bottom).

to block them from firing on risky examples (to
maximise precision).

Text Featurization. In the first step, the input
text xj is converted into a binary or continuous
feature space ϕ(xj) ∈ Rd that is more amenable to
symbolic reasoning than the raw text.

1. Ngram (ϕN ). We adopt a bag-of-words model
of the text, converting each string into a binary
vector reflecting the presence or absence of
words in a vocabulary of size V .

2. PCA (ϕP ). Intuitively, if we only have a small
amount of labeled data, then common ngrams
may be spuriously correlated with the labels.
To tackle this issue, we follow Arora et al.
(2017); Yang et al. (2021) by subtracting off
a vector of shared information from each fea-
ture matrix. Specifically, we compute the first
principal component v of an ngram feature
matrix P ∈ R(M+N)×d constructed from both
labeled and unlabeled texts in a dataset, i.e.,
the jth row Pj,: = ϕN (xj) : j ∈ [1,M +N ].
Then it follows that singular value decompo-
sition (SVD) of the ngram feature matrix is
P = UΣV T . The first principal component
v is the most “common” part of all samples
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(e.g., common words), and is defined as the
first column of V ∈ Rd×d. We then remove
the projection of all features vectors {ϕN (x)}
onto v:

ϕP (x) := ϕN (x)− v
vTϕN (x)

∥ϕN (x)∥2

We hypothesize that this can help remove com-
mon information that is shared across many
texts, in order to isolate the most unique and
salient lexical phenomena.

Rule Discovery. Armed with a featurization of
the texts in L, we proceed by generating symbolic
rules from the features which are capable of predict-
ing the labels with high precision. In practice, these
rules are artifacts of low-capacity machine learning
models. We experiment with two rule generation
algorithms.

The first rule generation algorithm uses a linear
model and can be applied to ngram-based (binary)
feature spaces. It involves training a simple linear
model m(xj) = σ(Wϕ(xj)) containing one ma-
trix of parameters W ∈ RK×V that predicts class
labels from the input features. It is trained by using
a cross-entropy loss function and l2 regularization
term (Tibshirani, 1996). Note that in this case σ
represents an element-wise sigmoid function (Mao
et al., 2014). Next, we select the R largest weights
in W and create one rule from each weight. If
a selected weight wi,k corresponds to feature fi
and label k, then we create a rule r that predicts
label k if the ith dimension of ϕ(xj) is 1, otherwise
abstaining:

r(xj) =

{
k if ϕi(xj) = 1

−1 otherwise

The second rule generation algorithm uses de-
cision trees and can be applied to ngram- or PCA-
based (binary or continuous) feature spaces. In-
tuitively, we want to find regions inside the range
of each feature (or combination of features) that
are predictive of the labels. We accomplish this by
training a random forest classifier containing R de-
cision trees at a depth of D (we use D = 3 in the ex-
periments). To make a rule from each decision tree,
we apply a confidence threshold τ to the predicted
label distribution in order to control the bound-
ary between prediction and abstainment. In other
words, if a decision tree ti outputs a probability

distribution p̂ over the labels, i.e. ti(ϕ(xj)) = p̂i,j
then we construct a rule ri such that:

ri(xj) =

{
argmax(p̂i,j) if max(p̂i,j) > τ

−1 otherwise

Note that due to the bagged construction of the
random forest, we hypothesize that these decision
trees will yield rules which can be aggregated for
robust supervision signal.

Rule Filtering. Since rules are allowed to ab-
stain from making predictions, we can introduce
dynamic filtering mechanisms that block rules from
firing on examples where the rule is likely to make
errors. This helps increase the precision of our
rules and increase the fidelity of our downstream
rule integration activities.

• Training accuracy. The rules are not perfect
predictors and can make errors on the train-
ing set. We randomly sample a proportion
of these errors (50% in the experiments) and
replace the incorrectly predicted value with
abstainment (-1).

• Semantic coverage. We design a filter to en-
sure that the “covered” subset of examples
(examples where at least one rule fires) re-
sembles the training set. In detail, after a
rule ri fires on input text xj , predicting label
ri(xj) = l, we use the Sentence BERT frame-
work (Reimers and Gurevych, 2019) and a pre-
trained mpnet model (Song et al., 2020) to ob-
tain embeddings for the input sentence xj and
all training samples that have the same label as
the rule’s prediction: {xi ∈ L : yi = l}. We
then compute the cosine similarity between
the input’s embedding and the training set em-
beddings. If the maximum of these similari-
ties is below some threshold (0.8 in the exper-
iments) then we block the rule ri from firing
and replace its prediction l with abstainment
(-1).2

2.2 Rule Integration
After we have induced weak symbolic rules
{ri}Ri=1 from the labeled data L, we can leverage
the rules and unlabeled data U for extra training
signal.

2Note that in applied settings, this may be computed on
the fly with fast similarity search packages, e.g. Johnson et al.
(2019). For this initial work, we pre-computed all filters prior
to model training.

30



Our method is inspired by recent work in weak
supervision and semi-supervised learning (Kara-
manolakis et al., 2021; Du et al., 2020). It consists
of a backbone classification model (e.g. BERT) and
a proposed rule aggregation layer. The aggregation
layer uses an attention mechanism to combine the
outputs of the backbone model and rules. The pa-
rameters of the backbone and aggregator are jointly
trained via a self-training procedure over the la-
beled and unlabeled data.

