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Abstract

Simultaneous machine translation (SiMT) out-
puts the translation while receiving the source
inputs, and hence needs to balance the received
source information and translated target infor-
mation to make a reasonable decision between
waiting for inputs or outputting translation. Pre-
vious methods always balance source and target
information at the token level, either directly
waiting for a fixed number of tokens or adjust-
ing the waiting based on the current token. In
this paper, we propose a Wait-info Policy to
balance source and target at the information
level. We first quantify the amount of infor-
mation contained in each token, named info.
Then during simultaneous translation, the deci-
sion of waiting or outputting is made based on
the comparison results between the total info
of previous target outputs and received source
inputs. Experiments show that our method out-
performs strong baselines under and achieves
better balance via the proposed info1.

1 Introduction

Simultaneous machine translation (SiMT) (Cho
and Esipova, 2016; Gu et al., 2017; Ma et al., 2019)
outputs the translation while receiving the source
sentence, aiming at the trade-off between trans-
lation quality and latency. Therefore, a policy is
required for SiMT to decide between waiting for
the source inputs (i.e., READ) or outputting transla-
tions (i.e., WRITE), the core of which is to wisely
balance the received source information and the
translated target information. When the source in-
formation is less, the model should wait for more
inputs for a high-quality translation; conversely,
when the translated target information is less, the
model should output translations for a low latency.

Existing SiMT policies, involving fixed and
adaptive, always balance source and target at the

∗Corresponding author: Yang Feng.
1Code is available at https://github.com/

ictnlp/Wait-info
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(b) Wait-info policy: quantifies the information in each token,
named info (e.g., 0.5, 1.7, · · · ), and keeps the target informa-
tion always less than the received source information K info.

Figure 1: Schematic diagram of Wait-info v.s. Wait-k.

token level, i.e., treating each source and target
token equally when determining READ/WRITE.
Fixed policies decide READ/WRITE based on the
number of received source tokens (Ma et al., 2019;
Zhang and Feng, 2021c), such as wait-k policy (Ma
et al., 2019) simply considers each source token
to be equivalent and lets the target outputs always
lag the source inputs by k tokens, as shown in
Figure 1(a). Fixed policies are always limited by
the fact that the policy cannot be adjusted accord-
ing to complex inputs, making them difficult to
get the best trade-off. Adaptive policies predict
READ/WRITE according to the current source and
target tokens (Arivazhagan et al., 2019; Ma et al.,
2020) and thereby get a better trade-off, but they of-
ten ignore and under-utilize the difference between
tokens when deciding READ/WRITE. Besides, ex-
isting adaptive policies always rely on complicated
training (Ma et al., 2020; Miao et al., 2021) or addi-
tional labeled data (Zheng et al., 2019; Zhang et al.,
2020; Alinejad et al., 2021), making them more
computationally expensive than fixed policies.

Treating each token equally when balancing
source and target is not the optimal choice for SiMT
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policy. Many studies have shown that different
words have significantly different functions in trans-
lation (Lin et al., 2018; Moradi et al., 2019; Chen
et al., 2020), often divided into content words (i.e.,
noun, verb, · · · ) and function words (i.e., conjunc-
tion, preposition, · · · ), where the former express
more important meaning and the latter is less infor-
mative. Accordingly, tokens with different amounts
of information should also play different roles in
the SiMT policy, where more informative tokens
should play a more dominant role because they
bring more information to SiMT model (Zhang and
Feng, 2022a,b). Therefore, explicitly differentiat-
ing various tokens rather than treating them equally
when determining READ/WRITE will be benefi-
cial to developing a more precise SiMT policy.

In this paper, we differentiate various source and
target tokens based on the amount of information
they contain, aiming to balance received source
information and translated target information at
the information level. To this end, we propose
wait-info policy, a simple yet effective policy for
SiMT. As shown in Figure 1(b), we first quantify
the amount of information contained in each to-
ken through a scalar, named info, which is jointly
learned with the attention mechanism in an unsuper-
vised manner. During the simultaneous translation,
READ/WRITE decisions are made by balancing
the total info of translated target information and
received source information. If the received source
information is more than translated target informa-
tion by K info or more, the model outputs transla-
tion, otherwise the model waits for the next input.
Experiments and analyses show that our method
outperforms strong baselines and effectively quan-
tifies the information contained in each token.

2 Related Work

SiMT Policy Recent policies fall into fixed and
adaptive. For fixed policy, Ma et al. (2019) pro-
posed wait-k policy, which first READ k source to-
kens and then READ/WRITE one token alternately.
Elbayad et al. (2020) proposed an efficient multi-
path training for wait-k policy to randomly sample
k during training. Zhang et al. (2021) proposed
future-guide training for wait-k policy, which intro-
duces a full-sentence MT to guide training. Zhang
and Feng (2021a) proposed a char-level wait-k pol-
icy. Zhang and Feng (2021c) proposed a mixture-
of-experts wait-k policy to develop a universal
SiMT model. For adaptive policy, Gu et al. (2017)

trained an agent to decide READ/WRITE via rein-
forcement learning. Arivazhagan et al. (2019) pro-
posed MILk, which predicts a Bernoulli variable
to determine READ/WRITE. Ma et al. (2020) pro-
posed MMA to implement MILk on Transformer.
(Zhang and Feng, 2022c) proposed dual-path SiMT
to enhance MMA with dual learning. Zheng et al.
(2020) developed adaptive wait-k through heuristic
ensemble of multiple wait-k models. Miao et al.
(2021) proposed a generative framework to gen-
erate READ/WRITE decisions. Zhang and Feng
(2022a) proposed Gaussian multi-head attention to
decide READ/WRITE based on alignments.

Previous policies always treat each token equally
when determining READ/WRITE, ignoring the
fact that tokens with different amounts of infor-
mation often play different roles in SiMT policy.
Our method aims to develop a more precise SiMT
policy by differentiating the importance of various
tokens when determining READ/WRITE.

Information Modeling in NMT Linguistics
divides words into content words and function
words according to their information and functions
in the sentence. Therefore, modeling the informa-
tion contained in each word is often used to im-
prove the NMT performance. Moradi et al. (2019)
and Chen et al. (2020) used the word frequency to
indicate how much information each word contains,
and the words with lower frequencies contain more
information. Liu et al. (2020) and Kobayashi et al.
(2020) found that the norm of word embedding is
related to the token information in NMT. Lin et al.
(2018) and Zhang and Feng (2021b) argued that
the attention mechanism for different types of word
should be different, where the attention distribution
of content word tends to be more concentrated.

