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Abstract

Explanation faithfulness of model predictions
in natural language processing is typically eval-
uated on held-out data from the same tempo-
ral distribution as the training data (i.e. syn-
chronous settings). While model performance
often deteriorates due to temporal variation (i.e.
temporal concept drift), it is currently unknown
how explanation faithfulness is impacted when
the time span of the target data is different from
the data used to train the model (i.e. asyn-
chronous settings). For this purpose, we exam-
ine the impact of temporal variation on model
explanations extracted by eight feature attri-
bution methods and three select-then-predict
models across six text classification tasks. Our
experiments show that (i) faithfulness is not
consistent under temporal variations across fea-
ture attribution methods (e.g. it decreases or
increases depending on the method), with an
attention-based method demonstrating the most
robust faithfulness scores across datasets; and
(ii) select-then-predict models are mostly ro-
bust in asynchronous settings with only small
degradation in predictive performance. Finally,
feature attribution methods show conflicting
behavior when used in FRESH (i.e. a select-
and-predict model) and for measuring suffi-
ciency/comprehensiveness (i.e. as post-hoc
methods), suggesting that we need more ro-
bust metrics to evaluate post-hoc explanation
faithfulness.1

1 Introduction

One way of improving the transparency of deep
learning models in natural language processing
(NLP) is by extracting explanations that justify
model predictions (Lipton, 2018; Guidotti et al.,
2018). An explanation (i.e. rationale) consists
of a subset of the input and is considered faithful
when it accurately shows the reasoning behind a

1Code for replicating the experiments in this study: https:
//github.com/casszhao/temporal-drift-on-explana
tion

model’s prediction (Zaidan et al., 2007; Ribeiro
et al., 2016a; DeYoung et al., 2019; Jacovi and
Goldberg, 2020). For example, removing a faithful
rationale from the input should result into a predic-
tion change. Two widely used methods for extract-
ing rationales are (i) feature attribution methods
that produce a distribution over the input tokens, in-
dicating their contribution (i.e. importance) to the
model’s prediction (Ribeiro et al., 2016b; Wiegr-
effe and Pinter, 2019); and (ii) select-then-predict
models that consist of two components, a rationale
extractor and a predictor. The rationale extractor
extracts rationales, and the predictor is trained on
extracted rationales so that its predictions are inher-
ently faithful (Lei et al., 2016; Jain et al., 2020).

Previous work has focused on evaluating expla-
nation faithfulness in synchronous settings where
the training and testing data come from the same
temporal distribution (Serrano and Smith, 2019a;
Jain and Wallace, 2019; Atanasova et al., 2020;
Guerreiro and Martins, 2021), or out-of-domain
settings (Chrysostomou and Aletras, 2022a) where
the training and testing data come from a different
domain regardless of temporal drifts in the testing
data. However, human languages evolve (Weinre-
ich et al., 1968; Kim et al., 2014; Carrier, 2019) as
manifested by novel usages developed for existing
words (e.g. mouse is a mammal or a computer ac-
cessory) and new words and topics (e.g. covidiot
during the COVID-19 pandemic) that appear over
time. Language evolution leads to temporal con-
cept drifts and a diachronic degradation of model
performance in many NLP tasks when these are
evaluated in asynchronous settings, i.e. training
and testing data come from different time peri-
ods (Jaidka et al., 2018; Agarwal and Nenkova,
2021; Lazaridou et al., 2021; Søgaard et al., 2021;
Chalkidis and Søgaard, 2022).

In this paper, for the first time, we extensively
analyze the impact of temporal concept drift on
model explanations. We evaluate the faithfulness of
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rationales extracted using eight feature attribution
approaches and three select-then-predict models
over six text classification tasks with chronological
data splits. Our contributions are as follows:

• We find that faithfulness is not consistent
under temporal concept drift for rationales
extracted with feature attribution methods
(e.g. it decreases or increases depending on
the method), with an attention-based method
demonstrating the most robust faithfulness
scores across datasets;

• We empirically show that select-then-predict
models can be used in asynchronous settings
when it achieves comparable performance to
the full-text model;

• We demonstrate that sufficiency is not trust-
worthy evaluation metrics for explanation
faithfulness, regardless of a synchronous or
an asynchronous setting.

2 Related Work

2.1 Temporal Concept Drift in NLP
Temporal model deterioration describes the true
difference in system performance when a system
is evaluated on chronologically newer data (Jaidka
et al., 2018; Gorman and Bedrick, 2019). This
has been linked to changes in the data distribu-
tion, also known as concept drift in early studies
(Schlimmer and Granger, 1986; Widmer and Ku-
bat, 1993). Previous work has demonstrated the
impact of temporal concept drift on model perfor-
mance by assessing the temporal generalization
(Lazaridou et al., 2021; Søgaard et al., 2021; Agar-
wal and Nenkova, 2021; Röttger and Pierrehum-
bert, 2021). Søgaard et al. (2021) has studied sev-
eral factors that affect the true difference in system
performance such as temporal drift, variations in
text length and adversarial data distributions. They
found that temporal variation is the most important
factor for performance degradation and suggest
including chronological data splits in model eval-
uation. Chalkidis and Søgaard (2022) also noted
that evaluating on random splits with the same tem-
poral distribution as the training data consistently
over-estimates model performance at test time in
multi-label classification problems.