In more detail, the backbone model b(·) is a stan-
dard BERT-based classifier with a prediction head
attached to the [CLS] embedding. This classifier
outputs a probability distribution over the possible
labels.

The aggregation layer a(·) is trained to opti-
mally combine the predictions of the backbone
model and rules. It does so via the following atten-
tion mechanism. The layer first initializes trainable
embeddings ej for each rule rj , and embedding es
for the backbone. Next, it computes dot-product
attention scores between these embeddings and an
embedded version of the input text (hi). The final
model prediction is a weighted sum of the back-
bone and rule predictions, where the weights are
determined by the attention scores.

Specifically, if the set of rules activated on input
xi is Ri = {rj ∈ R : rj(xi) ̸= −1}, and the
function g(·) ∈ RK returns a one-hot encoding of
its input, then the rule aggregation layer computes
a probability distribution over the labels:

a(xi) =
1

Q


 ∑

j:rj∈Ri

sji g(rj(xi)) + ssi b(xi) + u




(1)

where the attention scores are calculated as,

sji = σ(p(hi) · ej)
Note that p is a multi-layer perceptron that projects
the input representation hi into a shared embedding
space, Q is a normalizing factor to ensure a(xi)
is a probability distribution, σ(·) is the sigmoid
function. Following Karamanolakis et al. (2021),
the quantity u is a uniform smoothing term.

In order to train the overall system, we first pre-
train the backbone on the labeled data L. Next
we iteratively co-train the backbone and aggrega-
tion layer. We train the aggregator (freezing the
parameters of the backbone), then train the back-
bone (freezing the aggregator). The process is as
follows:

1. Train the backbone s using labeled data L and
a cross-entropy loss function, where b(xi)yi
denotes the logit for the groundtruth class yi:

ℓsupstu = −
∑

(xi,yi)∈L
log b(xi)yi

2. Repeat until convergence:

(a) Train the aggregator t on labeled data
using a cross-entropy loss function :

ℓsuptea = −
∑

(xi,yi)∈L
log a(xi)yi

(b) Train the aggregator on unlabeled data
U with a minimum entropy objective
(Grandvalet and Bengio, 2004). This en-
courages the aggregator to learn atten-
tion scores that favor rule agreement, be-
cause the aggregator will be encouraged
to output more focused probability distri-
butions, thereby placing less importance
on spurious rules that disagree:

ℓunsuptea = −
∑

xi∈U
a(xi)

T log a(xi)

where log a(xi) ∈ RK denotes the
element-wise logarithm of the probabil-
ity distribution a(xi).

(c) Train the backbone on labeled data using
ℓsupstu :

ℓsupstu = −
∑

(xi,yi)∈L
log b(xi)yi

(d) Train the backbone on unlabeled data by
distilling from the aggregator, i.e. train
the backbone to mimic the aggregator’s
output:

ℓunsupstu = −
∑

xi∈U
a(xi)

T log b(xi)

Once trained, one can use the outputs of either
the backbone or aggregator for inference. If one
uses the aggregator, they receive the benefit of im-
proved interpretability: one could inspect the atten-
tion scores sji to understand what proportion of the
system’s decision was due to each rule.3

3Recent research shows that attention distributions in hid-
den layers are not valid explanations (Wiegreffe and Pinter,
2019), however in our case the attention scores are part of
the model’s output layer, i.e. used in a linear combination
to calculate output probabilities directly. See Section 4 for
details.
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AGNews CDR ChemProt IMDB SciCite SemEval SMS TREC Youtube

Domain News Bio Bio Review CS Web Sms Speech Web
# Labeled 4800 421 643 1000 412 87 228 248 79
# Unlabeled 91200 8009 12218 19000 7831 1662 4343 4717 1507
# Valid 1500 920 1500 1500 916 178 500 500 120
# Test 12000 4673 1607 2500 1861 600 500 500 250
# Classes 4 2 10 2 3 9 2 6 2

Table 1: Datasets used in our experiments.

3 Experiments

We perform experiments across 9 datasets and
tasks, finding that the ARI rule induction frame-
work can improve the performance of state-of-the-
art semi-supervised text classification algorithms.
Note that concrete examples of the human-readable
rules succeeding (and failing) are given in the Ap-
pendix.

3.1 Experimental Setup
We evaluate our framework on nine benchmark
NLP classification datasets that are popular in the
few-shot learning and weak supervision literature
(Ratner et al., 2017; Awasthi et al., 2020; Zhang
et al., 2021a; Cohan et al., 2019). These tasks
are as follows: AGNews: using news headlines to
predict article topic, CDR: using scientific paper
excerpts to predict whether drugs induce diseases,
ChemProt: using paper experts to predict the func-
tional relationship between chemicals and proteins,
IMDB: movie review sentiment, SciCite: classi-
fying citation intent in Computer Science papers,
SemEval: relation classification from web text,
SMS: text message spam detection, TREC: con-
versational question intent classification, Youtube:
internet comment spam detection.

Table 1 shows dataset statistics. Our benchmarks
cover a range of discourse domains and classifica-
tion types. Unless otherwise stated we consider a
5% / 95% split between labeled data and unlabeled
data. We construct this split by randomly partition-
ing the total training data and removing labels from
the 95% split. Following Gao et al. (2020); Zhang
et al. (2022) we subsample each validation set so
that it roughly matches the size of the training set
in order to better simulate label scarcity.