Our method explores the usefulness of modeling
information for SiMT policy, and proposes an un-
supervised method to quantify the information of
tokens through the attention mechanism, achieving
good explainability.

3 Background

Full-sentence MT For a translation task, we
denote the source sentence as x = (x1, · · · , xn)
with source length n and the target sentence as
y = (y1, · · · , ym) with target length m. Trans-
former (Vaswani et al., 2017) is the most widely
used architecture for full-sentence MT, consisting
of an encoder and a decoder. Encoder maps x to
source hidden states z = (z1, · · · , zn). Decoder
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maps y to target hidden states s = (s1, · · · , sm),
and then performs translating. Specifically, each en-
coder layer contains two sub-layers: self-attention
and feed-forward network (FFN), while each de-
coder layer contains three sub-layers: self-attention,
cross-attention and FFN. Both self-attention and
cross-attention are implemented through the dot-
product attention between query Q and key K,
calculated as:

eij =
QiW

Q
(
KjW

K
)⊤

√
dk

, (1)

αij = softmax (eij) . (2)

where eij is the similarity score between Qi and
Kj , and αij is the normalized attention weight. dk
is the input dimension, WQ and WK are projection
parameters. More specifically, self-attention ex-
tracts the monolingual representation of source or
target tokens, so the query and key both come from
the source hidden states z or target hidden states
s. While cross-attention extracts the cross-lingual
representation through measuring the correlation
between target and source token, so query comes
from the target hidden states s, and key comes from
the source hidden states z.

Wait-k Policy Simultaneous machine transla-
tion (SiMT) determines when to start translating
each target token through a policy. Wait-k policy
(Ma et al., 2019) is the most widely used policy
for SiMT, which refers to first waiting for k source
tokens and then translating and waiting for one
token alternately, i.e., the target outputs always lag-
ging k tokens behind the source inputs. Formally,
when translating yi, wait-k policy forces the SiMT
model to wait for gk (i) source tokens, where gk (i)
is calculated as:

gk (i) = min {k + i− 1, n} . (3)

4 Method

To differentiate various tokens when determining
READ/WRITE, we quantify the amount of infor-
mation contained in each source and target token,
named info. As shown in Figure 2, we propose info-
aware Transformer to jointly learn the quantified
info with the attention mechanism in an unsuper-
vised manner. Then based on the quantified info,
we propose wait-info policy to balance the received
source information and translated target informa-
tion. The details are as follows.

Info	
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Emb.	&		Pos. Emb.	&		Pos.

Outputs
(Shifted right)

Linear

So1max	

Output Probablities

Source
info

Target
info

Info	
Quan)zer

Info-aware
Self-a6en7on

Feed	Forward

Info-aware
Self-a6en7on

Info-consistent
Cross-a6en7on

Feed	Forward
×N

N×

Figure 2: Architecture of the proposed info-aware Trans-
former, where we omit residual connection and layer
normalization in the figure for clarity.

4.1 Info Quantification

To quantify the amount of information in each to-
ken, we use a scalar to represent how much in-
formation each token contains, named info. We
denote the info of the source tokens and the target
tokens as Isrc ∈ Rn×1 and Itgt ∈ Rm×1, respec-
tively, where Isrcj and Itgti represent the info of xj
and yi, and the higher info means that the token
has more information.

To predict Isrc and Itgt, we introduce two Info
Quantizers before the encoder and decoder to re-
spectively quantify the information of each source
and target token, as shown in Figure 2. Specifically,
the info quantizer is implemented by a 3-layer feed-
forward network (FFN):

Isrc = 2× sigmoid (FFN (x)) , (4)

Itgt = 2× sigmoid (FFN (y)) . (5)

For the formulation of the following wait-info pol-
icy, 2×sigmoid(·) is used to restrict the quantified
info Isrcj , Itgti ∈(0, 2).

Further, in a translation task, source sentence and
target sentence should be semantically equivalent
(Finch et al., 2005; Guo et al., 2022), so the total
information of source tokens should be equal to
that of target tokens. To this end, we introduce an
info-sum loss Lsum to constrain the total info of
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the source tokens and target tokens, calculated as:

Lsum =

∥∥∥∥∥∥

n∑

j=1

Isrcj − ζ

∥∥∥∥∥∥
2

+

∥∥∥∥∥
m∑

i=1

Itgti − ζ

∥∥∥∥∥
2

,

(6)

where ζ is a hyperparameter to represent the total
info, and we set ζ = m+n

2 (i.e., average length of
source and target) to control the average info to be
around 1. Therefore, the final loss L is:

L = Lce + λLsum, (7)

where Lce is the original cross-entropy loss for the
translation (Vaswani et al., 2017). λ is a hyperpa-
rameter and we set λ = 0.3 in our experiments.

4.2 Learning of Quantified Info

The form of quantified info Isrc and Itgt has been
constrained through Eq.(4-7), and then the key
challenge is how to encourage the quantified info
to accurately reflect the amount of information
each token contains. Since the tokens with dif-
ferent amounts of information often show differ-
ent preferences in the attention distribution (Lin
et al., 2018), we propose an unsupervised method
to learn the quantified info through the attention
mechanism. As shown in Figure 2, we introduce an
info-aware Transformer, consisting of info-aware
self-attention and info-consistent cross-attention.

Info-aware Self-attention Self-attentions in
both encoder and decoder are used to extract mono-
lingual representations of tokens, where tokens
with different amounts of information tend to ex-
hibit different attention distributions (Lin et al.,
2018; Zhang and Feng, 2021b). Specifically, to-
kens with much information, such as content words,
tend to pay more attention to themselves. For the
tokens with less information, since they have less
meaning in themselves, they need more context
information and thereby pay less attention to them-
selves. Therefore, we use the quantified info to
bias the tokens’ attention to themselves, thereby en-
couraging those tokens that tend to focus more on
themselves to get higher info. Specifically, based
on the original self-attention in Eq.(1,2), we add
the quantified info Iτi , τ ∈{src, tgt} (respectively
used for encoder and decoder self-attention) on the
token’s similarity to itself eii (Lin et al., 2018), and
then normalize them with softmax (·) to get the

info-aware self-attention βij , calculated as:

ẽij =

{
eij + (Iτi − 1) , if i = j

eij , otherwise
, (8)

βij = softmax (ẽij) . (9)

If Iτi > 1 (i.e., containing more information), the
token will pay more attention to itself, otherwise
the token will focus more on other tokens to extract
context information. Therefore, the info can be
learned from the attention distribution.