Previous work on mitigating temporal concept
drift includes automatically identifying semantic
drift of words over time (Tsakalidis et al., 2019;

Giulianelli et al., 2020; Rosin and Radinsky, 2022;
Montariol et al., 2021). Efforts have also been
made to mitigate the impact of temporal concept
drift on model prediction performance (Lukes and
Søgaard, 2018; Röttger and Pierrehumbert, 2021;
Loureiro et al., 2022; Chalkidis and Søgaard, 2022)
and develop time-aware models (Dhingra et al.,
2022; Rijhwani and Preotiuc-Pietro, 2020; Dhingra
et al., 2021; Rosin and Radinsky, 2022). For ex-
ample, both Röttger and Pierrehumbert (2021) and
Loureiro et al. (2022) observed performance im-
provements when continue fine-tuning their models
with chronologically newer data. While the impact
of temporal concept drift on model performance
has received particular attention, to the best of our
knowledge, no previous work has examined its im-
pact on model explanations.

2.2 Concept Drift and Model Explanations

Poerner et al. (2018) has compared the explana-
tion quality between tasks that contain short and
long textual context. More recently, Chrysostomou
and Aletras (2022a) have studied model explana-
tions in out-of-domain settings (i.e. under con-
cept drift) using train and test data from different
domains. Their results showed that the faithful-
ness of out-of-domain explanations unexpectedly
increases, i.e. outperforming in-domain explana-
tions’ faithfulness. This is interesting given that
performance degradation due to concept drift is of-
ten expected in domain adaptation (Schlimmer and
Granger, 1986; Widmer and Kubat, 1993; Chan
and Ng, 2006; Gama et al., 2014).

3 Extracting Explanations

We extract explanations using two standard ap-
proaches: (i) post-hoc methods; and (ii) select-
then-predict models.

3.1 Post-hoc Explanation Methods

For post-hoc explanations, we fine-tune a BERT-
base model on each task on the synchronous train-
ing set and extract explanations using post-hoc
feature attribution methods for all synchronous
and asynchronous testing sets. We use eight
widely used feature attribution methods follow-
ing Chrysostomou and Aletras (2021a,b).

• Attention (α): Token importance is computed
using the corresponding normalized attention
scores (Jain et al., 2020).
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• Scaled attention (α∇α) Attention scores
scaled by their corresponding gradients (Ser-
rano and Smith, 2019a).

• InputXGrad (x∇x) Attributes importance by
multiplying the input with its gradient com-
puted with respect to the predicted class (Kin-
dermans et al., 2016; Atanasova et al., 2020).

• Integrated Gradients (IG) Ranks input to-
kens by computing the integral of the gradi-
ents taken along a straight path from a baseline
input (zero embedding vector) to the original
input (Sundararajan et al., 2017).

• GradientSHAP (Gsp) A gradient-based
method to compute SHapley Additive exPla-
nations (SHAP) values for assigning token
importance (Lundberg and Lee, 2017). Gsp
computes the gradient of outputs with respect
to randomly selected points between the in-
puts and a baseline distribution.

• LIME Ranks input tokens by learning a lin-
ear surrogate model using data points ran-
domly sampled locally around the prediction
(Ribeiro et al., 2016b).

• DeepLift (DL) Computes token importance
according to the difference between the activa-
tion of each neuron and a reference activation
(i.e. zero embedding vector) (Shrikumar et al.,
2017).

• DeepLiftSHAP (DLsp) Similar to Gsp, DLsp
computes the expected value of attributions
based on DL across all input-baseline pairs,
considering a baseline distribution (Lundberg
and Lee, 2017).

3.2 Select-then-predict Models
We also use three state-of-the-art select-then-
predict models. Two are trained end-to-end (Bast-
ings et al., 2019; Guerreiro and Martins, 2021)
while the other one uses a feature attribution
method as the rationale extractor (Jain et al., 2020)
with a separate predictor component, trained on the
extracted rationales.

• HardKUMA: Bastings et al. (2019) proposed
a modified version of the end-to-end ratio-
nale extraction model introduced by Lei et al.
(2016). Choosing rationales in a binary fash-
ion by sampling from a Bernoulli distribution

is replaced with a Kumaraswamy distribution
(Kumaraswamy, 1980) to support continuous
random variables. This way, the model is dif-
ferentiable and easier to train.

• SPECTRA: HardKUMA provides stochastic
rationales due to the marginalization over all
possible rationales and the sampling process.
Guerreiro and Martins (2021) proposed SPEC-
TRA, a model that uses LP-SparseMAP (Nic-
ulae and Martins, 2020) to obtain a determin-
istic rationale extraction process. Niculae and
Martins (2020) have experimented with three
different factor graphs showing that XorAt-
MostOne outperforms the other two (i.e. Bud-
get, AtMostOne2). We use SPECTRA with
XorAtMostOne in our experiments. For Hard-
KUMA and SPECTRA, we use a Bi-LSTM
(Hochreiter and Schmidhuber, 1997) because
it has been shown to outperform BERT-based
models (Guerreiro and Martins, 2021).

• FRESH: Jain et al. (2020) proposed FRESH,
a model that first extracts rationales from a
trained model (e.g. using a feature attribution
method) and subsequently trains a classifier
on the extracted rationales. We extract the
top 20% rationales using α∇α that achieved
the best performance in early experimenta-
tion. We also use BERT-base for the extrac-
tion and predictor components following Jain
et al. (2020).

4 Experimental Setup

4.1 Tasks and Data
Tasks We evaluate all methods on three diverse
text classification tasks including six different
datasets: (1) topic classification; (2) misinforma-
tion detection; and (3) sentiment analysis:

• AGNews: Topic classification across four
topics (Business, Sports, Science/Technology
and World) from AG News (Del Corso et al.,
2005);

• X-FACT: Factual correctness classification of
short statements into five classes (Gupta and
Srikumar, 2021): True, Mostly-True, Partly-
True, Mostly-False and False;

• FactCheck: Binary classification of potential
misinformation stories as truthful or misinfor-
mation (Jiang and Wilson, 2021);
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Figure 1: Density curves for time distribution across
temporal splits and the original full size dataset for each
task.