All reported results are the average of ten exper-
imental trials, each with different random splits,
seeds, and initializations. For each trial, we con-
tinuously train our models for 12,500 steps using a

batch size of 32, and we stop the training process
early based on validation set performance. For each
method (baseline and proposed), we conducted a
minimal hyperparameter search (details in the Ap-
pendix) to establish the best validation performance
before running inference over the test set. We ran
all experiments on Microsoft Azure cloud compute
using NVIDIA V100 GPUs (32G VRAM). All al-
gorithms were implemented using the Pytorch and
Wrench frameworks (Paszke et al., 2017; Zhang
et al., 2021a). We report binary F1 score for bi-
nary classification tasks and macro-weighted F1
for multiclass classification tasks.

3.2 Baselines

We experiment with our ngram and pca-style fea-
turization schemes, as well as our linear model
(linear) and decision tree (tree)-based rule gener-
ation methods. We compare against the following
baselines:
BERT: directly fine-tuning a BERT model on the
available supervised data (Devlin et al., 2019).
Weak Ensemble: It is possible that traditional ML
models like regressions and decision trees achieve
good performance in these low-resource settings,
and the proposed ARI framework just takes advan-
tage of these models. We accordingly train several
weak models (BERT, regression, and random for-
est using the same hyperparameters as was used
to obtain rules) and ensemble their predictions for
comparison. LMFT: training a BERT model on
the unlabeled data with its original language mod-
eling objective before fine-tuning on the supervised
data (Howard and Ruder, 2018; Gururangan et al.,
2020). Self-Train: iteratively self-training towards
the predictions of a frozen model on the unlabeled
data (Nigam and Ghani, 2000; Lee et al., 2013).
Snuba: We use the Snuba algorithm (Varma and
Ré, 2018) to automatically generate weak labels
over the unlabeled data, then a generative label
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Methods AGNews CDR ChemProt IMDB SciCite SemEval SMS TREC Youtube Avg.

Baselines
BERT 90.61 54.92 58.46 87.46 81.88 59.76 95.13 83.38 93.28 76.72
Weak Ensemble 83.76 45.12 41.98 83.46 63.97 48.23 79.33 61.68 88.65 66.24
LMFT 90.59 54.19 58.38 87.48 82.21 60.68 95.59 86.52 93.45 77.13
Self-Train 91.30 55.58 54.90 88.76 81.15 68.1 94.99 87.07 93.41 77.89
Snuba 90.46 53.99 58.27 87.29 82.03 60.57 95.43 86.35 93.30 76.98
Min Entropy 90.97 55.14 56.00 89.05 82.01 63.70 95.03 84.92 93.14 77.27
MoE 89.94 54.44 57.27 87.25 81.83 60.93 95.03 85.24 92.53 76.65
VAT 91.31 56.01 55.70 88.49 81.12 67.99 95.56 88.27 93.19 78.19
PET 91.46 51.16 53.90 88.49 75.13 64.45 95.68 83.42 95.36 75.76

ARI (proposed)
Ngram + linear 91.37 56.11 60.08 89.10 81.51 65.56 95.6 85.43 95.24 78.56
Ngram + tree 91.11 57.77 60.95 89.41 82.76 64.01 92.87 86.99 93.55 78.62
PCA + tree 90.87 57.92 60.01 88.33 83.76 65.10 95.74 87.19 94.95 79.05

Oracles
ASTRA 91.71 61.63 59.58 88.98 82.29 75.18 93.15 87.23 96.42 80.70
T-few 95.12 57.23 55.84 94.48 84.21 64.9 96.73 89.13 96.84 79.79

Table 2: Semi-supervised learning performance on nine classification datasets. Following Tatiana and Valentin
(2021), we report the geometric mean in the “Avg.” column. We denote the highest and second-highest performance
(excluding the expert rules model) in bold and italic respectively. Note that T-Few was pretrained on AGNews,
TREC, and IMDB. See Table 11 for accuracies and comparison against the PR-BOOST algorithm (Zhang et al.,
2022).

model from Snorkel (Ratner et al., 2017) to ex-
pand the available training data prior to BERT fine-
tuning. This baseline offers a direct comparison
against a popular weak supervision procedure. Min
Entropy: Multitask self-training with a minimum
entropy objective on the unlabeled data (Grandvalet
and Bengio, 2004). MoE: This is the same as the
model proposed in Section 2.2 except the rules are
replaced with two-layer neural network classifiers
that are trained end-to-end with the rest of the sys-
tem. This baseline tests whether the proposed train-
ing procedure has the potential of achieving higher
accuracy without the rule induction step. This
baseline is similar to having a Mixture of Experts
layer at the output (Jacobs et al., 1991; Shazeer
et al., 2017) without input routing, expert gating,
or load balancing. VAT: Multitask self-training
with a virtual adversarial regularization penalty on
the unlabeled data (Miyato et al., 2018). PET: a
state-of-the-art method for semi-supervised learn-
ing that leverages prompting and model ensembling
(Schick and Schütze, 2020a). Note that PET is not
a fully automatic procedure as it requires prompt
templates and class verbilizations for each dataset.
We used domain intuition to verbalize each class la-
bel, and constructed two prompt templates for each
task: “[MASK] : [example]” and “[MASK]
: [domain word]: [example]” where
[domain word] is a word that signifies the na-
ture of the ensuing text (e.g. “Review” for the

IMDB dataset). See Appendix for details.
We also compare against two oracles. The first

called ASTRA and is a state-of-the-art weak su-
pervision algorithm that uses manually designed
rules and an iterative self-training procedure (Kara-
manolakis et al., 2021). For this oracle we use
previously published heuristic labeling functions
from the weak supervision literature (Zhang et al.,
2021a). The rules were manually constructed us-
ing domain expertise and, being expertly crafted,
suggest an upper bound on performance. The sec-
ond oracle is called T-Few (Liu et al., 2022) and
represents a state-of-the-art prompting approach
using a large 3 billion parameter model (30 times
larger than the rest of the models considered in this
paper).