Info-consistent Cross-attention In addition
to modeling the token info in a monolingual con-
text, the consistency of the token info between tar-
get and source is also crucial for the SiMT policy,
which ensures that the received source information
and the target information can be accurately bal-
anced under the same criterion. For consistency,
the target and source tokens with high similarity
(i.e., those with high cross-attention scores) should
have similar info. Therefore, we scale the cross-
attention with the info consistency between target
and source, where the info consistency is measured
by L1 distance between target and source info. Info-
consistent cross-attention γij is calculated as:

γ̃ij = αij ×
(
2−

∣∣∣Itgti − Isrcj

∣∣∣
)
, (10)

γij = γ̃ij/
∑

j

γ̃ij , (11)

where
(
2−

∣∣∣Itgti − Isrcj

∣∣∣
)
∈ (0, 2] measures the

info consistent between yi and xj .
Overall, we apply the proposed info-aware self-

attention βij and info-consistent cross-attention γij
to replace the original attention for the learning of
the quantified info.

4.3 Wait-info Policy

Owing to the quantification and learning of info,
we get Isrc and Itgt to reflect how much informa-
tion that source and target tokens contain. Then,
we develop wait-info policy for SiMT to balance
source and target at the information level.

Borrowing the idea from the wait-k policy that
requires the target outputs to lag behind the source
inputs by k tokens (Ma et al., 2019), wait-info pol-
icy keeps that the target information is always less
than the received source information K info, where
K is the lagging info, a hyperparameter to control
the latency. Formally, we denote the number of
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Algorithm 1: Wait-info Policy
Input: source inputs x (incremental),

lagging info K,
ŷ0 = BeginOfSequence

Output: target outputs ŷ
Init: target idx i = 1, source idx j = 1

1 while ŷi−1 ̸= EndOfSequence do
2 Calculate info Isrcj and Itgti

/* 1) Source info is more; or

2) Inputs is complete. */

3 if
∑j

l=1I
src
l ≥ ∑i

l=1I
tgt
l +K or

4 xj == EndOfSequence
5 then // WRITE

6 Translate ŷi with (x1, · · · , xj);
7 i← i+ 1;
8 else // READ

9 Wait for next source input xj+1;
10 j ← j + 1;

11 return ŷ;

source tokens that the SiMT model waits for before
translating yi as gK(i), calculated as:

gK(i) =argmin
j

(
j∑

l=1

Isrcl ≥
i∑

l=1

Itgtl +K
)
.

(12)

The specific decoding process of wait-info policy
is shown in Algorithm 1.

During training, we mask out the source token
xj that j>gK(i) to simulate the incomplete source
sentence. Besides, we apply multi-path training
(Elbayad et al., 2020) to randomly sample different
K in each batch to enhance the training efficiency.

5 Experiment

5.1 Datasets
IWSLT152 English → Vietnamese (En→Vi)
(133K pairs) We use TED tst2012 (1553 pairs) as
the dev set and TED tst2013 (1268 pairs) as the
test set. Following the previous setting (Ma et al.,
2020), we replace tokens that frequency less than 5
by ⟨unk⟩, and the vocabulary sizes of English and
Vietnamese are 17K and 7.7K respectively.

WMT153 German→English (De→En) (4.5M
pairs) We use newstest2013 (3000 pairs) as the dev
set and newstest2015 (2169 pairs) as the test set.

2nlp.stanford.edu/projects/nmt/
3www.statmt.org/wmt15/translation-task

BPE (Sennrich et al., 2016) is applied with 32K
merge operations and the vocabulary is shared.

5.2 System Settings
We conduct experiments on following systems.

Full-sentence MT Standard Transformer model
(Vaswani et al., 2017), which waits for the complete
source sentence and then starts translating.

Wait-k Wait-k policy (Ma et al., 2019), which
first READ k source tokens, and then alternately
READ one token and WRITE one token.

Efficient Wait-k An efficient multi-path training
for wait-k (Elbayad et al., 2020), which randomly
samples k between batches during training.

Adaptive Wait-k An adaptive policy via a
heuristic composition of a set of wait-k models
(e.g., k from 1 to 13) (Zheng et al., 2020). Adap-
tive Wait-k uses the tokens number of target and
source to select a wait-k model to generate a target
token, and then decides whether to output or not
according to the generating probability.

MoE Wait-k4 Mixture-of-experts wait-k policy
(Zhang and Feng, 2021c), which applies multiple
experts to perform wait-k policy with various k to
consider the translation under multiple latency.

MMA5 Monotonic multi-head attention (MMA)
(Ma et al., 2020), which uses a Bernoulli variable
0/1 to decide READ/WRITE and Bernoulli variable
is jointly learning with multi-head attention.

GSiMT Generative SiMT (Miao et al., 2021),
which applies a generative framework to predict a
Bernoulli variable to decide READ/WRITE, and
uses the dynamic programming to train the policy.

GMA6 Gaussian multi-head attention (GMA)
(Zhang and Feng, 2022a), which uses a Gaussian
prior to learn the alignments in attention, and then
performs READ/WRITE based on the alignments.

Wait-info The proposed method in Sec.4.
The implementation of all systems are based on

Transformer (Vaswani et al., 2017) and adapted
from Fairseq Library (Ott et al., 2019). Follow-
ing Ma et al. (2020), we apply Transformer-Small
(4 heads) for En→Vi, Transformer-Base (8 heads)
and Transformer-Big (16 heads) for De→En. Since
GSiMT involves dynamic programming with ex-
pensive training costs, we only report GSiMT on
De→En with Transformer-Base, the same as its
original setting (Miao et al., 2021). For evaluation,

4github.com/ictnlp/MoE-Waitk
5github.com/pytorch/fairseq/tree/

master/examples/simultaneous_translation
6github.com/ictnlp/GMA
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Figure 3: Translation quality (BLEU) v.s. latency (Average Lagging, AL) of Wait-info and previous methods.

we report BLEU (Papineni et al., 2002) for transla-
tion quality and Average Lagging (AL) (Ma et al.,
2019) for latency. Average lagging evaluates the
number of tokens lagging behind the ideal policy,
calculated as:

AL =
1

τ

τ∑

i=1

g (i)− i− 1

m/n
, (13)

where τ=argmaxi (g (i)=n), and g (i) is number
of waited source tokens before translating yi.