Task #Classes Splits Start Date End Date Span
(Days)

#Data

AGNews 4

Train 2004-08-18 2006-12-20 854 9358
Syn Test 2004-08-18 2006-12-20 854 9358
Asy1 Test 2007-01-30 2007-12-31 335 9358
Asy2 Test 2008-01-01 2008-02-20 50 9358

X-FACT 6

Train 1995-04-01 2016-08-31 7823 7232
Syn Test 2007-01-04 2016-08-31 3527 1204
Asy1 Test 2016-08-31 2017-09-30 395 1205
Asy2 Test 2017-09-30 2018-11-12 408 1204

FactCheck 2

Train 1995-09-25 2019-05-01 8619 7446
Syn Test 1996-08-02 2019-05-01 8307 1241
Asy1 Test 2019-05-02 2020-05-15 379 1368
Asy2 Test 2020-05-15 2021-07-19 430 1368

AmazDigiMu 3

Train 1998-08-21 2016-05-07 6469 101774
Syn Test 1998-12-20 2016-05-07 6351 16963
Asy1 Test 2016-05-07 2016-12-30 237 16962
Asy2 Test 2016-12-30 2018-09-26 635 16962

AmazPantry 3

Train 2006-04-28 2017-07-30 4111 82566
Syn Test 2006-12-22 2017-07-30 3873 13762
Asy1 Test 2017-07-30 2018-01-21 175 13761
Asy2 Test 2018-01-21 2018-10-04 256 13761

Yelp 5

Train 2005-02-16 2018-12-31 5066 8540
Syn Test 2005-02-16 2018-12-24 5059 1708
Asy1 Test 2019-01-01 2020-12-31 730 1708
Asy2 Test 2021-01-01 2022-01-19 383 1708

Table 1: Data statistics and the temporal splits for each
task.

• Amazon Reviews: We predict the senti-
ment (negative, neutral, positive) of Ama-
zon product reviews from digital music
(AmazDigiMu) and pantry (AmazPantry) as
Ni et al. (2019);

• Yelp: Multi-class sentiment classification
(positive, negative) following Zhang et al.
(2015).

Data Splits To simulate temporal concept drifts,
we create different chronological splits according
to the time-stamps of the data points in each dataset.
We split each dataset into a training set and three
different test sets. The time spans of the three test
sets follow a chronological order without any over-
lapping. The test set with the earliest time span
(Syn) has the exact same time span as the training
data (i.e. a synchronous setting). The other two
splits denoted as Asy1 and Asy2 that are chronolog-
ically newer correspond to asynchronous settings.
Figure 1 shows the temporal distribution of each
data split compared to the original data. Table 1
summarizes the key statistics for each split. More
details for the data and tasks can be found in the
Appendix A. We also provide results of all models
on the original (synchronous) test set (OSyn).

4.2 Evaluation
For each task, we train a model on the training set
and then evaluate post-hoc explanations and select-
then-predict performance on our three chronologi-
cal splits, namely Syn, Asy1 and Asy2.

Post-hoc Explanations We evaluate the faithful-
ness of post-hoc explanations using two popular
metrics (DeYoung et al., 2019; Carton et al., 2020):

• Normalized Sufficiency quantifies how suffi-
cient a rationale is for making the same predic-
tion p(ŷ|R) to the prediction of the full text
model p(ŷ|x). We use the normalized version
to allow a fairer comparison across models
and tasks:

Suff(x, ŷ,R) = 1−max(0, p(ŷ|x)− p(ŷ|R))

NormSuff(x, ŷ,R) =
Suff(x, ŷ,R)− Suff(x, ŷ, 0)

1− Suff(x, ŷ, 0)
(1)

• Normalized Comprehensiveness assesses
how much information the rationale holds,
measuring changes in predictions when mask-
ing the rationale p(ŷ|x\R). Similar to suffi-
ciency, we use the normalized version:

Comp(x, ŷ,R) = max(0, p(ŷ|x)− p(ŷ|x\R))

NormComp(x, ŷ,R) =
Comp(x, ŷ,R)

1− Suff(x, ŷ, 0)
(2)

Further, we evaluate explanations of different
lengths (top 2%, 10%, 20% and 50% of tokens ex-
tracted) and report the “Area Over the Perturbation
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Figure 2: Post-hoc AOPC normalized sufficiency and comprehensiveness (higher is better) of the original test set
(OSyn), our Syn and Asy splits, across feature attribution approaches and a random baseline.

Curve” (AOPC) of Normalized Sufficiency and
Normalized Comprehensiveness following DeY-
oung et al. (2019).

Following Chrysostomou and Aletras (2022a),
a baseline random attribution (i.e. randomly as-
signing importance scores) is used as a yardstick
to allow a comparison across chronological splits
and tasks. We use the ratio between the comprehen-
siveness or sufficiency score of a feature attribution
and the score of the random baseline to compute its
final faithfulness score. Faithfulness scores under
1.0 indicate that the rationale for a particular fea-
ture attribution is less faithful than just randomly
selecting input tokens as a rationale.

We avoid using metrics such as RemOve And
Retrain (ROAR) due to their demanding computa-
tion requirements (Hooker et al., 2019). We also

omit the use of other popular metrics such as Word
Relevance (Arras et al., 2019) and Fraction of To-
kens (Serrano and Smith, 2019b) as they are similar
to comprehensiveness and sufficiency.

Select-then-predict Select-then-predict classi-
fiers are trained only on rationales and discard the
rest of the input, hence they are inherently faithful.
As such, one way to check how good their extracted
explanations are, is to compare their predictive per-
formance to the full-text trained model following
Jain et al. (2020). A good rationale should achieve
high predictive performance retention compared to
the full-text model. We, therefore, compare the pre-
dictive performance of the three select-then-predict
models with corresponding models trained on full-
text: (1) FRESH against a BERT-base model; and
(2) HardKUMA and SPECTRA against a Bi-LSTM
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with the same number of layers, pre-trained embed-
dings and hidden dimensions.