3.3 Experiment Results

Overall results. Table 2 presents our main re-
sults. The proposed ARI framework achieves the
best performance on 5 out of 9 datasets, and the
ARI variations beat the baselines in terms of aver-
age performance. Our results suggest that LMFT
does not always improve the performance over
standard BERT finetuning, and can hurt the per-
formance sometimes (CDR). This is in line with
previous research findings (Vu et al., 2021; Du
et al., 2020). Self-Train achieves an overall better
performance than BERT, but underperformed on
ChemProt and overperformed on SemEval. PET
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achieves strong results on AGNews and Youtube,
but fails on many other datasets. This might be
due to its sensitivity to prompts and label words for
the scientific domains, which is typical for prompt-
based models (Gao et al., 2020). Additionally, due
to implementation differences in this prior work,
we tested PET after a fixed number of training steps
instead of the early-stopping validation technique
employed by the other algorithms (Section 3.1).

For ARI, decision-tree based methods give the
best results overall, while there is no clear winner
between PCA and Ngram-based models. Consider-
ing that we also removed stop words in the Ngram
features, using PCA to remove common compo-
nents might not make a big difference to the rules.
The performance of ARI is close to ASTRA which
uses manually crafted expert rules, showing the
potential of automatic rules. Surprisingly, ARI is
better than ASTRA on SciCite and SMS by a non-
trivial margin. This suggests that automatic rules
have the potential to rival human-generated rules.
See the Appendix for further results and analysis.

Our results suggest that for prompting methods
like PET and T-Few to outperform ARI, one needs
bigger models with more language capacity like the
3B parameter Tfew (30x larger than e.g. BERT).
ARI and PET leverage smaller models which are
faster with reduced memory but also reduced capac-
ity and therefore less effective prompts as prior re-
search as noted (Liu et al., 2021). In the Appendix,
we observe that ARI continues to outperform PET
when more powerful backbone encoders like De-
BERTaV3 (He et al., 2021) are used (Table 10).

Robustness We further test our method’s robust-
ness to the number of labeled examples in Fig. 2.
We vary the fraction of labeled data between 2% to
40% on the ChemProt and Youtube datasets. The
results suggest that ARI can reliably outperform
the baselines across this range, especially when
labeled data is scarce. Standard supervised BERT
fine-tuning become increasingly competitive as the
fraction of labeled data exceeds 40%.

Filter Ablations. We provide ablation results on
rule filtering methods in Table 3. We pick the best
performers between the three rule-generation meth-
ods in Table 2 and then vary the filters. All the three
methods show performance gains when applied in-
dividually, and combining the filters appears to
further improve performance in some cases.
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Figure 2: Robustness to training data size.

Filters CDR SciCite SemEval SMS

None 54.86 81.14 63.67 94.72
Semantic 57.20 82.00 65.43 94.54
Train 56.84 81.05 64.36 95.21
Sem. + Train 56.46 82.41 65.56 95.74

Table 3: Ablation study on rule filtering methods. We
show the best result between Ngram+linear, Ngram+tree
and PCA+tree.

Hard or Soft Labels? There are many variations
on the basic self-training algorithm. Some prior
work only trains the student on a small number of
unlabeled examples having the highest confidence
(Rosenberg et al., 2005; McClosky et al., 2006;
Sohn et al., 2020). Recently, other work has opted
to train the student on all available data, regardless
of teacher confidence (Vu et al., 2021). Addition-
ally, self-training can be performed with either the
whole distribution (soft labels) or max probability
label (hard labels) (Karamanolakis et al., 2021).

Our results are in Table 4 and suggest that while
there is no clear winner between hard and soft la-
bels, training the student on a broad distribution of
data is best.

CDR SemEval Youtube Chemprot

Hard 56.17 65.11 95.24 60.95
Hard + Thresh 54.34 62.78 93.52 60.65
Soft 57.92 65.56 94.14 59.34
Soft + Thresh 55.6 62.77 94.09 57.88

Table 4: Variations on the self-training algorithm.

PCA mean subtraction It is common practice
to center the data by subtracting the means of each
covariate away from a feature matrix prior to com-
puting PCA (Mishra et al., 2017). Our ARI pro-
cedure did not employ this mean subtraction trick
because intuitively, centering the data prior to PCA
prevents the first PCs from being dominated by the
variables’ means, but this “mean load” is what we
intend to capture and control for with our proce-
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TREC SMS IMDB

ARI 87.19 95.74 88.33
ARI + mean subtraction 86.71 95.6 87.97

Table 5: PCA mean subtraction ablation (PCA + tree
variant).

dure. To validate this hypothesis, we enabled mean
subtraction for ARI on 3 datasets. Table 5 gives
the results and we can observe a slight decrease
in performance, -0.32% on average, when mean
subtraction is enabled.