5.3 Main Results
We compare the proposed wait-info policy with
previous policies in Figure 3, where Wait-info out-
performs the previous methods under all latency.
Compared with Wait-k and Efficient Wait-k which
directly wait for a fixed number of source tokens,
Wait-info balances target outputs and source inputs
at the information level, which provides a more
flexibly SiMT trade-off and thereby brings signif-
icant improvements. MoE Wait-k uses multiple
experts to fuse the translation under multiple la-
tency to cope with complex inputs, while Wait-info
dynamically adjusts READ/WRITE based on the
info and thereby deals with the complex inputs in a
more straightforward manner. Both Adaptive Wait-
k and Wait-info are adaptive policies, but Adaptive
Wait-k still decides which k to use based on the
token number of target outputs and received source
inputs (Zheng et al., 2020), while Wait-info decides
READ/WRITE based on more refined info and thus
performs better. Besides, Adaptive Wait-k trains
multiple wait-k models, which is computationally
expensive, while Wait-info only trains one model
to perform SiMT under different latency.

Compared with the adaptive policies, Wait-info
also achieves better performance. Previous adap-
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Figure 4: Ablation Studies on wait-info policy.

tive policies often decide READ/WRITE based on
the current source and target token (Ma et al., 2020;
Zhang and Feng, 2022a), while Wait-info is based
on the accumulated source and target info, which
is more reasonable for the SiMT policy. More
importantly, most adaptive policies rely on compli-
cated and time-consuming training (Zheng et al.,
2020) since involving dynamic programming (Ma
et al., 2020; Miao et al., 2021). The training of
Wait-info is simple as fixed policy, meanwhile the
performance is better than adaptive policies.

6 Analysis

We conduct extensive analyses on wait-info policy.
Unless otherwise specified, all results are reported
on De→En with Transformer-Base.

6.1 Ablation Study

Info-aware Self-attention v.s. Info-consistent
Cross-attention We propose two novel atten-
tion to learn the quantified info, so we analyze
their roles in Figure 4(a). Without info-aware
self-attention, the SiMT performance drops 0.7
BLEU on average, showing that info-aware self-
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Figure 5: Info distribution on different parts of speech (POS), where POS marked in red is often the content word,
POS marked in blue is often the function word.

attention is beneficial to the learning of quantified
info. When removing the info-consistent cross-
attention, the latency becomes much higher, which
is because some target info exceptionally becomes
much larger than the source info. Info-consistent
cross-attention ensures the info consistency be-
tween similar tokens and thus controls the latency
in a suitable range. When removing both of them,
the source or target info is unconstrained and be-
comes the same value. While the target info will
be slightly larger than source info (due to Lsum),
which is beneficial for SiMT under low latency, we
will analyze it in Sec.6.5.

Source Info v.s. Target Info Wait-info policy
quantifies the info of both source and target tokens,
and we respectively fix the source info Isrc = 1
or the target info Itgt = 1 (i.e., degenerate into
wait-k policy that treats each source or target token
equally) to compare the effect of only quantifying
the source or target info. As shown in Figure 4(b),
quantifying the source or target info can both bring
significant improvements, where the improvements
brought by target info are even more significant.

6.2 Improvements on Full-sentence MT

Besides focusing on SiMT, the proposed info-
aware Transformer can also improve full-sentence
MT. As the full-sentence MT results shown in Table
1, info-aware Transformer improves 0.08 BLEU on
En→Vi(Small), 0.59 BLEU on De→En(Base) and
0.39 BLEU on De→En(Big), showing that explic-
itly modeling token info is also beneficial for NMT.

6.3 Comparison on Information Modeling

To model the information amount contained in each
token, we propose an unsupervised method to adap-
tively learn the info from the attention mechanism.
Some previous methods apply heuristic methods
to model the information, such as using the token

En→Vi
(Small)

De→En
(Base)

De→En
(Big)

Transformer 28.90 31.60 32.84
Info-aware
Transformer

28.98 32.19 33.23

Table 1: Improvements on full-sentence MT.
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Wait-k

Figure 6: Comparison of different methods of informa-
tion modeling in wait-info policy, including via atten-
tion, token frequency and embedding norm.

frequency to indicate the amount of information
(Moradi et al., 2019; Chen et al., 2020) or associ-
ating the norm of embedding with the token infor-
mation (Liu et al., 2020; Kobayashi et al., 2020).
We apply different methods of information model-
ing (i.e., via attention, via token frequency and via
norm of token embedding) in the proposed wait-
info policy, and show the results in Figure 6.

Using embedding norm to indicate token info is
not suitable for the proposed wait-info policy, we
argue that this is because the embedding norm is
better at identifying specific tokens such as <eos>
and punctuation (Kobayashi et al., 2020), but has
limited ability to distinguish token information in
more detail. Modeling the info via attention and
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Length Ratio (src/tgt) Info Ratio
(tgt/src)Train. Dev. Test.

En→Vi 0.84 0.84 0.81 0.85
De→En 1.09 1.08 1.06 1.10

Table 2: Length ratio (source/target) on En→Vi and
De→En and the info ratio (target/source) in our wait-
info policy. During training, the ratio between source
and target info is successfully adjusted according to the
length ratio, thereby ensuring that the total source info
and total target info are equal.

frequency can both achieve improvements, where
our proposed method of learning info from atten-
tion performs much better, since jointly learning
the info with translation is more flexible than the
fixed frequency (Zhang et al., 2022).