5 Results

5.1 Post-hoc Explanation Faithfulness

We hypothesize that when the predictive perfor-
mance of a model drops in asynchronous settings,
the sufficiency and faithfulness scores that are
based on predictive likelihood should also drop.
Our hypothesis is based on the assumption that the
lower the predictive performance, the lower the pre-
dictive likelihood for a well-calibrated model (De-
sai and Durrett, 2020).

Figure 2 shows the AOPC normalized sufficiency
and comprehensiveness scores for each feature at-
tribution method across temporal splits, with the
corresponding model predictive performance along
the left side. Full results can be found in Table 3 in
the Appendix.

We first observe that certain feature attributions
(e.g. x∇x, α∇α, IG) score above the random
baseline in the majority of settings, suggesting that
they remain faithful in asynchronous settings. The
attention-based α∇α in particular, outperforms not
only the random baseline by a large margin in all
settings, but also the rest of the feature attributions
tested in the majority of cases. For example, across
all temporal splits in Yelp, α∇α scores higher than
2.16 in both sufficiency and comprehensiveness,
i.e. compared to the random baseline. The second-
best one, α, is again an attention-based attribution
method and only scores 1.60x better. Two other
feature attribution methods (LIME and Gsp) fail
to score above the random baseline. On the other
hand, certain methods such as DL, also fail to out-
perform the random baseline in general. This sug-
gests that they cannot be trusted in asynchronous
settings. For instance, Gsp fails to exceed the ran-
dom baseline across all tasks for sufficiency scores
on Asy splits while DL only scores slightly higher
than random baseline (1.36 and 1.37 respectively).

Contrary to our initial hypothesis, the faithful-
ness scores of all feature attribution methods do not
necessarily fluctuate together with predictive per-
formance, when comparing between synchronous
and asynchronous settings.

For example, in AGNews, AmazDigiMu and
AmazPantry, predictive performance decreases
along with chronological order. However, look-
ing into sufficiency, only x∇x in AGNews, α∇α
and α in both AmazDigiMu and AmazPantry con-

Figure 3: Averaged macro F1 performance (5 runs) of
select-then-predict methods and models trained on full-
text.

firm our initial hypothesis, i.e. the faithfulness
decreases along with predictive performance. In
the rest of the cases for these three tasks, we do not
observe any pattern between faithfulness and the
chronological order of the test data.

5.2 Select-then-predict Predictive
Performance

Figure 3 shows the macro F1 scores (i.e. aver-
aged over 5 runs with different random seeds) for
the three select-then-predict models and their full-
text trained counterparts. We compare full-text
trained BERT against FRESH using the most faith-
ful feature attribution (α∇α), one that is close to
the average faithfulness of all methods (x∇x) and
the least faithful one (DL). We also compare Hard-
KUMA and SPECTRA against a full-text trained
Bi-LSTM. For the full stack of results (including
standard deviations), see Appendix D.

HardKUMA & SPECTRA As expected, the
two models result in predictive performance drops
compared to the full-text trained Bi-LSTM in the
synchronous data splits (i.e. OSy and Syn). In
asynchronous settings (i.e. Asy1 and Asy2), there

4044



(a) FactCheck (Syn)

(b) FactCheck (Asy2)

(c) Yelp (Syn)

(d) Yelp (Asy2)

Figure 4: Wordclouds from synchronous (Syn) and asyn-
chronous (Asy2) test sets for FactCheck and Yelp.

is no consistent pattern observed. In certain tasks,
their predictive performance increases (e.g. SPEC-
TRA in AmazPantry in both Asy1 and Asy2) while
in other tasks decreases (e.g. for SPECTRA and
HardKUMA in AGNews). For example, the perfor-
mance of HardKUMA drops gradually from 85%
for OSyn to 77% in Asy2. Similarly, the perfor-
mance for SPECTRA drops from 50% to approxi-
mately 40% in FactCheck.

An interesting observation is that the predic-
tive performance of HardKUMA and SPECTRA
is comparable to the model trained on full-text
in asynchronous settings in cases the two mod-
els have also achieved a comparable performance
in synchronous settings. For example, Hard-
KUMA exhibits comparable performance across
all settings with the full-text trained Bi-LSTM in
AmazDigiMu.

We therefore suggest, that HardKUMA and

SPECTRA are reliable in asynchronous settings,
when only their performance is comparable to the
full-text model in synchronous settings.

FRESH We hypothesize that FRESH trained
with rationales extracted from a faithful feature at-
tribution method (i.e. its sufficiency is substantially
higher relative to the random baseline), it should
result into comparable predictive performance of
the full-text trained model. In theory, these ratio-
nales should contain ‘sufficient’ information for
a classifier to perform comparably to the full-text
trained model.

We first observe that FRESH with α∇α gener-
ally mirrors BERT’s performance across all settings
in most tasks, with the only exception in X-FACT
(see Figure 3). We speculate that a possible reason
for this, is the larger number of classes together
with the small size of the dataset. This behavior
also indicates that FRESH using the most faithful
attention-based attribution method, α∇α is not im-
pacted by temporal drifts, more than its full-text
trained counterpart. For example, the performance
of FRESH(α∇α) in X-FACT, FactCheck remains
mostly stable across different test splits. In com-
parison, we do not observe the same mirroring
behavior of FRESH train with less sufficient ra-
tionales from attribution methods such as DL and
x∇x, across splits and tasks.