Transferability of rules One possible limitation
of ARI is that the rules overfit to their data and
are extremely limited to a specific setting. To in-
vestigate this, we experimented with swapping the
rules between related spam detection datasets SMS
and Youtube and found a slight drop in perfor-
mance (SMS: 95.74 -> 95.26, Youtube: 94.95 ->
93.72). We also tried unrelated datasets IMDB and
ChemProt and found that performance drops more
(IMDB: 88.98 -> 88.1, ChemProt: 60.1 -> 55.89),
but not severely, perhaps because the model learns
to ignore most of the rules and defaults to plain
self-training (rule attention scores support this: for
the matched data, 48.3% of attention went to rules
on average while only 21.1% for the unmatched
data). We conclude that while the learned rules are
adapted to their training data, they are indeed trans-
ferable to other domains to some degree, although
we note that this work assumes access to in-domain
training sets, and that out-of-domain or zero-shot
generalization is outside the paper’s scope.

4 Interpretability

As discussed in Section 2.2, the behavior of the
aggregation layer a(·) can be traced to individual
rules, which are themselves human readable and
interpretable. This is because the output of a(·) is
a linear combination of attention scores and rule
predictions (Equation 1). In other words, if the
attention score for rule rj on example xi is sji , then
the strength of rule rj’s contribution to the model’s
final prediction is exactly sji/Q.

See the Appendix for case studies showing the
impact of individual rules on model behavior.

To further demonstrate the system’s interpretabil-
ity, we grouped examples according to their diffi-
culty4 and measured the cumulative effect of rules

4Following (Swayamdipta et al., 2020), we used the en-

on model behavior (i.e.,
∑

j s
j
i/Q) for each cate-

gory. The results are given in Table 6. We observe
that much of ARI’s gains come from the hard-to-
predict examples, and that these difficult examples
may be associated with increased rule reliance.

Easy Medium Hard

Youtube
Bert (Acc) 100 95.96 79.36
ARI (Acc) 100 (45.2) 94.35 (48.5) 87.3 (49.2)

ChemProt
Bert (Acc) 94.27 77.83 43.78
ARI (Acc) 92.78 (57.4) 77.97 (62.9) 45.02 (62.4)

Table 6: Model performance and rule reliance accord-
ing to whether examples are easy, medium, or hard
to predict. The average cumulative effect of the rules
Ei∈G[

∑
j s

j
i/Q ] for each group G is given in paren-

theses.

5 Related Work

Our research draws on a number of related areas of
research, including Neuro-Symbolic computation,
semi-supervised learning, and weak supervision.

Neuro-symbolic approaches seek to unite Sym-
bolic AI, which from the 1950’s until the mid
1990’s was the dominant paradigm of AI research
(Crevier, 1993; Russell and Norvig, 2002), with
statistical machine learning and neural networks.
For example, there is work that uses discrete parses
to template neural network components (Arabshahi
et al., 2018; Mao et al., 2019; Yi et al., 2018). There
is also work that seeks to embed symbolic knowl-
edge into network parameters via special loss func-
tions (Xu et al., 2018; Seo et al., 2021) or carefully
curated datasets (Lample and Charton, 2019; Clark
et al., 2020; Saeed et al., 2021) and architectures
(Trask et al., 2018). Other related work seeks to
incorporate logical constraints into text generation
models (Wang et al., 2021; Lu et al., 2020).

Our framework is further inspired by semi-
supervised learning research that leverages labeled
and unsupervised data. Our baseline PET model
comes from a family of algorithms that leverage
prompting and model ensembling for greater data
efficiency (Schick and Schütze, 2020a,b). There is
also research on pulling in demonstration examples
from the training set (Gao et al., 2020), automatic
prompt generation (Zhang et al., 2021b; Li and

tropy of BERTs predicted label distribution as a measure of
example difficulty. We ranked examples according to this
measure, then split them into hard (above the 75th percentile),
medium (25-75th percentile) and easy (below 25th percentile).
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Liang, 2021), and leveraging extra datasets and
tasks for data augmentation when data is scarce
(Du et al., 2020; Vu et al., 2021).

Our self-training approach is similar to the
knowledge distillation literature (Hinton et al.,
2015; Gou et al., 2021) where a “student” model
is trained to imitate the predictions of a “teacher”
model. In our case, the teacher is not a separate
model but a frozen student plus rule aggregation
layer.

Another close body of research taps into weak
sources of supervision like regular expressions, key-
words, and knowledge base alignment (Mintz et al.,
2009; Augenstein et al., 2016; Ratner et al., 2017).
Researchers have incorporated these weak supervi-
sion signals into self-training procedures like ours
(Karamanolakis et al., 2021), as well as construct-
ing procedural generators for boosting weak su-
pervision signals (Zhang et al., 2021a) and interac-
tive pipelines for machine-assisted rule construc-
tion (Zhang et al., 2022; Galhotra et al., 2021; Ma-
heshwari et al., 2020). There is also research on
automatically generating weak labeling functions
(Varma and Ré, 2018; Maheshwari et al., 2021)
which shares our bag-of-words featurization and
regression scoring mechanism.

6 Conclusion

In this paper, we proposed Automatic Rule Induc-
tion (ARI), a simple and general-purpose frame-
work for the automatic discovery and integration of
symbolic rules into pretrained NLP models. Our re-
sults span nine sequence classification and relation
extraction tasks and suggest that ARI can improve
state-of-the-art algorithms with no manual effort
and minimal computational overhead.

Future work could investigate layering ARI be-
neath other few-shot and semi-supervised algo-
rithms, and improving the underlying rule genera-
tion strategies, particularly with causal mechanisms
(Feder et al., 2021).