6.4 Quality of Quantified Info

We expect that the proposed info can reflect the
amount of information contained in the token, thus
providing reasonable evidence for the SiMT policy.
To verify the quality of quantified info, we further
explore whether the quantified info can distinguish
different types of tokens, especially content words
and function words as mentioned above. In re-
sponse to this question, we categorize different
tokens using the Universal Part-of-Speech (POS)
Tagging tool7, and draw the info distribution of
tokens with different POS8 via violin plot in Figure
5. Tokens with different parts of speech have obvi-
ous differences in info distribution, where content
words (e.g., VERB, NOUN, AUX, ADJ, PROPN)
generally get larger info, while function words (e.g.,
CCONJ, SCONJ, ADP, PART, DET) have smaller
info, which is in line with our expectations (Xu
et al., 2019). Therefore, info can successfully learn
the amount of information contained in different
tokens, so as to develop a reasonable SiMT policy.

6.5 Flexibility on Length Difference

Early-stop Caused by Length Difference The
length difference between the two languages is a
major challenge for SiMT, especially for wait-k pol-
icy. Wait-k policy is sensitive to the length ratio be-
tween source and target and sometimes may force
the model to finish the target translation before

7huggingface.co/flair/upos-multi
8VERB: verb, NOUN: noun, AUX: auxiliary, ADJ: adjec-

tive, PROPN: proper noun, CCONJ: coordinating conjunction,
SCONJ: subordinating conjunction, ADP: adposition, PART:
particle, DET: determiner, PUNCT: punctuation, PRON: pro-
noun, INTJ: interjection, ADV: adverb, NUM: numeral.

Wait-k Wait-info
k De→En En→Vi De→En En→Vi
1 29.88% 0.39% 0.00% 0.00%
3 22.68% 0.16% 0.00% 0.00%
5 13.09% 0.00% 0.00% 0.00%
7 6.78% 0.00% 0.00% 0.00%
9 3.23% 0.00% 0.00% 0.00%

Table 3: Proportion of early-stop. Under low latency,
Wait-k emerges much early-stop on De→En, while Wait-
info completely avoids this situation (0.00%). Note that
for Wait-info, we select the results under the similar
latency with the Wait-k for comparison.

2 4 6 8 10 12
Average Lagging (AL)

24

26

28

30

32

B
LE

U

Full-sentence MT
Wait-info
Wait-k + Catch-up (c = 5)
Wait-k + Catch-up (c = 4)
Wait-k + Catch-up (c = 3)
Wait-k + Catch-up (c = 2)
Wait-k

Figure 7: Comparison of Wait-info and Catch-up.

reading the complete source sentence (Ma et al.,
2019; Zhang and Feng, 2022d), named early-stop,
especially when the source sentence is longer than
the target sentence. Formally, wait-k policy will
early-stop translating when gk(m) < n, where
gk(m)=k+m−1 defined in Eq.(3), n and m are
source and target lengths.

More importantly, the length difference is always
language-specific (Ma et al., 2019), and Table 2 re-
ports the length ratio between source and target on
En→Vi and De→En datasets. As seen, the target
sentence in En→Vi is generally longer than the
source sentence, on the contrary, the source sen-
tence in De→En is longer (i.e., n>m), which is
more prone to the early-stop. To study the sever-
ity of early-stop, we calculate the proportion of
early-stop in wait-k policy in Table 2, where over
20% of De→En cases will early stop translating
before receiving the complete source sentence un-
der low latency. The essential reason for early-stop
is that wait-k policy balances source and target at
the token level, where the token-level balance is
not the best choice because the number of tokens
(i.e., length) is often language-specific.
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Inputs: Gra@@ ham Ab@@ bot@@ t unter@@ zog sich im März 2012 der operation . <eos>

Outputs: Gra@@ ham Ab@@ bot@@ t was educated in March 2012 .

Inputs: Gra@@ ham Ab@@ bot@@ t unter@@ zog im März 2012 der operation .

Source Info: 0.98 0.96 0.94 0.90 0.95 0.80 0.99 0.88 1.04 1.03 0.64 1.18 1.00

Target Info: 1.00 1.24 1.09 1.13 1.16 0.9 1.28 1.12 1.44 1.00 1.27 1.14 1.00 0.92

Outputs: Gra@@ ham Ab@@ bot@@ t under@@ went a surgery in March 2012 . <eos>

1.00 0.91
Wait-info

sich <eos>

Wait-k

Gra@@ ham Ab@@ bot@@ t went in for surgery in March 2012 .

Gra@@ ham  Ab@@ bot@@ t  unter@@ zog     sich         im       März        2012       der      operation    .
Source:

   (_Graham)        (_Abbott)        (_underwent)   (_himself)  (_in)  (_March)   (_2012)  (_the)  (_surgery)  (_.)

Reference:

Figure 8: Case study of No.1219 in De→En test set, showing Wait-k (k = 5) and Wait-info (K = 1) under the
similar latency (AL ≈ 3). To show the process of SiMT more clearly, we correspond the outputs and inputs in the
horizontal direction, indicating which source tokens are received when translating the target token. For source and
target info, values that are larger than the average info (i.e., containing more information) are marked in red, values
that are smaller than the average info (i.e., containing less information) are marked in blue.

Wait-info Avoids Early-stop Owing to Lsum
in Eq.(6) that constrains the total source info to
be equal to total target info, the proposed wait-
info policy can learn to adjust the ratio between
source and target info according to the length ra-
tio, thereby avoiding early-stop. As shown in
Table 2, the average quantified info ratio (target
info/source info) is basically the same as the length
ratio (source length/target length), which shows
that Lsum successfully constrains the equality be-
tween total source info and total target info. There-
fore, as shown in Table 3, wait-info policy com-
pletely avoids the early-stop caused by length dif-
ference. Different from the wait-k policy, wait-info
policy balances source and target at the info level,
where the total info of target and source is the same
and language-independent, thereby overcoming the
length difference between two languages.

Wait-info v.s. Catch-up To avoid early-stop,
Ma et al. (2019) proposed a heuristic approach
Catch-up for wait-k policy to compensate for the
length difference between target and source. Catch-
up requires the model to read one additional source
token after every generating c target tokens (i.e.,
try to read more source tokens to avoid early-stop),
where c is a hyperparameter. We compare the per-
formance of ‘Wait-k+Catch-up’ and Wait-info in
Figure 7, where Wait-info performs better since it
balances the source and target more flexibly from
the info level rather than reading more source to-
kens according to heuristic rules.