Comparing between faithfulness scores (suffi-
ciency and comprehensiveness) and FRESH pre-
dictive performance, we identify a counter-intuitive
pattern. In sharp contrast to our initial expectations,
using rationales extracted from the lowest scoring
feature attribution for sufficiency (i.e. DL), results
in higher predictive performance for FRESH com-
pared to the more sufficient rationales extracted
with x∇x. For example, in AGNews, DL consis-
tently scores below the random baseline for suffi-
ciency in all settings, whilst x∇x remains consis-
tently more sufficient, scoring above the random
baseline (see Figure 2). However, the performance
of FRESH trained on rationales extracted with DL
is directly comparable to using α∇α for rationale
extraction across all settings. Its performance is
also closer to the full-text trained model. Using
x∇x rationales to train FRESH, it results into lower
predictive performance compared to FRESH(DL).
We further investigate these conflicting patterns in
Section 7.

To summarize, FRESH trained on rationales ex-
tracted by a robust and faithful feature attribution
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(i.e. α∇α) is reliable in asynchronous settings and
not impacted by temporal drifts compared to the
full-text model. FRESH trained with less faithful
rationales, such as DL and x∇x, is not reliable
across tasks.

6 Qualitative Analysis

We also conduct a qualitative analysis on the ratio-
nales extracted by α∇α, to find possible reasons
that justify its stability and robustness when mov-
ing from synchronous to asynchronous settings (i.e.
invariance to concept drift), when using FRESH.
Figure 4 shows wordclouds (larger words appear
more frequently in the rationales) for FactCheck
(a, b) and Yelp (c, d), on the synchronous split Syn
and the asynchronous split Asy2.

Starting with FactCheck, we observe that salient
words change when moving to asynchronous set-
tings. For example, in Syn, the extracted rationales
contain words like “web”, “site” and “published”.
In contrast, rationales from Asy2 contain words
like “video”, “social” and “post”. These indicate a
shift in how misinformation is spread across time
(i.e. different types of media), which surprisingly is
picked up by the rationales when moving to asyn-
chronous settings. Similarly in Yelp, whilst the
majority of most frequent words remains similar
across chronological splits (e.g. “delicious”, “nice”,
“amazing”), we still observe some concept drift that
is again picked up by the rationales. For example,
it appears that more recent restaurant reviews are
concerned about the experience and appearance of
the restaurant, as picked up in Asy2. This is high-
lighted by the fact that Asy2 contains frequently
the words “experience” and ”pretty” (to describe
the place and food, we found several examples
through a manual analysis that refer to these two
concepts). On the other hand, we note that Syn
does not contain words relevant to the experience
and appearance of the place.

7 To Trust Sufficiency or Not?

The contradictory patterns observed between post-
hoc explanations and FRESH (see Section 5), ques-
tions the efficacy of using sufficiency to measure
faithfulness in asynchronous settings. Inspired by
the explanation-game (Treviso and Martins, 2020),
we use the classifier from FRESH as a layperson
and measure its ability to generate the same predic-
tions as the full-text trained model. Our hypothesis
is that if a feature attribution produces highly suffi-

cient rationales, the layperson should also have a
high predictive performance (when using the full-
text model’s predictions as gold labels) and vice
versa. If sufficiency is reliable as a metric, we
therefore expect that the most sufficient rationales
to be obtained using α∇α, followed by x∇x and
the least sufficient to be DL.

Figure 5 shows the performance of the layperson
(i.e. FRESH), in predicting the original predictions
of the full-text trained model (i.e. a higher score
denotes a higher agreement). We first observe that
α∇α outperforms in most datasets both DL and
x∇x. For example, in FactCheck, α∇α shows
almost perfect agreement (approximately 100%)
with the full-text trained model in Syn and both
Asy splits, highlighting the efficacy of this feature
attribution in extracting faithful explanations.

Contrary to our expectations and similar to obser-
vations with FRESH, DL consistently outperforms
x∇x, even outperforming α∇α in certain cases.
For example in Yelp across both asynchronous set-
tings, using DL the layperson is able to reach the
same predictions as the full-text model, in approxi-
mately 80% of the instances. In comparison, using
x∇x, the layperson reaches the same predictions
in only 55% of the instances.

Our findings suggest that sufficiency, as a metric
for measuring faithfulness, cannot be trusted in
asynchronous settings and also raises concerns for
synchronous settings.

8 Conclusion

We conducted an extensive empirical study to shed
light on the impact of temporal drift on model
explanations in asynchronous settings, including
post-hoc methods and select-then-predict models.
We demonstrate that faithfulness is not consistent
under temporal variations across feature attribu-
tion methods, while select-then-predict models are
mostly robust with negligible drops in predictive
performance. In the future, we plan to extend our
study into more tasks and data from different lan-
guages. We also plan to explore whether instance
specific feature attribution improves faithfulness in
asynchronous settings (Chrysostomou and Aletras,
2022b).

Limitations

This study focuses only on experimenting with data
in English. We would expect that the behavior of
some methods might change due to linguistic id-
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Figure 5: Averaged macro F1 performance of FRESH
trained on α∇α, DL and x∇x to predict the labels
predicted by a full-text model (BERT). .

iosyncrasies across different languages. We believe
that this is a very important direction for future
work. Replicating our experiments requires access
to GPUs.
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A Data split statistics

For X-FACT, FactCheck, AmazDigiMu and Amaz-
Pantry, we take the earliest 80% data as the training
and testing set for Syn, the earlier 80% to 90% data
as Asy1 and the rest (i.e. the latest 10%) as Asy2.
For Yelp and AGNews, which have more available
data for each year, we sample a same number of
data from each year based on the year with the least
data available. This allows year-wise analysis. We
take the newer 2 years of data as the Asy datasets,
per year per Asy. We also experiment with the orig-
inal dataset (OSyn, including Syn, Asy1 and Asy2)
to provide a comparison. Table 2 shows details of
each split for each task.