7 Limitations

ARI is not without limitations. We observe that
hyperparameter selection is key for quality rule
generation (Feurer and Hutter, 2019). Second, as
other research has noted (Dodge et al., 2019; Xu
et al., 2021), few-shot evaluation protocols remain
immature as they rely on small, high variance train-
ing sets and static test sets. Last, our procedure
works by extrapolating correlations in small train-

ing sets, which may result in overfitting and under-
mine robustness to distribution shift (Sagawa et al.,
2020). While the results in Table 2 suggest the
end-to-end ARI system is not any more susceptible
to spurious correlations than other ML/DL-based
methods, i.e. susceptibility is not a big enough is-
sue to prevent SOTA or near-SOTA performance.
We hypothesize this may be due to two reasons.
First, the rules are heavily regularized: our rule se-
lection model has a strong l2 penalty, our decision
trees are generated as part of a stochastic random
forest, and the PCA subtraction may also have a
regularizing effect. Second, ARI is a hybrid sys-
tem (neural + rule) which can learn to favor the
pre-trained student model when spurious rules fire.
Our min-entropy loss function on unlabeled data
is designed to encourage such behavior. Concrete
examples of spurious rules being ignored can be
found in Appendix E.

8 Ethical Considerations

Adding symbolic components to neural systems is
a promising way to improve AI trust. Symbolic
mechanisms are inherently more interpretable and
controllable than black-box function approxima-
tors. These components can be reviewed by inde-
pendent panels and modified to fit the considera-
tions and sensitivities of particular applications.

Microsoft has been 100% carbon neutral since
2012, is committed to being carbon negative by
2030 and removing all of its historical emissions
by 2050. This extends to the Microsoft Azure cloud
compute engine used for our experiments, which
runs on majority renewable energy (clo, 2020).
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A Appendix A: Reproducibility

To construct our ngram feature matrices, we built
a vocabulary of size 1600 using NLTK’s WordNet
lemmatizer and word_tokenize tokenizer. We
used the built-in English stopwords list, as well
as a max document frequency cutoff of 0.95 and
minimum token frequency cutoff of 4, and ngrams
up to length 2.

Hyperparameters are given below. For each al-
gorithm we describe the search space and say in
parentheses which settings had the best validation
performance for each dataset (and thus were se-
lected for testing). Unless otherwise stated, we
used a learning rate of 1e-5 for all algorithms, a
batch size of 24, max sequence length of 128, and
optimized using Adam (Kingma and Ba, 2014).
Note that we used the originally published hyper-
parameters for the Min Entropy, VAT, and MoE
baselines.

39



BERT:

• No search.

LMFT:

• Pretraining epochs: 1, 3 (all datasets), 5.

Self-Train:

• Number of self-training iterations: 15, 25 (all
datasets), 40.

• Ratio of labeled-to-unlabeled train steps: 0.7
(all datasets), 1.0.

PET:

• Learning rate 1e-6, 1e-5 (all datasets), 1e-4.

• Ensemble model train epochs: 2 (AGNews,
IMDB), 3 (CDR, ChemProt, SciCite, TREC),
5 (SemEval, SMS, Youtube).

• Final classifier train epochs: 2, 3 (everything
else), 5 (SemEval, Youtube), 10.

• Our prompting templates are given in Table 7.

ARI:

• Rule embedding size: 100.

• Number of rules: 16 (AGNews, CDR,
ChemProt, SMS, Youtube), 32 (IMDB, Sci-
Cite, SemEval, TREC), 64.

• Inference with student (AGNews, CDR,
IMDB, SciCite), teacher (ChemProt, Se-
mEval, SMS, Youtube, TREC).

• Tree rule threshold: 0.95 (SciCite), 0.8 (all
other datasets).

• Number of self-training iterations: 15, 25 (all
datasets), 40.

• Ratio of labeled-to-unlabeled train steps: 0.7
(all datasets), 1.0.

• Filter selection: described in Section .

B Appendix B: Example Rules
We provide some concrete examples of unigram
rules generated by ARI on the SMS dataset. This
dataset involves detecting whether text messages
are spam or not, so they are relatively easy to
reason about in an intuitive sense.

Ngram linear rules:
if "..." in x predict HAM else ABSTAIN
if ": )" in x predict HAM else ABSTAIN
if ".." in x predict HAM else ABSTAIN
if "txt" in x predict SPAM else ABSTAIN
if "service" in x predict SPAM else ABSTAIN
if "." in x predict HAM else ABSTAIN
if "claim" in x predict SPAM else ABSTAIN
if "dating" in x predict SPAM else ABSTAIN
if "?" in x predict HAM else ABSTAIN
if "ringtone" in x predict SPAM else ABSTAIN
if "ok" in x predict HAM else ABSTAIN
if "reply" in x predict SPAM else ABSTAIN
if "say" in x predict HAM else ABSTAIN
if "free" in x predict SPAM else ABSTAIN
if "home" in x predict HAM else ABSTAIN
if "fancy" in x predict SPAM else ABSTAIN

Some of these rules make sense; text messages
asking recipients to “claim” items that are “free”
or “fancy” are probably spam. Smiley faces (“: )”)
and proper punctuation (“.”, “?”) are normal things
to write in a text message.