7 Case Study

To study the specific improvement of the proposed
wait-info policy compared to the wait-k policy, we
conduct a case study in Figure 8. In Wait-k, the
model is forced to wait for a fixed 5 tokens be-

fore translating, which makes the model either too
aggressive or too conservative in different cases
(Zheng et al., 2020). As shown in this case, at the
beginning of translation, when translating ‘Gra-
hams’, 2 source tokens are enough to translate, but
wait-k policy forces the model to wait for 5 to-
kens, resulting in unnecessary waiting. When trans-
lating the noun ‘surgery’, the model should have
waited until receiving ‘operation’, but the model
was forced to output in advance, resulting in the
wrong translation ‘educated’ (marked in green).

In Wait-info, this weakness is ameliorated by
quantifying the information in each token rather
than considering each token equally. First of all, we
find the proposed info can effectively distinguish
different tokens, where the content words often get
larger info, such as ‘sich’, ‘März’ and ‘operation’
in German, and ‘went’, ‘surgery’ and ‘March’ in
English, thereby being more important to the SiMT
policy. Owing to the quantified info, when trans-
lating the ‘surgery’, the model recognized that the
previous ‘der’ (i.e., determiner in German) does
not contain enough info, so the model continues
to wait for the ‘operation’ and thereby generates
the correct translation ‘surgery’ (marked in red).
Overall, in wait-info policy, tokens with larger info,
such as verbs and nouns, play a more important role
in the model’s decision of READ/WRITE, making
it easier to ensure that those content words are read
before translating.

8 Conclusion

In this paper, we quantify the information in tokens
and propose a wait-info policy accordingly. Experi-
ments show the superiority of our method on SiMT
tasks and good explainability of the quantified info.
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Limitations

In this work, we quantify the amount of informa-
tion contained in each token via a scalar. Although
quantifying information as a scalar is intuitive and
friendly to SiMT policy, the expression space of a
scalar may be limited for some particularly com-
plex situations. Quantifying the information con-
tained in each token through a low-dimensional
vector may be able to further improve the perfor-
mance of wait-info policy. However, how to bal-
ance the info in vector form between source and
target is also a new challenge, and we will put it
into our future work.
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Figure 9: Comparison on different settings of total info
ζ in Eq.(6), where n is the length of source sentence and
m is the length of source sentence.

A Comparison on Settings of Total Info

Based on the semantic equivalence between the
source sentence and the target sentence, we intro-
duce Lsum to constrain the total info of the source
tokens and target tokens in Eq.(6). Lsum can not
only ensure that the total info of the source and
target is equal, but also constrain the average info
to be around 1, which is friendly to wait-info policy.
In our experiments, we set the total info ζ = m+n

2 ,
where n is the length of source sentence and m is
the length of source sentence. We compare the per-
formance under different ζ settings in Figure 9, in-
cluding ζ = m+n

2 , ζ = m and ζ = n. Our method
is not sensitive to the setting of ζ and achieves al-
most similar performance under different settings.

B Extended Analyses on Early-stop

Severity of Early-stop As mentioned in Sec.6.5,
wait-k policy may early-stop translating before
receiving complete source inputs, especially un-
der low latency. The reason for early-stop is
gk(m) < n caused by the length difference be-
tween the source and target. To investigate how
seriously early-stop affects translation quality, we
calculate the BLEU scores of wait-k policy for
early-stop or not-early-stop cases respectively in
Figure 10. When the wait-k policy appears early-
stop, the translation quality is 11 BLEU lower than
those cases not-early-stop on average, indicating
that early-stop seriously affects SiMT performance.

Why Does Wait-info Avoid Early-stop? The
wait-k policy will early-stop translating when
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29.14 29.44
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Wait-k, Early-stop
Wait-k, Not early-stop

Figure 10: We divide the De→En test set into two sets,
early-stop and not-early-stop, based on whether the
wait-k early-stop translating before receiving the com-
plete source inputs. Then we calculate the BLEU scores
of wait-k policy on each set.

gk(m)<n. While for wait-info policy, gK(m)=

argmin
j

(∑j
l=1I

src
l ≥∑m

l=1I
tgt
l +K

)
(defined in

Eq.(12)) will almost always greater than n, since
we introduce an info-sum loss Lsum (defined in
Eq.(6)) to constrain the

∑n
j=1 I

src
j =

∑m
i=1 I

tgt
i .

C Numerical Results

Besides Average Lagging (AL) (Ma et al., 2019),
we also use Consecutive Wait (CW) (Gu et al.,
2017), Average Proportion (AP) (Cho and Esipova,
2016) and Differentiable Average Lagging (DAL)
(Arivazhagan et al., 2019) to evaluate the latency of
the SiMT model. We use g (i) to record the number
of source tokens received when translating yi. The
calculation of latency metrics are as follows.

Consecutive Wait (CW) (Gu et al., 2017) eval-
uates the average number of source tokens waited
between two target tokens, calculated as:

CW =

∑|y|
i=1(g (i)− g (i− 1))
∑|y|

i=1 1g(i)−g(i−1)>0

, (14)

where 1g(i)−g(i−1) = 1 counts the number of
g (i)− g (i− 1) > 0.

Average Proportion (AP) (Cho and Esipova,
2016) measures the proportion of the received
source tokens, calculated as:

AP =
1

|x| |y|

|y|∑

i=1

g (i) . (15)

Differentiable Average Lagging (DAL) (Ari-
vazhagan et al., 2019) is a differentiable version of
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average lagging, calculated as:

g
′
(i) =

{
g (i) i = 1

max
(
g (i) , g

′
(i− 1) + |x|

|y|

)
i > 1

,

(16)

DAL =
1

|y|

|y|∑

i=1

g
′
(i)− i− 1

|x| / |y| . (17)

Numerical Results Table 4, 5 and 6 report the
numerical results of all systems in our experiments,
evaluated with BLEU for translation quality and
CW, AP, AL and DAL for latency.