B Models and Hyper-parameters

Feature attributions We use BERT-base with
pre-trained weights from the Huggingface library
(Wolf et al., 2020). We use the AdamW optimizer
(Loshchilov and Hutter, 2017) with an initial learn-
ing rate of 1e−5 for fine-tuning BERT and 1e−4 for
the fully-connected classification layer. We train
our models for 3 epochs using a linear scheduler,
with 10% of the data in the first epoch as warming
up. We also use a grad-norm of 1.0. The model
with the lowest loss on the development set is se-
lected. All models are trained across 5 random
seeds, and we report the average and standard devi-
ation.

FRESH For the rationale extractor, we use the
same model for extracting rationales from feature
attributions. For the classifier (trained only on the
extracted rationales), we also use BERT-base with
the same optimizer configuration and scheduler
warm-up steps. We use a grad-norm of 1.0 and
select the model with the lowest loss on the devel-
opment set. We train across 5 random seeds for 5
epochs.

HardKUMA We use the 300-dimensional pre-
trained GloVe embeddings from the 840B release
(Pennington et al., 2014) and keep them frozen.
Similar to Bastings et al. (2019) and Chrysostomou
and Aletras (2022a), we use a Bi-LSTM layer of
200-d for the rationale extractor. We use the Adam
optimizer (Loshchilov and Hutter, 2017) with a
learning rate between 1e−3 and 1e−5 and a weight
decay of 1e−5. We also enforce a grad-norm of 5.0
and train for 20 epochs across 5 random seeds. Fol-
lowing Guerreiro and Martins (2021), we select the

model with the highest F1-macro score on the de-
velopment set and tuning the Lagrangian relaxation
algorithm parameters between 1e−2 and 1e−5.

SPECTRA Following Guerreiro and Martins
(2021), we take the 300-dimensional pre-trained
GloVe embeddings from the 840B release (Pen-
nington et al., 2014) as word representations and
keep them frozen. As Guerreiro and Martins (2021)
suggested, results with Bi-LSTM layers were com-
petitive with those with BERT reported in Jain et al.
(2020). We, therefore, instantiate all encoder net-
works as Bi-LSTM layers of hidden size 200. We
also use the AdamW optimizer (Loshchilov and
Hutter, 2017) for training SPECTRA. We use a
learning rate ∈ [1e−3, 5e−4, 1e−4, 5e−5] and l2
regularization ∈ [1e−4, 1e−5] for the training. We
also use a grad-norm of 5.0. We train all models for
highlights extraction for a minimum of 3 epochs
and maximum of 20 epochs. For matching extrac-
tion, we set the number of minimum epochs of 3
and maximum epochs of 10. We implement early
stopping for the model training if F1 stop increas-
ing over 5 epochs and for highlights extraction if
F1 stop increasing over 3 epochs. Tributes are paid
to Guerreiro and Martins (2021) for the published
code published.

All experiments are run on a single NVIDIA
Tesla V100 GPU.

C Post-hoc Explanations Faithfulness

D Select-then-predict Predictive
Performance

D.1 HardKUMA and SPECTRA Predictive
Performance

D.2 FRESH Predictive Performance
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Task Label Num Domain Start Date End Date Time Span(Days) Median Date Interquartile
Time Span (Days)

Data Num

AGNews 4

OSyn Full 2004-08-18 2008-02-20 1281 2006-09-27 980 46790
OSyn Train 2004-08-18 2008-02-20 1281 2006-09-27 979 28074
OSyn Test 2004-08-18 2008-02-20 1281 2006-09-28 983 9358
Syn Train 2004-08-18 2006-12-20 854 2005-01-20 648 9358
Syn Test 2004-08-18 2006-12-20 854 2005-01-20 650 9358
Asy1 Test 2007-01-30 2007-12-31 335 2007-06-29 191 9358
Asy2 Test 2008-01-01 2008-02-20 50 2008-01-24 25 9358

X-FACT 6

OSyn Full 2007-01-04 2018-11-12 4330 2013-06-27 1727 12050
OSyn Train 2007-01-04 2018-11-12 4330 2013-08-19 1769 9639
OSyn Test 2007-04-26 2018-11-07 4213 2013-09-19 1727 1206
Syn Train 1995-04-01 2016-08-31 7823 2012-08-30 1296 7232
Syn Test 2007-01-04 2016-08-31 3527 2012-08-17 1320 1204
Asy1 Test 2016-08-31 2017-09-30 395 2017-02-24 216 1205
Asy2 Test 2017-09-30 2018-11-12 408 2018-05-10 209 1204

FactCheck 2

OSyn Full 1995-09-25 2021-07-19 9429 2016-12-29 1519 12640
OSyn Train 1996-02-27 2021-07-19 9274 2016-12-29 1527 10086
OSyn Test 1995-09-25 2021-06-23 9403 2016-12-20 1515 1277
Syn Train 1995-09-25 2019-05-01 8619 2016-04-14 1437 7446
Syn Test 1996-08-02 2019-05-01 8307 2016-03-09 1319 1241
Asy1 Test 2019-05-02 2020-05-15 379 2019-11-18 182 1368
Asy2 Test 2020-05-15 2021-07-19 430 2020-10-12 132 1368

AmazDigiMu 3

OSyn Full 1998-07-09 2018-09-26 7384 2015-01-19 789 169623
OSyn Train 1998-07-09 2018-09-26 7384 2015-01-20 788 135698
OSyn Test 1998-08-21 2018-09-20 7335 2015-01-08 794 16962
Syn Train 1998-08-21 2016-05-07 6469 2014-09-20 673 101774
Syn Test 1998-12-20 2016-05-07 6351 2014-09-18 669 16963
Asy1 Test 2016-05-07 2016-12-30 237 2016-08-12 120 16962
Asy2 Test 2016-12-30 2018-09-26 635 2017-08-07 290 16962