Ngram tree rules:
Note that our random forest was implemented

with the sklearn package (Trappenberg, 2019)
and so we use the same display format as
their sklearn.tree.export_text. func-
tion: each node evaluates the frequency of it’s as-
sociated string and branches accordingly.
|--- mob week <= 0.50
| |--- ? ? 1000 <= 0.50
| | |--- awarded ? <= 0.50
| | | |--- class: HAM
| | |--- awarded ? > 0.50
| | | |--- class: SPAM
| |--- ? ? 1000 > 0.50
| | |--- class: SPAM
|--- mob week > 0.50
| |--- class: SPAM

|--- ? 500 <= 0.50
| |--- won ? <= 0.50
| | |--- c <= 0.50
| | | |--- class: HAM
| | |--- c > 0.50
| | | |--- class: SPAM
| |--- won ? > 0.50
| | |--- class: SPAM
|--- ? 500 > 0.50
| |--- class: SPAM

|--- urgent ! <= 0.50
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Label words Template 1 Template 2

SMS normal, junk [mask] : [text] [mask] message: [text]
AGNews world, sports, business, tech [mask]: [text] [mask] news: [text]
IMDB bad, good [mask]: [text] [mask] review: [text]
SemEval cause, component, content, destination, origin [mask]: [text] [mask] text: [text]

instrument, member, message, product
CDR no, yes [mask]: [text] [mask] text: [text]
SciCite background, method, result [mask]: [text] [mask] text: [text]
ChemProt part, regulator, up, down, agony, antagonist [mask]: [text] [mask] Passage: [text]

modify, together, product, not
Youtube normal, junk [mask]: [text] [mask] comment: [text]
TREC description, entity, human, abbreviation [mask]: [text] [mask] statement: [text]

location, number

Table 7: PET verbalization templates and label word mappings.

| |--- ringtone <= 0.50
| | |--- send stop <= 0.50
| | | |--- class: HAM
| | |--- send stop > 0.50
| | | |--- class: SPAM
| |--- ringtone > 0.50
| | |--- class: SPAM
|--- urgent ! > 0.50
| |--- class: SPAM

|--- ! <= 0.50
| |--- 750 <= 0.50
| | |--- win <= 0.50
| | | |--- class: HAM
| | |--- win > 0.50
| | | |--- class: SPAM
| |--- 750 > 0.50
| | |--- class: SPAM
|--- ! > 0.50
| |--- . <= 0.50
| | |--- cash <= 0.50
| | | |--- class: HAM
| | |--- cash > 0.50
| | | |--- class: SPAM
| |--- . > 0.50
| | |--- line <= 0.50
| | | |--- class: HAM
| | |--- line > 0.50
| | | |--- class: SPAM

We find that these rules are less readily inter-
pretable than directly using ngrams, but generally
make sense. For example, the second to last rule
suggests that if a text message contains an excla-
mation mark and large number (750) followed by
“win”, the message is spam (“win 750$!”) but with-
out the word “win” the message is probably not
spam, (there are plenty of non-spammy reasons to
talk about large numbers in a text message).

PCA tree rules: These rules, being constructed
from a dense feature space, are less readily inter-
pretable. We denote each feature dimension by the

ngram it originated from, wrapped in quotes and
followed by (+PCA).

|--- come (+PCA) <= -0.03
| |--- ’& free’ (+PCA) <= -0.00
| | |--- class: HAM
| |--- ’& free’ (+PCA) > -0.00
| | |--- ’won’ (+PCA) <= -0.02
| | | |--- class: HAM
| | |--- ’won’ (+PCA) > -0.02
| | | |--- class: SPAM
|--- ’come’ (+PCA) > -0.03
| |--- ’ringtone’ (+PCA) <= 0.50
| | |--- ’latest’ (+PCA) <= 0.50
| | | |--- class: HAM
| | |--- ’latest’ (+PCA) > 0.50
| | | |--- class: SPAM
| |--- ’ringtone’ (+PCA) > 0.50
| | |--- class: SPAM

|--- ’’m’ (+PCA) <= -0.05
| |--- ’lt ; #’ (+PCA) <= -0.13
| | |--- ’win’ (+PCA) <= -0.02
| | | |--- class: HAM
| | |--- ’win’ (+PCA) > -0.02
| | | |--- class: SPAM
| |--- ’lt ; #’ (+PCA) > -0.13
| | |--- ’win ? ?’ (+PCA) <= -0.01
| | | |--- class: HAM
| | |--- ’win ? ?’ (+PCA) > -0.01
| | | |--- class: SPAM
|--- ’’m’ (+PCA) > -0.05
| |--- ’r’ (+PCA) <= -0.02
| | |--- ’t &’ (+PCA) <= -0.01
| | | |--- class: HAM
| | |--- ’t &’ (+PCA) > -0.01
| | | |--- class: SPAM
| |--- ’r’ (+PCA) > -0.02
| | |--- ’free’ (+PCA) <= 0.49
| | | |--- class: HAM
| | |--- ’free’ (+PCA) > 0.49
| | | |--- class: SPAM

|--- ’d’ (+PCA) <= -0.02
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| |--- ’un-redeemed’ (+PCA) <= -0.00
| | |--- class: HAM
| |--- ’un-redeemed’ (+PCA) > -0.00
| | |--- ’, love’ (+PCA) <= -0.01
| | | |--- class: SPAM
| | |--- ’, love’ (+PCA) > -0.01
| | | |--- class: HAM
|--- ’d’ (+PCA) > -0.02
| |--- ’video’ (+PCA) <= 0.50
| | |--- ’stop’ (+PCA) <= 0.96
| | | |--- class: HAM
| | |--- ’stop’ (+PCA) > 0.96
| | | |--- class: SPAM
| |--- ’video’ (+PCA) > 0.50
| | |--- class: SPAM

C Appendix C: Teacher and Student
Performance

As described in Section 3.3, one can use either the
teacher or student model for ARI inference. Table 8
has the results and suggests that their performance
is similar, and that there is no clear winner.