IWSLT15 English→Vietnamese Transformer-Small
Full-sentence MT
(Vaswani et al., 2017)

CW AP AL DAL BLEU
22.08 1.00 22.08 22.08 28.91

Wait-k
(Ma et al., 2019)

k CW AP AL DAL BLEU
1 1.00 0.63 3.03 3.54 25.21
3 1.17 0.71 4.80 5.42 27.65
5 1.46 0.78 6.46 7.06 28.34
7 1.96 0.83 8.21 8.79 28.60
9 2.73 0.88 9.92 10.51 28.69

Efficient Wait-k
(Elbayad et al., 2020)

k CW AP AL DAL BLEU
1 1.01 0.63 3.06 3.61 26.23
3 1.17 0.71 4.66 5.20 28.21
5 1.46 0.78 6.38 6.94 28.56
7 1.96 1.96 8.13 8.69 28.62
9 2.73 0.87 9.80 10.34 28.52

Adaptive Wait-k
(Zhang et al., 2020)

( ρ1, ρ9 ) CW AP AL DAL BLEU
(0.02, 0.00) 1.05 0.63 2.98 3.64 25.69
(0.04, 0.00) 1.19 0.63 3.07 4.06 26.05
(0.05, 0.00) 1.27 1.27 3.14 4.30 26.33
(0.10, 0.00) 1.97 0.68 4.08 6.05 27.80
(0.10, 0.05) 2.36 0.71 4.77 7.11 28.46
(0.20, 0.00) 2.73 0.78 6.56 8.34 28.73
(0.30, 0.20) 3.39 0.86 9.42 10.42 28.80

MoE Wait-k
(Zhang and Feng, 2021c)

k CW AP AL DAL BLEU
1 1.00 0.63 3.19 3.76 26.56
3 1.17 0.71 4.70 5.42 28.43
5 1.46 0.78 6.43 7.14 28.73
7 1.97 0.83 8.19 8.88 28.81
9 2.73 0.87 9.86 10.39 28.88

MMA
(Ma et al., 2020)

λ CW AP AL DAL BLEU
0.4 1.03 0.58 2.68 3.46 27.73
0.3 1.09 0.59 2.98 3.81 27.90
0.2 1.15 0.63 3.57 4.44 28.47
0.1 1.31 0.67 4.63 5.65 28.42
0.04 1.64 0.70 5.44 6.57 28.33
0.02 2.01 0.76 7.09 8.29 28.28

GMA
(Zhang and Feng, 2022a)

δ CW AP AL DAL BLEU
0.9 1.20 0.65 3.05 4.08 27.95
1.0 1.27 0.68 4.01 4.77 28.20
2.0 1.49 0.74 5.47 6.37 28.44
2.2 1.60 0.77 6.04 6.96 28.56
2.5 1.74 0.78 6.55 7.55 28.72

Wait-info

K CW AP AL DAL BLEU
1 1.10 0.67 3.76 4.33 28.37
2 1.19 0.69 4.10 4.71 28.45
3 1.34 0.71 4.60 5.28 28.54
4 1.46 0.74 5.28 5.97 28.59
5 1.63 0.77 6.01 6.71 28.70
6 1.86 0.80 6.80 7.51 28.78
7 2.16 0.82 7.61 8.33 28.80
8 2.51 0.84 8.39 9.11 28.82

Table 4: Numerical results on En→Vi with Transformer-Small.

2261



WMT15 German→English Transformer-Base
Full-sentence MT
(Vaswani et al., 2017)

CW AP AL DAL BLEU
27.77 1.00 27.77 27.77 31.60

Wait-k
(Ma et al., 2019)

k CW AP AL DAL BLEU
1 1.17 0.52 0.02 1.84 17.61
3 1.23 0.59 1.71 3.33 23.75
5 1.37 0.66 3.85 5.20 26.86
7 1.70 0.73 5.86 7.12 28.20
9 2.17 0.78 7.85 9.01 29.42
11 2.78 0.82 9.71 10.79 30.36
13 3.56 0.86 11.55 12.49 30.75

Efficient Wait-k
(Elbayad et al., 2020)

k CW AP AL DAL BLEU
1 1.27 0.50 -0.49 1.60 19.51
3 1.27 0.58 1.56 3.29 24.11
5 1.39 0.66 3.71 5.18 26.85
7 1.71 0.73 5.78 7.12 28.34
9 2.17 0.78 7.84 8.98 29.39
11 2.78 0.82 9.73 10.79 30.02
13 3.56 0.86 11.50 12.49 30.25

Adaptive Wait-k
(Zhang et al., 2020)

( ρ1, ρ13 ) CW AP AL DAL BLEU
(0.02, 0.00) 1.54 0.54 0.83 3.27 20.29
(0.04, 0.00) 2.07 0.56 1.40 4.59 22.34
(0.05, 0.00) 2.28 0.58 1.90 5.25 23.56
(0.06, 0.00) 2.58 0.60 2.43 5.99 24.59
(0.07, 0.00) 2.79 0.62 2.94 6.57 25.96
(0.09, 0.00) 3.25 0.66 4.10 7.78 27.44
(0.10, 0.00) 3.45 0.68 4.66 8.31 27.88
(0.10, 0.01) 3.68 0.70 5.11 8.84 28.29
(0.10, 0.03) 4.13 0.72 6.09 9.87 28.91
0.10, 0.05) 4.48 0.75 7.21 10.72 29.73
(0.20, 0.00) 4.02 0.78 8.23 10.92 30.10
(0.20, 0.05) 4.75 0.82 10.12 12.35 30.76
(0.20, 0.10) 4.68 0.85 11.55 12.98 30.78
(0.30, 0.20) 4.16 0.86 12.18 13.09 30.74

MoE Wait-k
(Zhang and Feng, 2021c)

k CW AP AL DAL BLEU
1 1.49 0.49 -0.32 1.69 21.43
3 1.26 0.59 1.79 3.30 25.81
5 1.37 0.66 3.88 5.18 28.34
7 1.69 0.73 5.94 7.12 29.71
9 2.17 0.78 7.86 8.99 30.61
11 2.78 0.82 9.73 10.78 30.89
13 3.56 0.86 11.53 12.48 31.08

MMA
(Ma et al., 2020)

λ CW AP AL DAL BLEU
0.4 2.35 0.68 4.97 7.51 28.66
0.3 2.64 0.72 6.00 9.30 29.11
0.25 3.35 0.78 8.03 12.28 28.92
0.2 4.03 0.83 9.98 14.86 28.18
0.1 14.88 0.97 13.25 19.48 27.47