AmazPantry 3

OSyn Full 2006-04-09 2018-10-04 4561 2016-09-27 485 137611
OSyn Train 2006-04-09 2018-09-28 4555 2016-09-27 486 110088
OSyn Test 2006-10-14 2018-10-04 4373 2016-09-24 474 13761
Syn Train 2006-04-28 2017-07-30 4111 2016-07-06 413 82566
Syn Test 2006-12-22 2017-07-30 3873 2016-07-08 406 13762
Asy1 Test 2017-07-30 2018-01-21 175 2017-10-16 92 13761
Asy2 Test 2018-01-21 2018-10-04 256 2018-04-12 94 13761

Yelp 5

OSyn Full 2005-02-16 2022-01-19 6181 2014-01-02 3274 15372
OSyn Train 2005-02-16 2022-01-19 6181 2014-01-30 3277 11956
OSyn Test 2005-02-16 2022-01-19 6181 2013-09-18 3297 1708
Syn Train 2005-02-16 2018-12-31 5066 2012-01-16 2556 8540
Syn Test 2005-02-16 2018-12-24 5059 2011-10-22 2457 1708
Asy1 Test 2019-01-01 2020-12-31 730 2020-01-01 375 1708
Asy2 Test 2021-01-01 2022-01-19 383 2022-01-01 195 1708

Table 2: Summary of the original dataset and the chronological splits for each task.
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Task Train Test Fulltext Normalised Sufficiency Normalised Comprehensiveness
Set Set F1 α∇α α DL x∇x lime IG DLsp Gsp α∇α α DL x∇x lime IG DLsp Gsp

Original Original 90.8 1.53 1.34 1.00 1.31 0.99 1.32 1.04 1.00 2.42 2.09 1.23 1.87 1.20 1.88 0.98 0.96
Syn 89.1 1.51 1.36 0.93 1.32 0.98 1.31 0.98 0.97 2.95 2.18 1.36 2.00 1.22 1.97 1.01 1.03

AGNews Syn Asy1 87.5 1.48 1.37 0.97 1.29 1.06 1.29 1.02 0.97 2.96 2.35 1.36 2.00 1.43 1.97 1.03 1.01
Asy2 85.5 1.49 1.40 0.97 1.26 1.02 1.25 1.02 0.97 3.08 2.51 1.41 2.04 1.38 1.99 1.02 1.02

Original Original 37.4 1.24 1.12 0.88 1.14 1.04 1.15 0.95 0.98 1.67 1.40 1.12 1.35 1.06 1.37 1.00 0.98
Syn 38.2 1.16 1.02 0.91 1.02 1.03 1.03 0.93 0.95 1.64 1.02 1.04 1.22 1.05 1.19 0.90 0.96

X-FACT Syn Asy1 37.4 1.15 0.99 0.98 1.03 1.03 1.04 0.95 0.95 1.74 1.03 1.08 1.26 1.06 1.24 1.04 1.00
Asy2 38.2 1.14 0.98 0.96 1.02 1.03 1.02 0.94 0.95 1.58 0.92 1.00 1.15 1.01 1.10 0.93 0.92

Original Original 74.4 2.00 1.73 1.10 1.09 1.19 1.11 1.03 0.98 4.67 3.42 1.26 2.23 1.12 2.27 1.10 1.07
Syn 71.1 2.8 2.4 1.17 1.41 1.06 1.48 1.13 1.03 2.85 2.67 1.52 1.95 0.96 1.96 1.16 1.08

FactCheck Syn Asy1 70.6 1.15 1.2 0.94 0.96 1.04 1.00 0.91 0.88 0.99 1.12 0.84 1.10 1.03 0.94 1.15 1.01
Asy2 73.5 1.26 1.13 1.00 1.22 1.24 1.23 1.08 0.96 1.06 1.18 0.83 1.00 1.00 0.91 1.04 0.98

Original Original 71.4 3.19 2.97 1.81 1.89 0.58 1.96 1.45 1.07 1.61 1.45 1.16 1.21 0.63 1.19 1.03 1.13
Syn 69.3 1.31 1.25 0.51 0.83 0.55 0.71 0.95 0.77 2.71 1.93 1.55 1.76 1.08 2.11 0.92 1.19

AmazDigiMu Syn Asy1 63.7 1.19 1.15 0.48 0.84 0.57 0.74 0.93 0.81 2.63 1.74 1.23 1.82 1.09 2.28 0.80 1.19
Asy2 58.2 1.16 1.14 0.49 0.84 0.58 0.74 0.94 0.82 2.52 1.63 1.10 1.73 1.05 2.14 0.75 1.18

Original Original 71.0 2.40 1.03 0.97 1.15 0.88 1.37 0.82 0.78 1.99 1.08 0.94 1.60 1.19 1.48 0.91 1.25
Syn 69.6 2.18 1.55 0.82 1.47 0.57 1.71 0.82 0.97 2.14 1.68 1.03 1.62 0.76 1.55 0.77 0.85

AmazPantry Syn Asy1 68.2 2.14 1.54 0.81 1.51 0.59 1.73 0.79 1.00 2.13 1.63 1.00 1.62 0.77 1.55 0.75 0.87
Asy2 68.1 2.06 1.46 0.76 1.52 0.56 1.74 0.76 0.98 2.12 1.58 0.96 1.64 0.73 1.57 0.72 0.86

Original Original 61.4 2.58 1.73 1.16 1.62 0.97 1.60 1.03 0.99 2.27 1.56 1.13 1.64 0.76 1.61 1.05 1.01
Syn 60.3 2.16 1.61 1.30 1.38 0.95 1.37 1.12 0.96 2.52 1.76 1.34 1.65 0.85 1.66 1.10 0.99

Yelp Syn Asy1 59.2 2.39 1.70 1.39 1.58 0.85 1.59 1.15 0.96 2.30 1.62 1.39 1.67 0.83 1.69 1.11 0.99
Asy2 61.0 2.39 1.69 1.36 1.60 0.88 1.61 1.13 0.95 2.27 1.60 1.31 1.63 0.80 1.65 1.07 0.95

Table 3: AOPC Normalized Sufficiency and Comprehensiveness (higher is better) for the OSyn, Syn and Asy of 8
feature attribution approaches on their TOPK tokens. Each feature is presented as the ratio to the random attribution
baseline.