SemEval SMS AGNews CDR

Teacher 65.56 95.74 91.22 57.10
Student 65.47 95.39 91.37 57.92

Table 8: Relative performance of the teacher and student
model, using the same filter settings as in Table 2.

D Appendix D: Rule Performance

Table 9 gives the performance of the rules by
themselves, using the best combination of filters
for downstream performance (described in Sec-
tion 3.3). Interestingly, we find that the rules do
not always outperform BERT, even on the small
number of examples they fire on. We hypothe-
size that the contextualized nature of the teacher’s
embedding mechanism may be helping it further
determine when rules should be applied.

SemEval AGNews
Cov. Pre. Cov. Pre.

BERT 1.0 0.75 1.0 90.69
Ngram + linear 0.10 47.80 0.03 96.84
Ngram + tree 0.12 59.25 0.05 94.12
PCA + tree 0.16 50.93 0.06 94.74

Table 9: Performance of BERT and the rules themselves,
given as F1 score on the examples where a rule fired.
We also provide the coverage, i.e. the proportion of test
examples where rules were firing.

E Appendix E: Samples

We provide some examples of unigram-based ARI
and BERT outputs on the SemEval dataset below.
For ease of understanding, we only select examples
where only a small number of ngram rules fired.

1. TEXT: A hinge assembly attaches a cover
pivotally to a base of an electronic device
and has a pivoting leaf and a stationary leaf .
Entity 1: assembly, entity 2: cover.
BERT: Instrument-Agency
ARI: Component-Whole
LABEL: Component-Whole
Attn:
0.60

if ‘has’ in x predict Cause-Effect else ABSTAIN

0.97

if ‘has’ in x predict Component-Whole else ABSTAIN

Interestingly, in this case the same token was
mapped to two rules, and the system learned
to dynamically prefer one over the other based
on context.

2. TEXT: She left the engine running because
the car was full of snakes used in her exotic
routine . Entity 1: snakes, entity 2: car.
BERT: Member-Collection
ARI: Content-Container
LABEL: Content-Container
Attn:
0.52

if ‘wa‘ in x predict CONTENT-CONTAINER else ABSTAIN

This is an example of a rule helping the model
correctly fix its prediction. “wa” often maps
to “was” with our tokenizer. This rule and the
above “has” rule are both words that convey
a sense of two properties or entities being re-
lated to one another, which intuitively seem
related to solving the SemEval task (relation
classification).

3. TEXT: I still shiver as I remember trying to
page through economics texts by the flicker
from candles while clad in overcoat , scarf ,
and little knitted gloves with the fingertips cut
off , in the 4 p.m . Entity 1: candles, entity 2:
flicker.
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BERT: Member-Collection
ARI: Cause-Effect
LABEL: Cause-Effect
Attn:
0.78

if ‘,‘ in x predict MEMBER-COLLECTION else ABSTAIN

Interestingly, in this case the rule was incor-
rect and had high attention but the teacher
model (correctly) favored of the student’s pre-
diction. Note also that this is a pretty bad rule,
as it is a general and nonspecific punctuation
marker.

4. TEXT: Hands wield the sword in the realm
of the flesh , but the intellect wields the pen
in the realm of understanding , or of the spirit
. Entity 1: pen, entity 2: intellect.
BERT: Instrument-Agency
ARI: Member-Collection
LABEL: Instrument-Agency
Attn:
0.99

if ‘,‘ in x predict MEMBER-COLLECTION else ABSTAIN

This is an example of the same spurious rule
as before likely causing the ARI system to
make an error.
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AGNews CDR ChemProt IMDB SciCite SemEval SMS TREC Youtube Avg.

ARI + BERT 90.87 57.92 60.01 88.33 83.76 65.1 95.74 87.19 94.95 79.05
ARI + DeBERTaV3 91.38 60.09 60.48 87.19 81.97 66.41 97.20 86.28 94.88 79.40
PET + BERT 91.46 51.16 53.9 88.49 75.13 64.45 95.68 83.42 95.36 75.76
PET + DeBERTaV3 91.14 52.63 54.84 88.92 75.97 63.50 96.14 84.90 95.09 76.29

Table 10: Comparison between PET and ARI (PCA+tree variant) with BERT and DeBERTaV3 backbones. Both
methods improved slightly (PET by 0.65% and ARI by 0.11% on average) but ARI remains better overall.

AGNews CDR ChemProt IMDB SciCite SemEval SMS TREC Youtube Avg.

BERT 90.33 69.56 64.12 86.84 79.84 82.23 98.6 86.8 91.66 82.66
SELF 89.52 70.65 65.34 86.92 80.21 85.43 98.6 87.6 93.33 83.55
VAT 89.51 72.28 67.98 89.51 80.28 87.64 99.2 87.4 94.16 84.77
PET 90.53 69.48 65.84 88.71 78.12 87.5 96.73 86.8 96.83 83.81
PR-BOOST 88.9 67.1
ARI (ours) 89.76 72.06 68.71 89.68 81.67 87.08 99 87.4 97.5 85.30
T-few (3B) 94.2 72 70.98 94.46 82.9 86.9 99.15 95 95 87.2

Table 11: Accuracies for the main results (Table 2).
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