GMA
(Zhang and Feng, 2022a)

δ CW AP AL DAL BLEU
0.9 1.33 0.64 3.87 4.61 28.12
1.0 1.49 0.67 4.66 5.56 28.50
2.0 1.85 0.72 5.79 7.75 28.71
2.2 2.01 0.73 6.13 8.43 29.23
2.4 5.89 0.96 14.05 25.76 31.31

GSiMT
(Miao et al., 2021)

ζ CW AP AL DAL BLEU
4 - - 3.64 - 28.82
5 - - 4.45 - 29.50
6 - - 5.13 - 29.78
7 - - 6.24 - 29.63

Wait-info

K CW AP AL DAL BLEU
1 1.29 0.61 3.00 3.77 27.55
2 1.36 0.64 3.78 4.56 28.89
3 1.44 0.67 4.68 5.46 29.66
4 1.53 0.71 5.71 6.43 30.12
5 1.68 0.74 6.66 7.37 30.59
6 1.86 0.77 7.62 8.33 31.13
7 2.10 0.79 8.57 9.26 31.28
8 2.38 0.81 9.48 10.18 31.39
9 2.66 0.83 10.41 11.11 31.55
10 3.01 0.85 11.31 11.97 31.68
11 3.38 0.87 12.16 12.82 31.66
12 3.81 0.88 12.99 13.64 31.69
13 4.25 0.89 13.79 14.43 31.88
14 4.73 0.90 14.56 15.19 31.94
15 5.20 0.91 15.32 15.92 32.05

Table 5: Numerical results on De→En with Transformer-Base.
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WMT15 German→English Transformer-Big
Full-sentence MT
(Vaswani et al., 2017)

CW AP AL DAL BLEU
27.77 1.00 27.77 27.77 32.94

Wait-k
(Ma et al., 2019)

k CW AP AL DAL BLEU
1 1.16 0.52 0.25 1.82 19.13
3 1.20 0.60 2.23 3.41 25.45
5 1.36 0.67 4.00 5.23 28.67
7 1.70 0.73 5.97 7.17 30.12
9 2.17 0.78 7.95 9.03 31.46
11 2.79 0.82 9.75 10.82 31.83
13 3.56 0.86 11.59 12.51 32.08

Efficient Wait-k
(Elbayad et al., 2020)

k CW AP AL DAL BLEU
1 1.23 0.51 -0.19 1.79 20.56
3 1.26 0.59 1.73 3.36 25.45
5 1.39 0.66 3.82 5.24 28.58
7 1.71 0.73 5.89 7.16 30.13
9 2.17 0.78 7.88 9.02 31.23
11 2.78 0.82 9.77 10.81 31.52
13 3.56 0.86 11.58 12.51 32.02

Adaptive Wait-k
(Zhang et al., 2020)

( ρ1, ρ13 ) CW AP AL DAL BLEU
(0.02, 0.00) 1.42 0.54 0.99 3.00 20.50
(0.04, 0.00) 1.86 0.56 1.37 4.22 22.62
(0.05, 0.00) 2.10 0.57 1.69 4.81 23.77
(0.06, 0.00) 2.36 0.59 2.23 5.54 25.43
(0.07, 0.00) 2.58 0.61 2.70 6.14 27.06
(0.08, 0.00) 2.84 0.63 3.17 6.75 27.96
(0.09, 0.00) 3.08 0.65 3.72 7.33 28.92
(0.10, 0.00) 3.28 0.67 4.28 7.88 29.90
(0.10, 0.03) 3.95 0.71 5.59 9.43 30.97
(0.10, 0.05) 4.36 0.74 6.70 10.41 31.30
(0.20, 0.00) 3.90 0.78 8.09 10.80 32.38
(0.20, 0.05) 4.78 0.82 10.00 12.35 32.46
(0.30, 0.20) 4.16 0.86 12.19 13.11 32.24

MoE Wait-k
(Zhang and Feng, 2021c)

k CW AP AL DAL BLEU
1 1.41 0.51 0.16 1.79 21.76
3 1.28 0.59 2.03 3.37 26.51
5 1.37 0.67 4.03 5.22 29.33
7 1.70 0.73 5.95 7.14 30.66
9 2.17 0.78 7.86 8.99 30.61
11 2.78 0.82 9.73 10.78 30.89
13 3.56 0.86 11.53 12.48 31.08

MMA
(Ma et al., 2020)

λ CW AP AL DAL BLEU
1 1,69 0.56 3.00 4.03 26.10

0.75 1.66 0.58 3.40 4.46 26.50
0.5 1.69 0.59 3.69 4.83 27.70
0.4 1.70 0.59 3.75 4.90 29.20
0.3 1.82 0.60 4.18 5.35 30.30
0.27 2.37 0.71 5.91 8.27 30.88
0.25 2.62 0.75 7.02 9.88 31.04
0.2 3.21 0.79 8.75 12.60 31.08

GMA
(Zhang and Feng, 2022a)

δ CW AP AL DAL BLEU
1.0 1.54 0.68 4.60 5.89 30.20
2.0 1.98 0.74 6.34 8.18 30.64
2.2 2.13 0.75 6.86 8.91 31.33
2.4 2.28 0.76 7.28 9.59 31.62
2.5 3.10 0.88 12.06 20.43 31.91

Wait-info

K CW AP AL DAL BLEU
1 1.30 0.62 3.41 4.17 29.19
2 1.37 0.65 4.19 4.90 30.42
3 1.46 0.69 5.12 5.79 31.26
4 1.56 0.72 6.05 6.74 31.68
5 1.71 0.75 6.96 7.65 32.04
6 1.88 0.77 7.94 8.57 32.32
7 2.14 0.80 8.83 9.49 32.56
8 2.40 0.82 9.75 10.38 32.86
9 2.68 0.84 10.66 11.25 32.99
10 3.00 0.85 11.53 12.13 33.10
11 3.38 0.87 12.35 12.93 32.99
12 3.79 0.88 13.15 13.72 33.10
13 4.21 0.89 13.94 14.48 33.23
14 4.67 0.91 14.69 15.21 33.23
15 5.15 0.92 15.42 15.93 33.31

Table 6: Numerical results on De→En with Transformer-Big.
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