Task Domain LSTM LSTM KUMA KUMA KUMA SPECTRA SPECTRA
F1 std F1 std len F1 std

AGNews

OSyn 86.8 0.1 85.0 0.4 23.2 83.2 0.4
Syn 84.4 0.1 81.9 1.1 39.1 80.4 0.8
Asy1 82.4 0.5 79.1 1.7 36.8 78.3 1.7
Asy2 79.4 0.6 77.4 1.5 37.0 77.7 1.9

X-FACT

OSyn 35.4 1.5 11.7 1.8 41.1 24.9 1.1
Syn 34.3 0.5 9.9 0.0 43.6 22.0 5.7
Asy1 31.6 3.0 12.7 0.0 42.5 16.7 7.8
Asy2 30.0 1.9 12.5 0.0 41.6 20.6 7.3

FactCheck

OSyn 62.4 2.9 47.2 1.7 53.9 50.7 5.3
Syn 55.6 3.2 47.3 2.7 78.5 50.5 6.5
Asy1 51.7 2.8 45.2 2.9 78.9 45.5 4.2
Asy2 49.8 3.6 41.9 2.3 79.0 43.2 6.4

AmazDigiMu

OSyn 66.8 0.8 64.9 1.7 19.0 48.7 1.4
Syn 66.4 1.0 65.8 1.7 18.2 43.0 2.9
Asy1 59.1 0.9 56.9 1.3 18.7 37.6 3.6
Asy2 54.4 1.2 52.1 1.2 18.6 39.0 3.6

AmazPantry

OSyn 67.5 0.4 64.4 0.4 18.4 58.1 0.5
Syn 67.4 0.6 63.5 1.0 17.9 48.9 1.4
Asy1 66.4 0.4 62.7 0.9 18.7 50.0 1.1
Asy2 67.0 0.9 62.7 1.1 19.6 51.5 1.0

Yelp

OSyn 48.0 0.4 28.8 1.6 11.7 36.2 2.2
Syn 39.1 1.3 19.4 0.5 11.3 32.8 6.5
Asy1 43.3 1.4 20.1 0.4 14.9 33.6 4.4
Asy2 43.2 1.8 20.0 0.8 15.0 34.7 5.8

Table 4: Averaged macro F1 performance and standard deviation over five runs for HardKUMA and SPECTRA and
their corresponding full-text models (T-test is conducted between HardKUMA and LSTM, and between SPECTRA
and LSTM, for each split.
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Task Domain BERT BERT α∇α α∇α DL DL x∇x x∇x
F1 std F1 std F1 std F1 std

AGNews

OSyn 90.8 0.3 90.1 0.1 89.7 0.1 83.1 0.3
Syn 89.1 0.5 87.0 0.6 86.7 0.4 81.5 0.6
Asy1 87.5 0.7 84.6 0.8 83.6 0.9 75.0 1.3
Asy2 85.5 0.5 83.3 0.3 81.6 0.9 73.7 1.7

X-FACT

OSyn 37.4 2.9 29.9 4.2 35.8 2.2 29.0 1.3
Syn 38.2 2.4 32.5 1.7 28.3 5.1 27.2 2.0
Asy1 37.4 1.8 32.6 2.8 21.4 2.4 18.3 2.2
Asy2 38.2 1.7 30.0 2.6 21.6 2.9 24.4 1.4

FactCheck

OSyn 74.4 3.2 77.1 0.4 83.9 0.3 64.2 3.0
Syn 71.1 1.9 71.8 0.2 64.7 1.0 53.2 4.3
Asy1 70.6 2.7 72.1 0.0 67.0 1.3 45.9 2.4
Asy2 73.5 1.7 74.2 0.1 65.7 1.5 42.8 2.7

AmazDigiMu

OSyn 71.4 1.6 66.2 0.8 68.1 0.5 50.8 2.2
Syn 69.3 2.5 63.6 0.9 70.9 0.5 51.2 4.3
Asy1 63.7 1.5 52.5 0.6 61.7 1.2 49.3 3.1
Asy2 58.2 1.1 50.2 0.9 56.3 1.0 44.6 1.7

AmazPantry

OSyn 71.0 0.5 66.2 0.5 68.6 0.2 49.0 1.9
Syn 69.6 1.5 62.2 1.0 54.2 1.4 49.2 2.7
Asy1 68.2 1.4 58.9 0.9 52.3 0.9 47.5 2.6
Asy2 68.1 2.5 57.8 0.9 51.0 0.7 47.4 2.8

Yelp

OSyn 61.4 1.3 58.7 0.8 51.5 1.7 45.3 1.4
Syn 60.3 0.6 56.5 0.4 52.2 1.5 43.4 4.3
Asy1 59.2 1.3 55.0 0.8 52.4 0.8 46.1 2.4
Asy2 61.0 0.7 58.5 0.7 54.0 1.4 45.5 3.7

Table 5: Averaged macro F1 performance and standard deviation over five runs for HardKUMA and SPECTRA and
their corresponding full-text models.
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